Country, the Giant Economy"-class. In 2021, this list q32 contains seven countries.
Table 1 .Two-dimensional interval classification of states and territories of the world according to the scale of the economy and the scale of the country
We will denote this matrix Qaß by the term the Global Scaling Matrix. We will discuss this matrix in a separate publication.
Conclusions
In this paper new economic indices PI (the Product Index) and Dl (the Demographic Index) are introduced. When using the identity linking the PI and Dl indices with the economic productivity index EPI, the existence of a certain global economic parameter was revealed: the critical value of the economic productivity EPS,r dividing the world's economies into low-productive ones ("cold" economies, EPI< EPI)and highly productive ones ("warm" and "hot" economies, EPI> EPiJ.
The study of the distribution of countries on the plane of economic indices {Dl, PI} made it possible to construct a two-dimensional interval classification of the countries of the world
according to the scale of the economy and the scale of the country.
References:
1. Сейдаметова З.С. Глобальная экономика в презентационных пространствах экономических индексов / З.С. Сейдаметова, В.А. Темненко // Ученые записки Крымского инженерно-педагогического университета. - 2020. - № 3(69). - С 156-161.
2. The International Monetary Fund [e-resource] / World Economic Outlook database: April 2022. -U R L: h t tps://w w w. i m f .org /7 me d i a/ Fi les/Publi cation s/WEO/WE O-Database/2022/WEOApr2022all. ashx
3. Seidametova Z.S. Some 1D-, 2D-and 3D-distributions of countries' national economies in the world economics / Z.S. Seidametova, V.A. Temnenko П Ученые записки
Крымского инженерно-педагогического университета, - 2018, - № 1 (59), - С 120-134.
4. Seidametova Z.S. Global economy in the space of economic ¡ndicesEPI,BLl,CPl in 2019/Z.S. Seidametova // Ученые записки Крымского ипженерно-педа-гогического университета. - 2020. - № 4 (70). -С. 192-199.
5. Seidametova Z.S. The axial line of the global economy "swarm" in the space of economic indices EPI, BU, CPI / Z. S. Seidametova, V. A. Temnenko // KANT. - 2021. - № 3 (40). - С 77-84.
6. Which countries are driving the world's population growth? [e-resource] / The Economist. Jul 11, 2022,-URL: https://www.economist.com/the-economist-ex plains/2022/07/11/which-countries-a re-drivin g-the-worlds-population-growth
7. The $100 Trillion Global Economy in One Chart [e-resource] / Visual Capitalist Jul 12,2022. - URL: https:/ /www.vis ua lea pita list, com/100-tr illi on-gl obal-economy/
8. ISO 3166 country codes [e-resource] / iSO Online Browsing Platform. - URL: https://www.iso.org/obp/ui/
A scale level number A scale level name Interval of the indices Dl and PI values
1 SuperGiant a SuperGiant Economy: PI>PIjpn=21 .47
a SuperGiant Country: DI>DljpN=19.27
2 Giant a Giant Economy: 5<PI<PIjpn
a Giant Country: 5<DI<DIjpn
3 Big a Big Economy: 1<Pls5
a Big Country: 1<DI<5
4 Medium a Medium Economy: 0.2<PI<1
a Medium Country: 0.2<DI<1
5 Small a Small Economy: 0.04<PI<0.2
a Small Country: 0.04<DI<0.2
6 Very Small a Very Small Economy: Pl<0.04
a Very Small Country: Dl<0.04
МИР В ЭКОНОМИЧЕСКИХ ИНДЕКСАХ, ЗАВИСЯЩИХ ОТ РАЗМЕРА СТРАНЫ, II. ГЛОБАЛЬНАЯ МАТРИЦА МАСШТАБОВ
Сейдаметова Зарема Сейдалиевна, доктор педагогических наук, профессор Темненко Валерий Анатольевич, кандидат физико-математических наук, доцент
Крымский инженерно-педагогический университет имени Февзи Якубова, Симферополь, Республика Крым
Цель исследования - на основании двумерной интервальной классификации стран по масштабу экономики и масштабу страны представить мировую экономику в виде набора элементов некоторой матрицы (}вр размерностью 6x6 (Глобальной Матрицы Масштабов). Первый индекс в матрице соответствует масштабу страны. Второй индекс соответствует масштабу экономики. Матрица существует в двух видах: 1} числовая матрица, элементом которой является число стран, имеющих соответствующие масштабы (уровень масштаба по размеру страны равен а, 1 < а < 6/ уровень масштаба по размеру экономики равен ¡}, 1 < (,); 2) матрица списков, элементами которой являются списки стран с соответствующими масштабами страны и экономики. Научная новизна заключается в публикации глобальной матрицы масштабов как в виде числового объекта, так и в виде матрицы списков. Исследование этой матрицы выявляет в результате фундаментальный закон мировой экономики: закон диагонального доминирования глобальной матрицы масштабов. Эко-
мимический смысл этого закона состоит в приближенном соответствии масштаба страны и масштаба экономики.
Ключевые слова: мировая экономика; экономические индексы/ масштаб экономики и масштаб страны; глобальная матрицы масштабов.
DOI 10.24923/2222-243X.2022-44.11
THE WORLD IN ECONOMIC INDICES DEPENDING ON A COUNTRY'S SIZE //. GLOBAL SCALE MATRIX
The purpose of the study is to represent the world economy as a set of elements of some matrix Qaf3 with dimensions 6x6 (the Global Scale Matrix) based on the two-dimensional interval classification of countries by the scale of the economy and the scale of the country. The first index in the matrix Qafl corresponds to the scale of the country. The second index corresponds to the scale of the economy. Matrixes exist it) two forms; 1) a numeric matrix, the element of which is the number of countries with the corresponding scales (a scale level by country size is or, 1 < a < 6/ a scale level by economy size is /?,!</?< i>); 2) a matrix of lists, the elements of which are lists of countries with the corresponding scales of the country and economy. The scientific novelty lies in the publication of the Global Scale Matrix, both in the form of a numerical object and in the form of a matrix of the lists. The study of this matrix reveals as a result the fundamental law of the world economy: the law of diagonal dominance of the Global Scale Matrix. The economic meaning of this law lies in the approximate correspondence between the scale of the country and the scale of the economy.
Keywords: world economy; economic indices; an economic scale and a country scale; a global scale matrix.
Introduction
In the previous paper [1 ], the distribution of the countries of the world on the {Population, GDP}-plane was studied. For the convenience of describing this distribution, two dimensionless and normalized to 100% indices were introduced: the "product index" PI and the "demographic index" Dl:
PI
GDP
max{GDP}
100 (%),
(1)
where GDP is the gross domestic product of the country we are interested in, and max{GDP] is the maximum value of GDP achieved in one of the countries of the world in the same year; the United States has been such a champion-country in terms of GDP for many years;
DI =
POP
max(POP)
100 (%),
(2)
where POP is the population of the country of interest, and maxfPOP} is the maximum population that one of the world's countries with the largest population in the world in the same year has. For many years, China has been the country with the largest population.
The main result of the previous paper [1] is the construction of a two-dimensional scale of states: by the scale of the country and by the scale of the economy. This scale has six levels. Each level is defined by the range of the index PI for the economic scale and the range of the index Dl for the country size scale. These intervals, together with the names of the scale levels that we proposed, are given in table 1 of the paper [1].
This two-dimensional scale allows the world economy to be represented as a square matrix 6x6 Qaf3( 1 < a < 6; 1 < p < 6)- The first index of the matrix Qa/3 corresponds to the scale of the country, the second index corresponds to the scale of the economy. This matrix exists
УДК 339.97:330.43 ВАК РФ 5.2.5/08.00.14
© Seidameto va Z.S., 2022 Ф Temnenko V.A., 2022
CU OJ
о
CU
-0 Q-
9 к h-X
Ш
о
CO
s
75
SEIDAMETOVA Zarema Seidalievna, DScof Pedagogical sciences, Professor
TEMNENKO Valerii A na tolie vich, PhD of Physics and Mathematical sciences, Associate Professor
Fevzi Yakubov Crimean Engit le ering-Pe dagogica/ University, Simferopol, RC
in two forms.The first type is a numerical matrix, each element of which is the number of countries with the corresponding scales (the scale level by country size is a, the scale level by economy size is /?).The second type of matrix is a matrix of lists, the elements of which are lists of countries with corresponding economic scales. In this paper we present a complete description of this matrix. We will call it the Global Scale Matrix (GSM).
The purpose of this study is to represent the world economy in the form of a Global Scale Matrix Qap - structures the following tasks. 1) based on the statistical data of 2021 [2] and the results of the previous paper [1], present the matrix Qa(S as a numerical object, the elements of which are the numbers of states that have appropriate scale of the economy and the country; 2) present the numerical matrix Qaf3 separately for groups of countries that differ in economic productivity ("hot" economies, "warm" economies, "coid" economies); 3) describe the main mathematical property of the Qap matrix ("the law of diagonal dominance") and reveal its economic meaning; 4) present the Global Scale Matrix as a set of the lists of countries belonging to all elements of the matrix, indicating the economic indices Dl, PI and EPI for each country. The theoretics1 basis of this study was the publications 11], [3], [4], [5], [6], [7].
The practical significance of this studyWes in the recognition of some two-dimensional structure in the annual statistical data of the world economy. This structure will make it possible to identify common features of the economy (and the history of the economy) in groups of countries belonging to the same element of the matrix
Main part
Global Scale Matrix as a matrix with numeric elements,Table 1 shows the numerical version of GSM.To build this matrix, we used the indices Di and Pi calculated for each country based on statistical data for 2021 [2].
Table 1.Global Scale Matrix Qa. in 2021
In total, 193 statesandterritoriesaredisplayed in this matrix Qafl. All these states and territories are present in the database [2] for 2021.
The general view of the matrix Qap (table 1) allows us to formulate a certain global economic law: the law of diagonal dominance. The content of this law is as follows - almost all countries of the world are located on the four diagonals of the matrix: 1) the main diagonal «=/?; 2) the diagonal is one step below the main one a=p+1; 3) the diagonal is one step higher than the main diagonal a-p-1; 4) the diagonal is two steps higher than the main one ?=/?-2.
These four diagonals occupy 1 8 cells out of 36 cells of the matrix Qap. There are only two countries in element Q^ f«=/?-3): Somalia and South Sudan, but the statistics of these countries are unreliable due to long-term armed conflicts in these countries. The remaining cells of the matrix Qap are empty, there is nota single country in them.
There are 75 countries on the main diagonal or =/j, We wilI call thesecountries "seale-balanced": for them, the scale levels of the country and of the economy coincide. There are 30 countries on the diagonal a=p+1. We will call these countries "superproductive": forthem,the scale level of the economy exceeds the scale level of the country. There are 58 countries on the a=p-1 diagonal. We will call these countries "underproductive" or "countries with surplus population". The basic index identity (see formula (4) of the previous paper [1]) shows that these two "languages" ("language of low productivity" and "language of surplus population") are equal, although expressions from the second "language" look extremely inhumanistic. There are 28 countries on the a=p-2 diagonal. We will call these countries "significantly unproductive" or "countries with a significant population surplus".
These fourdiagonalscontain 191 countries out of a total of 193 countries for which the database [2] has statistics for 2021. Only Somalia and South Sudan fall out of this pattern. Both of these countries are burdened by protracted armed conflicts. For warring countries, economic statistics can always be questionable. It is also possible that in protracted low-intensity armed conflicts the population continues to grow while the GDP does not.
What is the economic meaning of the law of diagonal dominance of the
An Economy Scale A Country Scale \ 1 SuperGiant 2 Giant 3 Big 4 Medium 5 Small 6 Very Small
1 SuperGiant 2 1 0 0 0 0
2 Giant 0 7 7 2 0 0
3 Bifl 0 7 11 17 17 2
4 Medium 0 0 15 17 19 9
5 Small 0 0 0 4 14 14
6 Very Small 0 0 0 0 4 24
Global Scale Matrix? This meaning is very simple: it is the law of approximate correspondence between the scale of the country and the scale of its economy. There are no countries in the world for which the economic scale and the scale of the country are radically different. For example, there is no giant country with a small economy, just as there is no small country with a giant economy. We do not know how trivial this faw is. We do not know if it was carried out in all epochs. We do not know how to measure the scales of the economy and population forthe once very swollen colonial empires, such as Spain, Portugal or some ancient states.
But undoubtedly this law is carried out in our era.
The types of GSM separately for "hot" economies (table 2), "warm" economies (table 3), and "cold" economies (table 4) possibly may be of special interest.
Table 2.Global Scale Matrix forthe "hot" economies (EPI>EPI (Japan)) in 2021
In 2021, according to the database [2], 25 countries could be classified as "warm" economies. Sixteen of them belong to the set of "balanced" countries, nine - to the "super-productive".
Table 4 Global Scale Matrix Qafl 2021 for "cold" economies (EPI<EPIJ
An Economy Scale A Country Scale \ 1 SuperGiant 2 Giant 3 Big 4 Medium 5 Small 6 Very Small
1 SuperGiant 1 1 0 0 0 0
2 Giant 0 4 7 2 0 0
3 Bin 0 0 7 17 17 2
4 Medium 0 0 0 9 19 9
5 Small 0 0 0 0 9 14
6 Very Small 0 0 0 0 0 19
An Economy Scale A Country Scale \ 1 SuperGiant 2 Giant 3 Big 4 Medium 5 Small 6 Very Small
1 SuperGiant 1 0 0 0 0 0
2 Giant 0 2 0 0 0 0
3 Bifl 0 4 1 0 0 0
4 Medium 0 0 13 0 0 0
5 Small 0 0 0 2 1 0
6 Very Small 0 0 0 0 2 2
In 2021, according to the database [2], 28 countries could be classified as "hot" economies. Seven of them belong to "balanced" countries {a-p). Twenty-one countries are classified as "superproductive" countries.
Table 3. Global Scale Matrix Qafl 2021 for "warm" economies (EPI <EPI<EPI(Japan))
An Economy Scale A Country Scale \ 1 SuperGiant 2 Giant 3 Big 4 Medium 5 Small 6 Very Small
1 SuperGiant 0 0 0 0 0 0
2 Giant 0 1 0 0 0 0
3 Bifl 0 3 0 0 0 0
4 Medium 0 0 2 8 0 0
5 Small 0 0 0 2 4 0
6 Very Small 0 0 0 0 2 3
CU OJ
o
CU
-0 Q-
9 re h-X
LU
O
CO
In 2021, according to the database [2], 137 countries belonged to the zone of "cold" economies. Forty-nine of them according to table 4 belong to "balanced" countries («=/?). 58 countries belong to the class of "underproductive" (or, in other terminology, countries with "surplus population"); for them «=£-1, The 28 "cold" countries belong to the group of "significantly underproductive" countries (or, in other terminology, "countries with a significant population surplus"). For these countries a=p-2. Most of these countries (23 out of 28) belong to the EPI-group of the least developed countries (EPI-group LDC, EPI 1%) in terms of productivity. Somalia and South Sudan also belong to this EPI-group. These two "overpopulated" countries deviate from the law of diagonal dominance.
In tables 2-4, the "boundary" values of the index EPI are as follows: EPI(Japan)=28.78; EPI,=11.909. EPI, is the critical value of the economic productivity index EPI, separating "cold" economies from "warm" and "hot" ones [1].
Global Scope Matrix as a matrix of country lists. For reference purposes and for comparison with the two-dimensional diagrams of the distribution of countries on the plane{Dl, PI}, presented in the paper [1], we present here the elements of the Global Scale Matrix Qafi in the form
S
77
■ of the lists of countries. The lists are given in ascending order of the number a of the matrix row (i.e., in descending order of the country scale from SuperGiant to VerySmall). Within each row a, the lists are given in ascending order of the matrix column number p (i.e., in descending order of the scale of the economy from SuperGiant to VerySmall). The missing elements of the matrix Qap contain empty lists (there is no country in this list). Within each list, countries are presented in descending order of the product index PI. The lists show the name of each country, followed by the country's abbreviated ISO a!pha3 name in parentheses. A more complete version of the lists, containing, in addition to the abbreviated name of the country, the economic indices Dl, PI and EPI according to data for 2021 is given in the ^ electronic appendix to this paper (https://cutt.ly/ ^c QZeW4iA).
^ Lists of countries belonging to the Qaf3 elements of the Global Scale Ma trix (a ccording to O 2021 statistics):
X Qn={United States (USA), China (CHN)}; O Q]2=Elndia(IND};
m Q22={Japan (JPN), Germany (D£U), Russia " (RUS), Brazil (BRA), Islamic Republic of Iran (IRN), 78 Mexico(MEX), Indonesia (IDN));Q2 ^{Turkey (TUR), Nigeria (NGA), Egypt (EGY), Philippines (PHL), Vietnam (VNM), Bangladesh (BGD), Pakistan (PAK)}; QJ4={Ethiopia (ETH), Dem. Rep. of the Congo (COD)};
United Kingdom (GBR), France (FRA), Italy (ITA), Canada (CAN), Korea (KOR), Australia (AUS), Spain (ESP)};
Q3J={Netherlands (NLD), Saudi Arabia (SAU), Taiwan Province of China (TWN), Poland (POL), Thailand (THA), Argentina (ARG), South Africa (ZAF), Malaysia (MYS), Chile (CHL),Colombia (COL), Romania (ROU)};
Q^-{Peru (PER), Iraq (IRQ), Ukraine (UKR), Kazakhstan (KAZ), Algeria (DZA), Morocco (MAR), Kenya (KEN), Ecuador (ECU), Guatemala (GTM), Sri Lanka (LKA), Ghana (GHA), Angola (AGO), Tanzania (TZA), Cote d'lvoire (CIV), Uzbekistan (UZB), Myanmar (MMR), Venezuela (VEN)};
Q3;~£Cameroon (CMR), Uganda (UGA), Sudan (SDN), Nepal (NPL), Zimbabwe (ZWE), Senega! (SEN), Cambodia (KHM), Yemen (YEM), Zambia (ZMB), Mali (MLI), Burkina Faso (BFA), Guinea (GIN), Mozambique (MOZ), Niger (NER), Madagascar (MDG), Malawi (MWI), Chad (TCD)};
Q«=iSomalia (SOM), South Sudan (SSD)};
so
Q4J=fSwitzerland (CHE), Sweden (SWE), Belgium (BEL), Ireland (IRL), Norway (NOR), Israel (ISR), Austria (AUT), United Arab Emirates (ARE), Singapore (SGP), Denmark (DNK), Hong Kong SAR
(HKG), Finland (FIN), Czech Republic (CZE), Portugal (PRT), New Zealand (NZL)};
{^{Greece (GRC), Hungary (HUN), Kuwait (KWT), Slovak Republic (SVK), Puerto Rico (PRI), Dominican Republic (DOM), Oman (OMN), Bulgaria (BGR), Belarus (BLR), Croatia (HRV), Costa Rica (CRI), Panama (PAN), Turkmenistan (TKM), Serbia (SRB), Uruguay (URY), Azerbaijan (AZE, Tunisia (TUN)};
Q^={Jordan (JOR), Bolivia (BOL), Paraguay (PRY), Libya (LBY), El Salvador (SLV), Honduras (HND) Papua New Guinea (PNG), Bosnia and Herzegovina (BIH), Haiti (HTI), Georgia (GEO), Lao P.D.R. (LAO), Albania (ALB), West Bank and Gaza (WBG), Benin (BEN), Mongolia (MNG), Nicaragua (NIC), Armenia (ARM), Republic of Congo (COG), Rwanda (RWA)};
Q46={Mauritania (MRT), Kyrgyz Republic (KGZ), Tajikistan (TJK), Togo (TGO), Sierra Leone (SLE), Liberia (LBR), Burundi (BDI), Central African Republic (CAF), Eritrea (ERI)}; Q;j=iQatar (QAT), Luxembourg (LUX), Lithuania (LTU), Slovenia (SVN)}; Q;s=fLatvia (LVA), Bahrain (BHR), Estonia (EST), Macao SAR (MAC), Cyprus (CYP), Trinidad and Tobago (TTO), Gabon (GAB), Botswana (BWA), Jamaica (JAM), North Macedonia (MKD), Moldova (MDA), Equatorial Guinea (GNQ), Namibia (NAM), Mauritius (MUS)};
Qse=(KosoVd (UVK), Guyana (GUY), Montenegro (MNE), Eswatini (SWZ), Fiji (FJI), Djibouti (DJI), Suriname (SUR), Lesotho (LSO), Bhutan (BTN), Timor-Leste (TLS), The Gambia (GMB), Guinea-Bissau (GNB), Solomon Islands (SLB), Comoros (COM)}; Q,=£lceland (iSL), Brunei Darussalam (BRN), Malta (MLT), The Bahamas (BHS)};
Q={ Maldives (MDV), Barbados (BRB), Andorra
bo
(AND), Aruba (ABW), Cabo Verde (CPV), Belize (BLZ),St. Lucia (LCA), San Marino(SMR), Seychelles (SYC), Antigua and Barbuda (ATG), Grenada (GRD), St. Kitts and Nevis (KNA), Vanuatu (VUT), St. Vincent and theGrenadines (VCT), Samoa (WSM), Dominica (DMA), Sao Tome and Principe (STP), Tonga (TON), Micronesia (FSM), Marshall Islands (MHL), Palau (PLW), Kiribati (KIR), Nauru (NRU), Tuvalu (TUV)}.
Conclusions
The apparatus of the Global Scale Matrix proposed in the paper is a convenient and compact tool for describing the world economy. It can be assumed that any "absolute" characteristics of a country (e.g., the military threat generated by a country, or the amount of greenhouse gases generated by a country) are determined by the position of the country in the Global Scale Matrix. The law of "diagonaf
dominance" of the Global Scale Matrix, which is an example of a fundamental (albeit very simple in content) law of the world economy, is revealed using this matrix. The close relationship of a country's overpopulation with its low economic productivity is also revealed using this matrix.
References:
1. Seidametova Z.S, The world in economic indices depending on a country size. i. The world on the {Population, GDP}-plane / Z.S. Seidametova, V.A. lerrrienko // KANT. - 2022. - № 3 (44). - C. 68-74.
2. The international Monetary Fund [e-resource] / World Economic Outlook database: April 2022.- URL: https://www.imf.Org/-/media/Files/Publications/ WEO/WE 0 - Da ta ba se /202 2/WE О A p r2022a 11 .a s hx
3. Seidametova Z.S. Some Ш-, 2D- and 3D distributions of countries' national economies in the world economics / Z, S. Seidametova, V. A. Temnenko // Ученые записки Крымского инженерно-педагогического университета. - 2018. - №1 (59).- С. 120-134.
4. Seidametova Z.S. Global economy in the space of economic indices EPt, BLl, CPI in 2019 / Z.S. Seidametova // Ученые записки Крымского инженерно-педагогического университета. - 2020. -M? 4 (70).-С 192-199.
5. Сейдаметова З.С Двумерные распределения национальных экономик стран в мировой экономике / З.С. Сейдаметова // Ученые записки Крымского инженерно-педагогического университета, - 2019, - № 2 (64), - С 196-203.
6. Seidametova Z.S. EPI-groups of the 2019 global economy in the space of economic indices. I. "Hot" and "warm" economies / Z.S. Seidametova, V.A. Temnenko //Ученые записки Крымского инженерно-педагогического университета. - 2021. - №2 (72).-С. 179-188.
7. Seidametova Z.S. EPI-groups of the 2019 global economy in the space of economic indices. II. "Cold" economies / Z. S. Seidametova // Ученые записки Крымского инженерно-педагогического университета, - 2021. - № 2 (72), - С 188-197.
CU 0J О CU
-О Q-
9 0Î h-X
LU
О
со
METHODS OF ST RA TEG/C MANAGEMENT OF BUSINESS PROCESSES IN THE COMPANY Turganova Asiya Toleugazyevna, Director, Sabium LLP, A/maty, Kazakhstan
The purpose of the study is to conduct a study of the methods of strategic management of business processes in a company. The effective functioning of an enterprise depends on the implementation of a set of business processes, their integrity and consistency. Actual challenges of our time and cardinal shifts form a request for more intensive use of strategic methods of business process management. The scientific novelty lies in the development of a methodology fot the strategic management of enterprise business processes, which is based on a matrix model and the capabilities of modern software and algorithmic tools, in particular, ORG-Master. Based on the results, the content and objectives of strategic business process management are indicated; the functionality of software and algorithmic tools for the strategic management of business processes is considered; special attention is paid to the features of the matrix method of strategic business process management.
Keywords: strategy; business process; managemen t; resources; efficiency; optimality.
001 10.24923/2222-243Х.2022-44.12
МЕТОДЫ СТРА ТЕГИЧЕСКОГО УПРАВЛЕНИЯ БИЗНЕС-ПРОЦЕССАМИ В КОМПАНИИ
Цель исследования заключается в проведении исследования методов стратегического управления бизнес-процессами в компании. Эффективное функционирование предприятия зависит от реализации совокупности бизнес-про-цессов, их целостности и согласованности. Актуальные вызовы современности и кардинальные сдвиги формируют запрос на более интенсивное использование стратегических методов управления бизнес-процессами. Научная новизна заключается в разработке методики стратегического управления бизнес-процессами предприятия, которая базируется на матричной модели и возможностях современных программно-алгоритмических средств, в частности, ОЙС-Мл№г, По результатам обозначено содержание и задачи стратегического управления бизнес-процессами; рассмотрены функциональные возможности программно-алгоритмических средств для стратегического управления бизнес-процессами; отдельное внимание уделено особенностям матричного метода стратегического управления бизнес-процессами. Ключевые слова: стратегия; бизнес-процесс; управление; ресурсы; эффективность; оптимальность.
УДК 336.018
ВАК РФ 5.2.6/08.00.05
© Турганова А. Т., 2022
ТУРГАНОВА Асия Толеугазыевна, директор, ТОО "Сабиум", Ал маты, Казахстан
i
79