Научная статья на тему 'The structure of carbon nanotubes in a polymer matrix'

The structure of carbon nanotubes in a polymer matrix Текст научной статьи по специальности «Нанотехнологии»

CC BY
54
10
i Надоели баннеры? Вы всегда можете отключить рекламу.
Ключевые слова
Nanocomposite / Carbon nanotubes / Structure / Interfacial layer / Ring-like formations / Reinforcement degree

Аннотация научной статьи по нанотехнологиям, автор научной работы — Georgii V. Kozlov, Gasan M. Magomedov, Gusein M. Magomedov, Igor V. Dolbin

We carried out an analytical structural analysis of interfacial effects and differences in the reinforcing ability of carbon nanotubes for polydicyclopentadiene/carbon nanotube nanocomposites with elastomeric and glassy matrices. In general, it showed that the reinforcing (strengthening) element of the structure of polymer nanocomposites is a combination of the nanofiller and interfacial regions. In the polymer matrix of the nanocomposite, carbon nanotubes form ring-like structures. Their radius depends heavily on the volume content of the nanofiller. Therefore, the structural reinforcing element of polymer/carbon nanotube nanocomposites can be considered as ring-like formations of carbon nanotubes coated with an interfacial layer. Their structure and properties differ from the characteristics of the bulk polymer matrix. According to this definition, the effective radius of the ring-like formations increases by the thickness of the interfacial layer. In turn, the level of interfacial adhesion between the polymer matrix and the nanofiller is uniquely determined by the radius of the specified carbon nanotube formations. For the considered nanocomposites, the elastomeric matrix has a higher degree of reinforcement compared to the glassy matrix, due to the thicker interfacial layer. It was shown that the ring-like nanotube formations could be successfully modelled as a structural analogue of macromolecular coils of branched polymers. This makes it possible to assess the effective (true) level of anisotropy of this nanofiller in the polymer matrix of the nanocomposite. When the nanofiller content is constant, this level, characterised by the aspect ratio of the nanotubes, uniquely determines the degree of reinforcement of the nanocomposites.

i Надоели баннеры? Вы всегда можете отключить рекламу.
iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.
i Надоели баннеры? Вы всегда можете отключить рекламу.

Текст научной работы на тему «The structure of carbon nanotubes in a polymer matrix»

ISSN 1606-867Х (Print) ISSN 2687-0711 (Online)

Condensed Matter and Interphases

Kondensirovannye Sredy i Mezhfaznye Granitsy https://journals.vsu.ru/kcmf/

Original articles

Research article

https://doi.org/10.17308/kcmf.2021.23/3433

The structure of carbon nanotubes in a polymer matrix

G. V. Kozlov1, Gas. М. Magomedov2, Gus. М. Magomedov2, I. V. Dolbin1^

Kabardino-Balkarian State University named after H. M. Berbekov,

173 Chernyshevsky str., Nalchik 360004, Kabardafterino-Balkarian Republic, Russian Federation 2Dagestan State Pedagogical University,

57 Yaragskogo ul., Makhachkala 367003, the Republic of Dagestan, Russian Federation Abstract

We carried out an analytical structural analysis of interfacial effects and differences in the reinforcing ability of carbon nanotubes for polydicyclopentadiene/carbon nanotube nanocomposites with elastomeric and glassy matrices. In general, it showed that the reinforcing (strengthening) element of the structure of polymer nanocomposites is a combination of the nanofiller and interfacial regions. In the polymer matrix of the nanocomposite, carbon nanotubes form ring-like structures. Their radius depends heavily on the volume content of the nanofiller. Therefore, the structural reinforcing element of polymer/carbon nanotube nanocomposites can be considered as ring-like formations of carbon nanotubes coated with an interfacial layer. Their structure and properties differ from the characteristics of the bulk polymer matrix. According to this definition, the effective radius of the ring-like formations increases by the thickness of the interfacial layer. In turn, the level of interfacial adhesion between the polymer matrix and the nanofiller is uniquely determined by the radius of the specified carbon nanotube formations. For the considered nanocomposites, the elastomeric matrix has a higher degree of reinforcement compared to the glassy matrix, due to the thicker interfacial layer. It was shown that the ring-like nanotube formations could be successfully modelled as a structural analogue of macromolecular coils of branched polymers. This makes it possible to assess the effective (true) level of anisotropy of this nanofiller in the polymer matrix of the nanocomposite. When the nanofiller content is constant, this level, characterised by the aspect ratio of the nanotubes, uniquely determines the degree of reinforcement of the nanocomposites.

Keywords: Nanocomposite, Carbon nanotubes, Structure, Interfacial layer, Ring-like formations, Reinforcement degree

For citation: Kozlov G. V., Magomedov Gas. M., Magomedov Gus. M., Dolbin I. V. The structure of carbon nanotubes in a polymer matrix. Kondensirovannye sredy i mezhfaznye granitsy = Condensed Matter and Interphases. 2021;23(2): 223-228. https://doi.org/10.17308/kcmf.2021.23/3433

Для цитирования: Козлов Г. В., Магомедов Гас. М., Магомедов Гус. М., Долбин И. В. Структура углеродных нанотрубок в полимерной матрице. Конденсированные среды и межфазные границы. 2021;23(2): 223-228. https://doi.org/10.17308/ kcmf.2021.23/3433

И Igor V. Dolbin, e-mail: [email protected]

© Kozlov G. V., Magomedov Gas. M., Magomedov Gus. M., Dolbin I. V., 2021

The content is available under Creative Commons Attribution 4.0 License.

1. Introduction

The authors of [1] showed that carbon nanotubes (CNTs), both in solution and in the polymer matrix of the nanocomposite, form ringlike structures that look like macromolecular coils of branched polymers [1, 2]. In [2], the formation of these structures was analytically studied, a number of methods were proposed to calculate their radius, this study also reveals the dependence of the properties of polymer/ carbon nanotube (nanofiber) nanocomposites on the structure of CNTs. With regard to this issue, one well-known effect is of interest: the degree of reinforcement of the same nanocomposite, regardless of the type of its filler, is always significantly higher for a nanocomposite with an elastomeric matrix as compared to a glassy matrix [3-5]. The same effect was observed for polymer/carbon nanotube nanocomposites [6-9]. Obviously, the radius of the ring-like formations of CNTs cannot change abruptly during the indicated transition, since the elastomeric matrix (especially the cross-linked one) has sufficiently high parameters of viscosity and strength to prevent any significant change in the structure of the ring-like formations of CNTs, i.e., their radius. Therefore, the aim of this study is to study the aforementioned effect and to develop a structural model to describe it quantitatively.

2. Experimental

The nanofillers were multi-walled carbon nanotubes (MWCNTs) with 15-20 nm outer diameter, 5-10 nm inner diameter, and 0.5-20 ]m length. These MWCNTs were functionalized with norbornene to increase the level of interfacial adhesion between the polymer matrix and the nanofiller. Polydicyclopentadiene (PDCPD) was used as the polymer matrix [10].

To obtain nanocomposites, functionalized MWCNTs were dispersed in an aqueous solution of PDCPD and were sonicated to improve the dispersion of the nanofiller. Then this mixture was stirred with a catalyst (dichloro-(3-methyl-2-butenylidine) bis-(tricyclofentyl) ruthenium phosphine) until a homogeneous solution was obtained. Then it was cross-linked for 2 h at 343 K and 1.5 h at 443 K [10].

Mechanical uniaxial tension tests were performed using an Instron 5569 universal testing

machine according to ASTM D638 (type V samples) at a temperature of 293 K and a crosshead speed of 1 mm/min. Each result was obtained as an average of the data from four tests [10].

Dynamic mechanical analysis (DMA) was performed using a TA Instruments 0800 DMA. The tension tests of the samples were carried out at a frequency of 1 Hz in the temperature range of 303-583 K at a heating rate of 3 K/min. The samples were 35x5x1 mm in size [10].

3. Results and discussion

The authors of [2] used several methods for calculating the radius of ring-like formations of CNTs, RCNT. One of them, proposed in [11], takes into account only the geometric parameters of carbon nanotubes and their volume content

(2^cnt )

r 2

CNT CNT jn

(1)

where LCNT and rCNT are the length and radius of carbon nanotubes, respectively.

The value of can be determined using a well-known formula [12]:

jn =

W

PcNT

(2)

where Wn and pCNT are the weight content and density of carbon nanotubes, respectively. For PDCPD/MWCNT nanocomposites, the value of Wn ranged from 0.05 to 0.40 wt.%.

For carbon nanotubes, the value of pCNT can be calculated as follows [12]:

Pcnt =188 ((t - dcnt )1/3 > kg/m3>

(3)

where DCNT and dCNT are the outer and inner diameters of a nanotube, respectively.

Another method for calculating RCNT ( R"NT ) takes into account the actual conditions for the formation of a CNT structure in the polymer matrix of the nanocomposite (for example, sonication [13], functionalisation [14, 15], etc.) and uses the following empirical formula [2]:

b = 57

(r" ?

\ CNT )

- 0.022

(4)

where ba is a dimensionless parameter characterising the level of interfacial adhesion in the polymer nanocomposites, and the value of R"NT is given in ]m.

The value of ba can be determined according to the following percolation relation [12]:

f- = 1 + 11(сЬаФп )7, (5)

m

where Е and Е are the elastic moduli of the nano-

n m

composite and the original matrix polymer, respectively (the Еn/Em ratio is usually called the reinforcement degree of a nanocomposite), and с is a constant coefficient, which is ~ 2.86 for CNTs [12].

Fig. 1 shows a comparison of the dependences R'cnt and Rnt on the weight content of nanofiller Wn for PDCPD/MWCNT nanocomposites with a glassy and elastomeric matrix. We can see that the values of R<CNT and RCNT are similar in the absolute value for the first of the specified series of nanocomposites (their average discrepancy is less than 9 %). However, in the case of an elastomeric matrix, the value of R^NT is double the value of R^NT. As noted above, the two-fold "swelling" of the ring-like formations of CNTs in the cross-linked elastomer matrix is unlikely. Therefore, the physical basis of the observed effect should be considered.

So far, two facts have been well established. First, it was shown experimentally [10] and theoretically [16] that the elastic modulus of interfacial regions in polymer nanocomposites significantly exceeds the corresponding parameter for a bulk polymer matrix. It is close in absolute value to the elastic modulus of nanofiller aggregates. Second, in polymer/carbon nanotube nanocomposites with low nanofiller content, very extended interfacial regions are formed. Their thickness /if can exceed the radius of the nanotube by an order of magnitude or more [10]. Thus, for the considered nanocomposites with an elastomeric matrix with an average radius of MWCNTs rCNT = 8.75 nm, /if ranges from 125 to 226 nm [10], i.e., exceeds the value of rCNT 14.3-25.8 times. From the above observations, it follows that the reinforcing element of polymer/ carbon nanotube nanocomposites is ring-like CNT formations surrounded by an interfacial layer. Then the effective radius of such reinforcing element R£NT can be described as follows:

Rcnt, ^m

R "' = R'

CNT CNT

'if

(5)

The values of l if for PDCPD/MWCNT nanocomposites with an elastomeric matrix are

0.8

0.4

0.2

0.4

Wn, wt%

Fig. 1. Dependences of the radius of ring-like formations of MWCNTs RCNT on the weight content of nanofiller Wn for PDCPD/MWCNT nanocomposites with a glassy (1, 2)"and elastomeric (3) matrix. RCNT was calculated using equations (4) (for 1, 3) and (1) (for 2)

provided in [10]. For the same nanocomposites with a glassy matrix, the /if values were determined as described below. First, the relative fraction of interfacial regions 9if was estimated using the following relation [12]:

E 17

^ = 1 + ll(jn +jif )■ .

(6)

Then we calculated the value of /if, using the following equation [16]:

jif =

( l2 + 2r l л

if CNT if Г 2

'CN"

jn .

(7)

Fig. 2 shows a comparison of the values of the radii of ring-like formations R£NT and RNt , calculated according to equations (4) and (5), respectively, for PDCPD/MWCNT nanocomposites with elastomeric and glassy matrices. We can see that the R CNT values calculated by these two methods are in good agreement. This correspondence confirms the above assumption about the nature of the reinforcing element in polymer/carbon nanotube nanocomposites. It should be noted that in the case of PDCPD/MWCNT nanocomposites with a glassy matrix, the use of the radius of ring-like formations R£NT instead of R'CNT (Fig. 1) gives even a slightly better agreement of this parameter. The average discrepancy between R£'NT and R™T is less than 7 %.

0

rcnt цт

R

(RCN T )

LCNT Lp 6

(8)

and the true aspect ratio is calculated as the ratio [20]:

L

a =

D

(9)

CNT

It is known [12] that the level of interfacial adhesion, characterised by the parameter ba, largely determines the properties of nanocom-

ba 30 -

20 -

10 -

0

50

100

iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.

CNT цт

Fig. 2. Comparison of the radii of the ring-like formations of MWCNTs R£n. and RN, , calculated using equations (4) and (5), respectively, for PDCPD/MWCNT nanocomposites. A straight line means a ratio of 1:1

It is known [17] that carbon nanotubes are considered the most promising nanofiller for polymer nanocomposites due to two factors: a high longitudinal elastic modulus of the nanofiller, which can reach 1000-2000 GPa, and a high nominal degree of anisotropy. However, in practice, these expectations are usually not met. The reason for this is well-known: generally, nanocomposites are reinforced not by nanoparticles, but by their aggregates. In the case of carbon nanotubes, the aggregates are their ring-like formations [1, 2]. The true level of anisotropy of CNTs in such aggregates can be determined by modelling the ring-like formations of CNTs as macromolecular coils of branched polymers [1, 18]. In this case, the persistent length of a ring-like formation Lp is determined using the following equation [19]:

a

Fig. 3. Dependence of the parameter ba, characterising the level of interfacial adhesion, on the MWCNTs' true aspect ratio a for PDCPD/MWCNT nanocomposites

posites. Fig. 3 shows the dependence of the parameter ba on the actual degree of anisotropy of carbon nanotubes, characterised by the aspect ratio a. As we can see, a linear correlation was obtained between these parameters, which can be described analytically by the following empirical equation:

b = 0.257a.

(10)

If we substitute formula (10) into relation (5), we obtain the following equation, which can be used to determine the degree of reinforcement of polymer/carbon nanotube nanocomposites:

E = 1 + ll(0.72ajn )1,7.

(11)

Fig. 4 shows a comparison of the experimentally obtained and equation-based (11) dependences of the reinforcement degree En/Em on the volume content of the nanofiller for PDCPD/MWCNT nanocomposites with glassy and elastomeric matrices. As can be seen, both cases show a good agreement between theory and experiment (their average discrepancy is ~ 2 %, which corresponds to the experimental error for this parameter [10]). Note that the difference in the En/Em values at the same values of is determined by only one parameter, the true aspect ratio of MWCNTs a. In turn, according to equations (5), (8), and (9), the difference in values of a for nanocomposites with

R

cnt цт

R

cnt

Fig. 4. Comparison of the dependences of the reinforcement degree En/Em on the nanofiller volume content 9n for PDCPD/MWCNT nanocomposites with elastomeric (1,3) and glassy (2,4) matrices, calculated according to equation (11) (1, 2) and obtained experimentally (3, 4)

elastomeric and glassy matrices is determined only by the thickness of the interfacial layer /if.

4. Conclusions

Thus, the results of this study showed that the reinforcing element in polymer/carbon nanotube nanocomposites is a ring-like formation (aggregate) of carbon nanotubes surrounded by an interfacial layer. This predetermines the fact that the effective radius of the specified formation increases by the thickness of the interfacial layer. Modelling the ring-like formation of nanotubes as a macromolecular coil of a branched polymer showed that the actual level of anisotropy of carbon nanotubes is determined by the effective radius of this structural reinforcing element of the nanocomposite. This level is characterised by the true aspect ratio of the nanotubes. When the volume content of the nanofiller is constant, it is the only factor that determines the degree of reinforcement of the nanocomposite.

Author contributions

All authors made an equivalent contribution to the preparation of the publication.

Conflict of interests

The authors declare that they have no known competing financial interests or personal relationships that could have influenced the work reported in this paper.

References

1. Schaefer D. W., Justice R. S. How nano are nanocomposites? Macromo/ecu/es. 2007;40(24): 8501-8517. https://doi.org/10.1021/ma070356w

2. Atlukhanova L. B., Kozlov G. V Fizikokhimiya nanokompozitov polimer-uglerodnye nanotrubki [Physics and chemistry of polymer/carbon nanotube nanocomposites]. Moscow: Sputnik + Publ.; 2020. 292 p. (In Russ.)

3. Cho H., Lee H., Oh E., Lee S.-H., Park H. J., Yoon S.-B., Lee C.-H., Kwak G.-H., Lee W. J., Kim J., mm J. E., Lee K.-H. Hierarhical structure of carbon nanotube fibers, and the change of structure during densification by wet stretching. Carbon. 2018;136: 409-416. https://doi.org/10.1016/jxarbon.2018.04.071

4. Ata M. S., Poon R., Syed A. M., Milne J., Zhitomirsky I. New developments in non-covalent surface modification, dispersion and electrophoretic deposition of carbon nanotubes. Carbon. 2018;130: 584 598. https://doi.org/10.1016/jxarbon.2018.01.066

5. Li H., Branicio P. S. Ultra-low friction of graphene/C60/graphene coatings for realistic rough surfaces. Carbon. 2019;152: 727-737. https://doi. org/10.1016/j.carbon.2019.06.020

6. Tan W., Stallard J. C., Smail F. R., Boies A. M., Fleck N. A. The mechanical and electrical properties of direct-spun carbon nanotube mat-epoxy composites. Carbon. 2019;150: 489-504. https://doi.org/10.10Wj. carbon.2019.04.118

7. Smail F., Boies A., Windle A. Direct spinning of CNT fibres: Past, present and future scale up. Carbon. 2019;152: 218-232. https://doi.org/10.10Wj. carbon.2019.05.024

8. Zhang S., Hao A., Nguen N., Oluwalowo A., Liu Zh., Dessureault Y., Park J. G., Liang R. Carbon nanotube/carbon composite fiber with improved strength and electrical conductivity via interface engineering. Carbon. 2019;144: 628-638. https://doi. org/10.1016/j.carbon.2018.12.091

9. Schaefer D. W., Zhao J., Dowty H., Alexander M., Orler E. B. Carbon nanofibre reinforcement of soft materials. Soft Matter. 2008;4(10): 2071-2078. https:// doi.org/10.1039/b805314f

10. Jeong W., Kessler M. R. Toughness enhancement in ROMP functionalized carbon nanotube/ polydicyclopentadiene composites. Chemistry of materia/s. 2008;20(22): 7060-7068. https://doi. org/10.1021/cm8020947

G. V. KozLov et al. Original article

11. Bridge B. Theoretical modeling of the critical volume fraction for percolation conductivity in fibre-loaded conductive polymer composites. Journal of Materials Science Letters. 1989;8(2): 102-103. https:// doi.org/10.1007/BF00720265

12. Mikitaev A. K., Kozlov G. V., Zaikov G. E. Polymer Nanocomposites: Variety of Structural Forms and Applications. New York: Nova Science Publishers, Inc.; 2008. 319 p.

13. Li W., Zhao J., Xue Y., Ren X., Zhang X., Li 0. Merge multiple carbon nanotube fibers into a robust yarn. Carbon. 2019;145: 266-272. https://doi. org/10.1016/j.carbon.2019.01.054

14. Oiu L., Guo P., Yang X., Ouyang Y., Feng Y., Zhang X., Zhao J., Zhang X., Li O. Electro curing of oriented bismaleimide between aligned carbon nanotubes for high mechanical and thermal performances. Carbon. 2019;145: 650-657. https://doi. org/10.1016/j.carbon.2019.01.074

15. Liang X., Gao Y., Duan J., Liu Z., Fang Sh., Baughman R.H., Jiang L., Cheng O. Enhancing the strength, toughness, and electrical conductivity of twist-spun carbon nanotube yarns in n bridging. Carbon. 2019;150: 268-274. https://doi.org/10.10Wj. carbon.2019.05.023

16. Coleman J. N., Cadek M., Ryan K. P., Fonseca A., Nady J. B., Blau W. J., Ferreira M. S. Reinforcement of polymers with carbon nanotubes. The role of an ordered polymer interfacial regions. Experiment and modeling. Polymer. 2006;47(23): 8556-8561. https:// doi.org/10.1016/j.polymer.2006.10.014

17. Schadler L. S., Giannaris S. C., Ajayan P. M. Load transfer in carbon nanotube epoxy composites. Applied Physics Letters. 1998;73(26): 3842-3844. https://doi.org/10.1063/1.122911

18. Zhong-can O.-Y., Su Z.-B., Wang C.-L. Coil formation in multishell carbon nanotubes: competition between curvature elasticity and interlayer adhesion. Physical Review Letters. 1997;78(21): 4055-4058. https://doi.org/10.1103/physrevlett.78.4055

19. Kozlov G. V., Dolbin I. V., Zaikov G. E. (eds.) The fractal physical chemistry of polymer solutions and melts. Toronto, New Jersey: Apple Academic Press; 2013. 316 p. https://doi.org/10.1201/b16305

20. Moniruzzaman M., Winey K. I. Polymer nanocomposites containing carbon nanotubes. Macromolecules. 2006;39(16): 5194-5205. https://doi. org/10.1021/ma060733p

Information about the authors

Georgii V. Kozlov, Senior Research Fellow, Kabardino-Balkarian State University named after H. M. Berbekov, Nalchik, Kabardino-Balkarian Republic, Russian Federation; e-mail: [email protected]. ORCID iD: https://orcid.org/0000-0002-9503-9113.

Gasan M. Magomedov, DSc in Physics and Mathematics, Professor, Head of the Department of Physics and Teaching Methods, Dagestan State Pedagogical University, Makhachkala, the Republic of Dagestan, Russian Federation; e-mail: gasan_mag@ mail.ru. ORCID iD: https://orcid.org/0000-0002-1278-9278.

Gusein M. Magomedov, PhD in Physics and Mathematics, Associate Professor, Professor at the Department of Professional Pedagogy, Technology, and Teaching Methods, Dagestan State Pedagogical University, Makhachkala, the Republic of Dagestan, Russian Federation; e-mail: [email protected]. ORCID iD: https://orcid.org/0000-0002-5525-5970.

Igor V. Dolbin, PhD in Chemistry, Associate Professor, Department of Organic Chemistry and High-Molecular Compounds, Kabardino-Balkarian State University named after H. M. Berbekov, Nalchik, Kabardino-Balkarian Republic, Russian Federation; e-mail: [email protected]. ORCID iD: https://orcid. org/0000-0001-9148-2831.

Received 9 February 2021; Approved after reviewing 5 March 2021; Accepted 15 May 2021; Published online 25 June 2021.

Translated by Anastasiia Ananeva

Edited and proofread by Simon Cox

i Надоели баннеры? Вы всегда можете отключить рекламу.