Научная статья на тему 'THE STIFFNESS OF RIGID JOINTS OF BEAM WITH HOLLOW SECTION COLUMN'

THE STIFFNESS OF RIGID JOINTS OF BEAM WITH HOLLOW SECTION COLUMN Текст научной статьи по специальности «Строительство и архитектура»

CC BY
85
9
i Надоели баннеры? Вы всегда можете отключить рекламу.
Журнал
Magazine of Civil Engineering
Scopus
ВАК
RSCI
ESCI
Ключевые слова
STEEL FRAMEWORKS / HOLLOW SECTION / FRAME

Аннотация научной статьи по строительству и архитектуре, автор научной работы — Tusnina O.A., Danilov A.I.

At present steel framework based buildings are prevalent in civil engineering. Application of hollow section columns have proven to be efficient in low-rise buildings. In some cases frame joints of beam to column connections are needed in this kind of building structures. This paper considers rigid joints of I-beam to hollow section column connections allowing for an elastic pliability. The results of pliability estimation of these joints are represented for various construction solutions. Dependences are obtained for the relation of the support moment in a beam to its corresponding value in absolutely stiff connection on the rigidity of the joint. The dependence diagrams of rigidity of the joint on the parameters of its elements are obtained.

i Надоели баннеры? Вы всегда можете отключить рекламу.
iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.
i Надоели баннеры? Вы всегда можете отключить рекламу.

ЖЕСТКОСТЬ РАМНЫХ УЗЛОВ СОПРЯЖЕНИЯ РИГЕЛЯ С КОЛОННОЙ КОРОБЧАТОГО СЕЧЕНИЯ

В настоящее время широкое распространение в строительстве получают здания на основе стальных каркасов. В малоэтажных зданиях целесообразно применять колонны коробчатого сечения. В таких зданиях часто оказывается необходимым обеспечить работу каркаса по рамной или рамно-связевой схемам. В связи с этим возникает необходимость выполнения жестких узлов соединения ригеля с колонной. В данной статье рассматриваются жесткие узлы соединения ригеля двутаврового сечения с колонной из замкнутого квадратного профиля с учетом их податливости. Выполнена оценка жесткости соединения ригеля с колонной при различном конструктивном решении узла их сопряжения. Получены зависимости отношения опорного момента ригеля к его величине при абсолютно жестком закреплении опорного сечения ригеля от жесткости соединения. Построены графики зависимости жесткости соединения от некоторых параметров соединительных элементов, используемых в сопряжении.

Текст научной работы на тему «THE STIFFNESS OF RIGID JOINTS OF BEAM WITH HOLLOW SECTION COLUMN»

doi: 10.5862/MCE.64.4

The stiffness of rigid joints of beam with hollow section column

Жесткость рамных узлов сопряжения ригеля с колонной коробчатого сечения

O.A. Tusnina, Канд. техн. наук, старший

A.I. Danilov, преподаватель О.А. Туснина,

National Research Moscow State University of Civil канд. техн. наук, доцент А.И. Данилов, Engineering, Moscow, Russia Национальный исследовательский

Московский государственный строительный университет, Москва, Россия

Key words: rigid joint; steel frameworks; hollow Ключевые слова: жесткий узел; стальной section; frame каркас; коробчатое сечение; рамный каркас

Abstract. At present steel framework based buildings are prevalent in civil engineering. Application of hollow section columns have proven to be efficient in low-rise buildings. In some cases frame joints of beam to column connections are needed in this kind of building structures. This paper considers rigid joints of I-beam to hollow section column connections allowing for an elastic pliability. The results of pliability estimation of these joints are represented for various construction solutions. Dependences are obtained for the relation of the support moment in a beam to its corresponding value in absolutely stiff connection on the rigidity of the joint. The dependence diagrams of rigidity of the joint on the parameters of its elements are obtained.

Аннотация. В настоящее время широкое распространение в строительстве получают здания на основе стальных каркасов. В малоэтажных зданиях целесообразно применять колонны коробчатого сечения. В таких зданиях часто оказывается необходимым обеспечить работу каркаса по рамной или рамно-связевой схемам. В связи с этим возникает необходимость выполнения жестких узлов соединения ригеля с колонной. В данной статье рассматриваются жесткие узлы соединения ригеля двутаврового сечения с колонной из замкнутого квадратного профиля с учетом их податливости. Выполнена оценка жесткости соединения ригеля с колонной при различном конструктивном решении узла их сопряжения. Получены зависимости отношения опорного момента ригеля к его величине при абсолютно жестком закреплении опорного сечения ригеля от жесткости соединения. Построены графики зависимости жесткости соединения от некоторых параметров соединительных элементов, используемых в сопряжении.

Introduction

Buildings based on steel frameworks are widespread in civil engineering. Steel frameworks have some advantages in comparison to concrete buildings:

• lower loads on foundation are caused by low dead load of the support framework;

• high speed of mounting ;

• ability to mount structures in winter without any additional measures;

• environmental friendliness.

At present the output of low-rise buildings increases. Low-rise buildings are used as apartment buildings, cabins, dormitories etc.

Today the buildings based on light thin-walled structures are widespread. Many articles are devoted to the issue of designing such structures [1-3]

Thin-walled cold-formed profiles used in light steel thin-walled constructions (LSTC) have such geometry parameters (low thickness less than 4 mm) that allow the loss of its local stability. The effect of local stability loss must be taken into account when calculating LSTC structures [4-7].

The paper [8] represents the results of the experimental research that shows the necessity to consider geometric nonlinearity in calculation of thin-walled structures.

Tusnina O.A., Danilov A.I. The stiffness of rigid joints of beam with hollow section column. Magazine of Civil Engineering. 2016. No. 4. Pp. 40-51. doi: 10.5862/MCE.64.4 40

The paper [9] studies deformability of joints depending on the constructive solution experimentally and by finite element analysis. It determines the factors which affect the loss of local stability in joints.

Because of all the mentioned complications in calculating and design structures made from cold-formed thin-walled profiles (LSTC) the use of hot-rolled profiles is more preferable.

Steel frameworks built from hot-rolled and bent welded profiles are more efficient than frameworks built with the use of light thin-walled structures [10].

To provide the freedom of planning it is necessary to design the framework without braces so it is necessary to make rigid joints of beam to column connection.

The well-known construction solutions of rigid joints between I-beam and column of I-section and analysis guidelines are represented in papers [11-14].

Hollow sections as columns and I-beams are expedient to be applied in steel frameworks of low-rise buildings with quite small loads. Such a solution allows decreasing the consumption of material and simplifying mounting.

Some constructive solutions of the connection of beam with hollow section column are represented in the paper [15]. Such construction solutions provide higher stiffness of the joint and allow it to be applied in earthquake-prone regions.

The results of the researched work of rigid joint of beam to hollow section column connection are represented in the papers [16-18]. Also a constructive solution increasing the joint bearing capacity has been developed.

However, it is difficult to apply these constructive solutions in mass buildings because of a large scope of work.

According to the European norms for the analysis of joint stress-strain state 2D and 3D component methods are used.

The spread of the component method on the columns of hollow sections is represented in the article [19].

The papers [20-22] are dedicated to the development of 3D component method.

In the paper [23] the work of the joint of connection I-beam to hollow section column with the use of T-shaped elements is researched. T-shaped elements increase the thickness of the column in the points of effort transfer on the column from beam flanges. But a conclusion is made that such a structure of joint does not provide sufficient stiffness of the joint.

The problems of design and analysis of joints of I-beam connection with the column are also formulated in the articles [24-31].

The rigid joints of I-beam to hollow section column connections allowing for elastic pliability are considered in this paper.

Methods

At first the beam made of I22 on GOST 8239-89 with absolutely rigid supports loaded by uniformly distributed load was considered (Figure 1).

Finite element analysis was made with the use of program MSC.NASTRAN. The beam was modeled with the use of elastic quadrilateral PLATE elements. The finite elements were located on the middle surface of the profile.

To achieve satisfactory convergence, the finite element mesh with 10 finite elements on the height of I-beam was assigned. The size of the plate finite element was adopted based on the results of the test analyses carried out for a similar problem [32].

The span of the beam was 6 m. Half of the beam was modeled with appropriate constraints on the cross section on the axis of symmetry. The constraints of axial displacement (translation along global axis X) and those of rotation around Y-axis were set on the nodes of flanges and web of the beam in the cross section in the middle of the beam span.

The uniformly distributed load on beam q=10 kN/m. The distributed load was brought to the concentrated loads which were applied in the nodes of the flange to the web connection line.

Static linear analysis was carried out. Geometrical and physical nonlinearity was not taken into account.

Figure 1. Finite-element model of I-beam

The diagram of bending moments in a beam with absolutely rigid supports is represented in Figure 2.

Figure 2. The diagram of bending moments in a beam with absolutely rigid supports

But it is impossible to make the beam-column joint absolutely rigid and fix the support cross-section of the beam from rotation. Flexibility of the joint will be determined by deformations occurring in connective elements, columns, beam. So the support cross-section of the beam will be rotated by some angel p.

Flexibility of the joint influences the effort distribution between the beam and the column, especially in bending moment distribution along the beam.

Stiffness of the joint C is determined as a ratio of the bending moment acting on the support to the rotation angel of the support cross-section of the beam:

C =

M p

(1)

where M - the bending moment acting on the support;

p - rotation angel of the support cross-section of the beam.

The finite element analysis was conducted to estimate the influence of the connection stiffness on the bending moment acting on the support. The numerical analysis of bending moment distribution in the beam considered above was made with the different stiffness of support joint C.

Flexibility of the joint was modeled by the use of spring elements in the nodes of the beam flange in the support cross-section (Figure 3). Elements spring with different axial stiffness K prevents free movement of beam flanges and, thereby, prevents free rotation of its support cross-section.

Axial stiffness of elements K, related to the stiffness of connection C is as follows:

K

2C h2

(2)

where h - height of the beam (in this case - distance between nodes on the middle surfaces of the flanges, Figure 1).

Figure 3. Flexible fixation of the beam on the support

Normal stresses in the cross-sections of the beam in the considered loading conditions were determined by bending moment My. Normal stresses in the middle surface of the beam cross-section in the 1 and 2 points in the middle of the beam span were determined in the result of numerical analysis. The value of the bending moment acting in the middle of the span can be determined by solving the equation (3):

Mp ^

<1 = <2 (3)

where <r1 u <2 - normal stresses acting in points 1 and 2 in the middle of the beam span (Figure 4).

Figure 4. Cross-section of the beam with considered points

Then by using the value of moment in the middle of beam span Msp we can determine the moment on beam support M s

sup

ql

2

M sup = Msp 8

(4)

For each value of stiffness the ratio of support moment Msup to the theoretical moment on the

support with absolutely rigid fixation M

sup,theor "

к

M..

" sup

M

(5)

sup,theor

In Figure 5 the graph of the dependence of coefficient k on the stiffness of joint C. The data represented on the graph are also represented in Table 1.

Туснина О.А., Данилов А.И. Жесткость рамных узлов сопряжения ригеля с колонной коробчатого сечения // Инженерно-строительный журнал. 2016. № 4(64). С. 40-51.

k

0 5000 10000 15000 20000 25000 30000 35000 40000

C, kNm/rad

Figure 5. The graph of dependence of coefficient k on the stiffness of joint C

Table 1. The values of coefficient k of different stiffness C

C, kNm/rad k C, kNm/rad k

264.90 0.141 6345.32 0.827

397.51 0.198 7196.56 0.848

527.78 0.248 8015.61 0.865

612.06 0.272 8804.42 0.879

781.66 0.330 9568.38 0.890

906.72 0.364 16035.40 0.948

989.34 0.379 20998.93 0.970

1150.06 0.422 24959.76 0.982

1270.63 0.448 28201.79 0.989

1388.65 0.471 30897.60 0.994

2511.90 0.625 33173.30 0.997

iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.

3551.21 0.709 35131.57 1.000

4529.17 0.762 36845.07 1.000

5457.17 0.799 38365.86 1.000

Coefficient k tends to 1 when the stiffness of connection increases. The joint is suggested for consideration as rigid if the difference between theoretical moment and actual moment is not bigger than 10...12 % (coefficient k > 0.88).

On the graphs the minimum value of stiffness Cmin = 8000 kNm/rad is shown by a vertical red line. With this stiffness the value of k = 0.88.

The stiffness of the connection depends on its constructive solution. To estimate the stiffness of the joint of the beam with the columns of hollow sections numerical analysis of joints referring to different constructive solutions was made.

The joint of the beam (I22, GOST 8239-89) with the column (bent-welded tube 120x6, GOST 30245-2003) connection was considered.

The span of the beam was 6 m. The uniformly distributed load along the beam was 10 kN/m.

Three types of joints were considered:

1 - rigid joint with direct adjacently overlays on belts bolt to the column wall (Figure 6);

2 - rigid joint with the transfer to the column shearing force through angels attached to it (Figure 7);

3 - hinge joint on pad (Figure 8)

A finite element model of the considered sites was compiled using MSC.NASTRAN software package.

Half of the beam (3 m) was modeled with the corresponding constraints on the cross section on the symmetry axis. The load was applied in the nodes of the beam wall.

The influence of column deformations on the stiffness of the joint is not considered and simulated in the analysis model of the 0.8 m long column, with fixed ends of all movements.

The patches were connected with the column through rigid elements with the union movement relevant nodes overlapping the beam /column nodes (Figure 9).

3i_ ni20*e

Г

LU

h

□120x6

Д22

г!- /

i! V \

M10

both sides

к

3-3

4-4

Ш 12!

U'^C- v I UMMMt-\ Щ2М I

Ш 122

a)

- b)

Figure 6. Rigid joint (1 type): a - constructive solution; b - finite-element model

I//

[ 1

1 1

a)

Figure 7. Rigid joint (2 type): a - constructive solution; b - finite-element model

Г

1-1

—'— /

L3 о

no

bolh sides

b

И

a) '1 b)l

Figure 8. Hinged joint: a - constructive solution; b - finite-element model

Figure 9. Connection of the nodes on the patch with a beam and angels

Results

The resulting numerical calculation of the stiffness values of the compound C, the angle of rotation of the support section crossbar q>sup, bending moments on the support and in the span Msup and Msp respectively, and the coefficient k are given in Table 2.

Table 2 also shows the theoretical solutions for the beam absolutely rigidly fixed on the rotation supporting sections and the beam supported in a simple way.

Table 2. The values of the coefficient k with different values of stiffness C

Type of analysis Joint Stiffness of joint C, kNm/rad Rotational angle of support cross-section tysup, rad Support moment Msup, kNm Msup k = sup M sup,theor Span moment Msp, kNm

Numerical analysis Hinged 419.3 0.0146 6.12 0.204 38.88

Rigid 1 type 4116.5 0.00544 22.39 0.746 22.61

Rigid 2 type 9602.89 0.00279 26.79 0.893 18.21

Theory Hinged - 0.0171 - 0 45.00

Rigid - 0 30.00 1.000 15.00

The angle of rotation of the support section with the patches on the hinge joint linings on the wall (Figure 8) is about 85 % of the theoretical one with absolutely free rotation.

In this constructive decision the joint has certain stiffness and provides a reference point, amounting to about 0.2 by the complete theoretical pinching. The decrease in the time span compared to the theoretical one with simple support girder is about 13.6 %.

Thus, the joint, which is traditionally perceived as a hinge, can be considered as compliant, in a similar way as it was done in [33] in relation to the connection node of the I-beam with a column on rails and angles.

The stiffness of the type 1 rigid joint (Figure 6) is small (less than 8000 kNm/rad) and not sufficiently hard to ensure assembly work (acting on the support point is 22.39 kNm compared to the theoretical 30 kNm, and the ratio k is less than 0.88 equaling to about 0.75), so the use of such units in the rack is not recommended.

The stiffness of the type 2 rigid joint (Figure 7) above proves that such nodes may be regarded as rigid. However, the magnitude of rigidity is close to the minimum, amounting to about 9600 kNm/rad, and the coefficient k = 0.893.

To assess the influence on the stiffness of the geometric parameters of the node connection elements the node was identified based on the stiffness of the following parameters:

- for the assembly of direct overlap adjacent to the column wall (joint of type 1) - the thickness of the casing wall, the thickness of lining the shelves and the height of the wall lining;

- for the assembly with transfer of forces through the angle (joint of type 2) - the thickness of the tower wall thickness over the height of the pads and the wall.

Tusnina O.A., Danilov A.I. The stiffness of rigid joints of beam with hollow section column. Magazine of Civil Engineering. 2016. No. 4. Pp. 40-51. doi: 10.5862/MCE.64.4 46

The results are shown graphically in Figures 10 and 11, and in a form of a table - Table 3, 4, 5.

The graphs and tables show that by increasing the thickness of the column by 5.5 mm to 8 mm, the rigidity of the type 1 joint increased by 56 %, the type 2 joint - by 18 %.

Increasing the stiffness of the type 1 joint by 56% however does not allow for sufficient assembly stiffness and an 8 mm thick unit cannot be considered as hard enough even if a column is used.

When the lining thickness increases from 6 mm to 14 mm the stiffness of the type 1 unit goes up by 17 %, while if the thickness of the angle increases from 5 mm to 9 mm the stiffness of the type 2 node enlarges by 20 %.

They are also plotted given the coefficient k from the parameters (Figure 12).

a)

C, kNrrv'rarl

7000 6500 6000 5500 5000 4500 4000 3500 3000

8.5 ».:.'»"" JjJ

Figure 10. Graphs of stiffness dependence(1 type) on a - thickness of column wall; b - thickness of patch on flanges

a)

„.mm b)

Figure 11. Graphs of stiffness dependence (2 type) on a - thickness of column wall; b - thickness of angels

a)

c)

Figure 12. Graphs of coefficient k (1 type) dependence on: a - thickness of column wall; b - thickness of patches (l type)/thickness of angles (2 type); c- height of the patch on beam wall

Table 3. The value of coefficient k with the different stiffness of joint C

Joint Thickness of column tcol, mm C, kNm/rad Vsup, rad Msup, kNm k

1 type 5.5 3575.4 0.00599 21.41 0.714

6 4116.5 0.00544 22.39 0.746

6.5 4687.4 0.00495 23.20 0.773

7 5248.1 0.00455 23.87 0.796

7.5 5807.3 0.00421 24.44 0.815

8 6344.6 0.00393 24.93 0.831

2 type 5.5 9278.6 0.00287 26.62 0.888

6 9672.2 0.00277 26.79 0.893

6.5 10050.1 0.00268 26.93 0.898

7 10408.1 0.00260 27.06 0.902

7.5 10784.4 0.00252 27.17 0.906

8 11134.9 0.00245 27.28 0.909

iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.

Table 4. The value of coefficient k with different stiffness of joint C

Joint Thickness of patch/angle tpatch/ang, mm C, kNm/rad Vsup, rad Msup, kNm k

1 type 6 3670.8 0.00589 21.62 0.721

8 3945.1 0.00560 22.09 0.736

10 4116.5 0.00544 22.39 0.746

12 4264.2 0.00530 22.60 0.753

14 4366.8 0.00521 22.75 0.758

2 type 5 9052.0 0.00293 26.52 0.884

6 9602.9 0.00279 26.79 0.893

7 10226.1 0.00264 26.99 0.900

8 10651.3 0.00255 27.16 0.905

9 11096.2 0.00246 27.29 0.910

Table 5. The value of coefficient k with different stiffness of joint C

Joint Height of the patch on the wall hpatch, mm C, kNm/rad Vsup, rad Msup, kNm k

1 type 80 3937.3 0.00571 22.48 0.749

100 3999.3 0.00560 22.39 0.747

120 4049.3 0.00553 22.39 0.746

150 4101.5 0.00546 22.39 0.746

170 4116.5 0.00544 22.39 0.746

2 type 80 9646.7 0.00277 26.72 0.891

100 9583.3 0.00279 26.73 0.891

120 9588.8 0.00279 26.75 0.892

150 9667.0 0.00277 26.77 0.893

170 9602.9 0.00279 26.79 0.893

As it can be seen from Figure 12 and Tables 3-5 the k factor increases mostly if the column thickness changed from 5.5 to 8 mm in the type 1 node - 15 %, in type 2 node the change is insignificant and is about 2.4 %.

If the thickness of the lining on the shelves grows from 6 to 14 mm (joint of type 1) the increase in k is 5 %, while the thickness of parts increases from 5 to 9 mm (type 2 joint - almost 3 %).

Change in the height of pads on the walls does not affect the coefficient k, bringing it to a value of about 0.4 %.

Thus, it can be concluded that change of these parameters, and that of connecting elements attached to the joint do not increase significantly the rigidity of the assembly.

In order to implement the constructive solution it is required to obtain a hard knot.

Conclusions

1. Joints of beam connection to the column conventionally used as a hinge, in some cases can be considered as elastically yielding since they provide reduction in the time span by 13.6 %, due to the occurrence of time on the anvil.

2. The joints of the beam with column connection on a patch, directly adjacent to the wall of the column cannot be considered as rigid (the proportion of the current support at the moment is less than the theoretical 0.83) and cannot be recommended for the use in the frame.

3. Joints with angles for transmission of forces in the belts crossbar on the column can be considered as rigid. However, it should be considered that the rigidity of such a compound is close to the minimum allowed for rigid nodes and the reference point is about 0.9 from its theoretical value in an absolutely rigid connection.

4. The need to develop a simple model for implementation of design solutions, providing a fairly rigid bolt connection with the column box section, or the development of guidelines for calculation and design of framework given the compliance of units depending on the constructive solution.

References

1. Kurazhova V.G., Nazmeyeva T.V. Vidy uzlovykh soyedineniy v legkikh stalnykh tonkostennykh konstruktsiyakh [Types of connections in light steel thin-walled constructions]. Magazine of Civil Engineering. 2011. No. 3. Pp. 47-52. (rus)

2. Sovetnikov D.O., Videnkov N.V., Trubina D.A. Light gauge steel framing in construction of multi-storey buildings. Construction of Unique Buildings and Structures. 2015. No. 3(30). Pp. 152-165. (rus)

3. Ananina M.V. Vliyaniye korrozii na legkiye stalnyye tonkostennyye konstruktsii [Influence of corrosion on the light steel gauge framing]. Construction of Unique Buildings and Structures. 2014. No. 7(22). Pp. 55-70. (rus)

4. Trubina D.A., Kononova L.A., Kaurov A.A., Pichugin Y.D., Abdulaev D.A. Local buckling of steel cold-formed profiles under transverse bending. Construction of unique Buildings and Structures. 2014. No. 4 (19). Pp. 109-127. (rus)

5. Trubina D., Abdulaev D., Pichugin E., Garifullin M. The loss of local stability of thin-walled steel profiles. Applied Mechanics and Materials. 2014. Vols. 633-634. Pp. 1052-1057.

6. Trubina D., Abdulaev D., Pichugin E., Rybakov V., Garifullin M., Sokolova O. Comprasion Of The Bearing Capacity Of Lst-Profile Depending On The Thickness Of Its Elements. Applied Mechanics and Materials. 2015. Vols. 725-766. Pp. 752-757.

7. Trubina D., Abdulaev D, Pichugin E., Rybokov V. Geometric nonlinearity of the thin-walled profile under transverse bending. Applied Mechanics and Materials, 2014. Vols. 633-634. Pp. 1133-1139,

8. Rybakov V., Molchanova N., Laptev V., Suslova A., Sivokhin A. The effect of conjunction flexibility on the local stability of steel thin-walled slab beams. MATEC Web of Conferences. 2016. T. 53. 01017.

9. Trubina D., Abdulaev D., Pichugin E., Rybakov V. Effect of constructional measures on the total and local loss stability of the thin-walled profile under transverse bending. Applied Mechanics and Materials. 2014. Vols. 633-634. Pp. 982-990.

10. Tusnina V.M. Perspektivy stroitel'stva dostupnogo i komfortnogo zhil'ya na osnove stal'nykh karkasov

Литература

1. Куражова В.Г., Назмеева Т.В. Виды узловых соединений в легких стальных тонкостенных конструкциях // Инженерно-строительный журнал. 2011. №3. С. 47-52

2. Советников Д.О., Виденков Н.В., Трубина Д.А. Лег- кие стальные тонкостенные конструкции в многоэтажном строительстве // Строительство уникальных зданий и со- оружений. 2015. № 3 (30). С. 152-165.

3. Ананина М.В. Влияние коррозии на легкие стальные тонкостенные конструкции // Инженерно- строительный журнал. 2014. № 7(22). С. 55-70.

4. Трубина Д.А., Кононова Л.А., Кауров А.А., Пичугин Е.Д., Абдулаев Д.А. Местная потеря устойчивости стальных холодногнутых профилей в условиях поперечного изгиба. // Строительство уникальных зданий и сооружений. 2014. №4 (19).

5. Trubina D., Abdulaev D., Pichugin E., Garifullin M. The loss of local stability of thin-walled steel profiles // Applied Mechanics and Materials. 2014. Vols. 633-634. Pp. 10521057.

6. Trubina D., Abdulaev D., Pichugin E., Rybakov V., Garifullin M., Sokolova O. Comprasion Of The Bearing Capacity Of Lst-Profile Depending On The Thickness Of Its Elements // Applied Mechanics and Materials. 2015. Vols. 725-766. Pp. 752-757.

7. Trubina D., Abdulaev D, Pichugin E., Rybokov V. Geometric nonlinearity of the thin-walled profile under transverse bending // Applied Mechanics and Materials. 2014. Vols. 633-634. Pp. 1133-1139.

8. Rybakov V., Molchanova N., Laptev V., Suslova A., Sivokhin A. The effect of conjunction flexibility on the local stability of steel thin-walled slab beams // MATEC Web of Conferences. 2016. Vols. 53. 01017.

9. Trubina D., Abdulaev D., Pichugin E., Rybakov V. Effect of constructional measures on the total and local loss stability of the thin-walled profile under transverse bending // Applied Mechanics and Materials. 2014. Vols. 633-634. Pp. 982-990.

10. Туснина В.М. Перспективы строительства доступного и комфортного жилья на основе стальных каркасов // Промышленное и гражданское строительство. 2015. № 6. С. 43-46.

11. Кузнецов В.В. Справочник проектировщика.

[Prospects of steel-framed low-rise residential construction as the solution of affordable and comfortable housing problem in Russia]. Industrial and Civil Engineering. 2015. No. 6. Pp. 43-46. (rus)

11. Kuznetsov V.V. Spravochnik proektirovshchika. Metallicheskie konstruktsii. Tom 2. [The designer guide. Steel structures]. Moscow: ASV, 1998. 512 p. (rus)

12. Hart F., Henn W., Sontag X. Atlas stal'nykh konstruktsiy mnogoetazhnykh zdaniy [Atlas of steel structures]. Moscow: Stroyizdat, 1977. 351 p. (rus)

13. Joints in Steel Construction: Simple Connection Publication P 212. 2002. 490 p.

14. Troitskiy P.N., Levitanskiy I.V. Issledovanie deystvitel'noy raboty svarnogo ramnogo uzla krepleniya i rekomendatsii po ego raschetu [Research of the frame joint behavior and recommendations on it analysis]. Materialy po metallicheskim konstruktsiyam. Vypusk 19. TsNII Proektstal'konstruktsiya. Moskva, 1977. Pp. 120-132. (rus)

15. Ostrikov G.M., Maksimov Yu.S. Stal'nye seysmostoykie karkasy mnogoetazhnykh zdaniy [Steel seismic resistance structures of multistory buildings]. Alma-Ata: «Kazakhstan». 1985. 117 p. (rus)

16. Azhermachev G.A., Perminov D.A. Effektivnye uzly sopryazheniya rigeley s kolonnami v ramnykh seysmostoykikh karkasakh mnogoetazhnykh zdaniy [Effective beam-column joints at the frames of seismic resistance multistory buildings]. Stroitel'stvo i tekhnogennaya bezopasnost'. 2010. No. 32 Pp. 27-33. (rus)

17. Azhermachev G.A., Perminov D.A. Uzly stal'nykh karkasov povyshennoy seysmostoykosti [The frame joints of increased seismic resistance]. Stroitel'stvo i tekhnogennaya bezopasnost'. 2007. No. 19-20. Pp. 1316. (rus)

18. Perminov D.A. Povyshenie nesushchey sposobnosti uzlov ramnykh karkasov s kolonnami korobchatogo secheniya: dis. ... kand. tekhn. nauk: 05.23.01 [Increasing of bearing capacity of frame joints with columns of hollow sections]. Perminov Dmitriy Anatol'yevich. Simferopol'. 2016. 180 p. (rus)

19. Jaspart J.P., Weynand K. Extension of the component method to joints in tubular construction. Proceedings of the IX international symposium and euroconference on tubular structures. Dusseldorf. Germany. 2001. Pp. 517525.

20. Nagao T., Tanaka T., Nanaba H. Performance of beam-column connections in steel structures. 13th world conference on earthquake engineering. Vancouver, B.C., Canada. 2004. Paper No. 1235.

21. Heinisuo M., Laasonen M., Ronni H. Integration of joint design of steel structurres using product mode. Proceedings of the International Conference on Computing in Civil and Building Engineering ICCBE. Nottingham. UK. 2010. Pp. 323-328.

22. Heinisuo M., Laine V., Lehtimaki E. Enlargement of the component method into 3D. Proceedings of the Nordic Steel Construction Conference NSCC. Malmo. Sweden. 2009. Pp. 430-437.

23. Guochang Li, Hongping Yu, Chen Fang Performance study on T-stub connected semi-rigid joint between rectangular tubular columns and H-shaped steel beams. Frontiers of Structural and Civil Engineering. 2013. Vol. 7. Iss. 3. Pp. 296-303.

24. Egarmin K.A., Sysoev G.Yu., Vatin N.I., Vrublevskaya M.V. Analiz raboty ramnykh uzlov odnoetazhnogo stal'nogo karkasa v usloviyakh vysokoy seysmiki s ispol'zovaniem PK "SCAD" [Analysis of stress in frame nodes of a single-storey steel framework in high seismic loads conditions with the use of SCAD software]. Construction of Unique Buildings and Structures. 2015. No. 2(29). Pp. 34-44. (rus)

25. Vatin N.I, Havula Ja., Martikainen L., Sinelnikov A., Tusnina O.A., Danilov A.I. The stiffness of rigid joints Engineering. 2016. No. 4. Pp. 40-51. doi: 10.5862/MCE.i

Металлические конструкции. Том 2. М.: АСВ, 1998. 512 с.

12. Харт Ф., Хенн В., Зонтаг Х. Атлас стальных конструкций многоэтажных зданий. М.: Стройиздат. 1977. 351 с.

13. Joints in Steel Construction: Simple Connection Publication. P 212. 2002. 490 p.

14. Троицкий П.Н., Левитанский И.В. Исследование действительной работы сварного рамного узла крепления и рекомендации по его расчету // Материалы по металлическим конструкциям. Выпуск 19. ЦНИИ Проектстальконструкция. Москва. 1977. С. 120-132.

15. Остриков Г.М., Максимов Ю.С. Стальные сейсмостойкие каркасы многоэтажных зданий. Алма-Ата: «Казахстан». 1985. С. 117.

16. Ажермачев Г.А., Перминов Д.А. Эффективные узлы сопряжения ригелей с колонами в рамных сейсмостойких каркасах многоэтажных зданий // Строительство и техногенная безопасность. 2010. № 32. С. 27-33.

17. Ажермачев Г.А., Перминов Д.А. Узлы стальных каркасов повышенной сейсмостойкости // Строительство и техногенная безопасность. 2007. № 19-20. С. 13-16.

18. Перминов Д.А. Повышение несущей способности узлов рамных каркасов с колоннами коробчатого сечения: дис. ... канд. техн. наук: 05.23.01 / Перминов Дмитрий Анатольевич. Симферополь, 2016. 180 с.

19. Jaspart J.P., Weynand K. Extension of the component method to joints in tubular construction // Proceedings of the IX international symposium and euroconference on tubular structures. Dusseldorf, Germany. 3-5 april 2001. Pp. 517-525.

20. Nagao T., Tanaka T., Nanaba H. Performance of beam-column connections in steel structures // 13th world conference on earthquake engineering. Vancouver, B.C., Canada. 2004. Paper No. 1235.

21. Heinisuo M., Laasonen M., Ronni H. Integration of joint design of steel structurres using product model // Proceedings of the International Conference on Computing in Civil and Building Engineering ICCBE. Nottingham. UK. 30 June - 2 July 2010. Pp. 323-328.

22. Heinisuo M., Laine V., Lehtimaki E. Enlargement of the component method into 3D // Proceedings of the Nordic Steel Construction Conference NSCC. Malmo, Sweden. September 2-4, 2009. Pp. 430-437.

23. Guochang Li, Hongping Yu, Chen Fang Performance study on T-stub connected semi-rigid joint between rectangular tubular columns and H-shaped steel beams // Frontiers of Structural and Civil Engineering, 2013. Vol. 7. Iss. 3. Pp. 296-303.

24. Егармин К.А., Сысоев Г.Ю., Ватин Н.И., Врублевская М.В. Анализ работы рамных узлов одноэтажного стального каркаса в условиях высокой сейсмики с использованием ПК "SCAD" // Строительство уникальных зданий и сооружений. 2015. № 2(29). С. 34-44

25. Vatin N., Havula Ja., Martikainen L., Sinelnikov A., Orlova A., Salamakhin S. Thin-walled cross-sections and their joints and fem-modelling // Advanced Materials Research. 2014. No. 945-949. Pp. 1211-1215.

26. Bzdawka K., Heinisuo M. Fin plate joint using component method of EN 1993-1-8 // Rakenteiden Mekaniikka (Journal of Structural mechanics). Vol. 43. No. 1. 2010. Pp. 25-43.

27. Sinoes da Silva L. Towards a consistent design approach for steel joints under generalized loading // Journal of constructional steel research. 2008. Vol. 64. Pp. 10591075.

28. Simoes da Silva L., Girap Coelho A.M. An analytical evaluation of the response of steel joints under bending

Orlova A., Salamakhin S. Thin-walled cross-sections and their joints and fem-modelling. Advanced Materials Research. 2014. No. 945-949. Pp. 1211-1215.

26. Bzdawka K., Heinisuo M. Fin plate joint using component method of EN 1993-1-8. Rakenteiden Mekaniikka (Journal of Structural mechanics). 2010. Vol. 43. No. 1. Pp. 25-43.

27. Sinoes da Silva L. Towards a consistent design approach for steel joints under generalized loading. Journal of constructional steel research. 2008. Vol. 64. Pp. 10591075.

28. Simoes da Silva L., Girap Coelho A.M. An analytical evaluation of the response of steel joints under bending and axial force. Computers and Structures. 2001. Vol. 79. Pp. 873-881.

29. Ferdous W. Effect of beam-column joint stiffness on the design of beams. 23rd Australian Conference on the Mechanics of Structures and Materials. 2014. Pp. 701706.

30. Richard R., Gillet P., Kriegh J., Lewis B. The analysis and design of single plate framing connections. Engineering Journal AISC. 1980. Vol. 17. No.2.

31. Urbonas K., Daniunas A. Behaviour of semi-rigid steel beam-to-beam joints under bending and axial forces. Journal of Constructional Steel Research. 2006. Vol. 62. Iss. 12. Pp. 1244-1249.

32. Tusnina, O. An Influence of the Mesh Size on the Results of Finite Element Analysis of Z-purlins Supported by Sandwich Panels. Applied Mechanics and Materials. 2014. Vols. 475-476. Pp. 1483-1486.

33. Tusnina V.M. Nesushchaya sposobnost' i deformativnost' podatlivykh uzlov stal'nykh karkasov mnogoetazhnykh zdaniy: dis. ... kand. tekhn. nauk 05.23.01 . Tusnina Valentina Matveevna. Moskva. 1989. 166 p. (rus)

iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.

and axial force // Computers and Structures. 2001. Vol. 79. Pp. 873-881.

29. Ferdous W. Effect of beam-column joint stiffness on the design of beams // 23rd Australian Conference on the Mechanics of Structures and Materials. 2014. Pp. 701706.

30. Richard R., Gillet P., Kriegh J., Lewis B. The analysis and design of single plate framing connections // Engineering Journal AISC. 1980. Vol. 17. No.2.

31. Urbonas K., Daniunas A. Behaviour of semi-rigid steel beam-to-beam joints under bending and axial forces // Journal of Constructional Steel Research. 2006. Vol. 62. Iss. 12. Pp. 1244-1249.

32. Tusnina, O. An Influence of the Mesh Size on the Results of Finite Element Analysis of Z-purlins Supported by Sandwich Panels // Applied Mechanics and Materials. 2014. Vols. 475-476. Pp. 1483-1486.

33. Туснина В.М. Несущая способность и деформативность податливых узлов стальных каркасов многоэтажных зданий: дис. ... канд. техн. наук 05.23.01 / Туснина Валентина Матвеевна. Москва. 1989. 166 c.

Olga Tusnina,

+7(910)4761677; [email protected] Alexander Danilov,

+79151834136; [email protected]

Ольга Александровна Туснина, +7(910)4761677; эл. почта: [email protected]

Александр Иванович Данилов, +79151834136; эл. почта: [email protected]

© Tusnina O.A., Danilov A.I., 2016

i Надоели баннеры? Вы всегда можете отключить рекламу.