ПРОЕКТИРОВАНИЕ И КОНСТРУИРОВАНИЕ СТРОИТЕЛЬНЫХ СИСТЕМ.СТРОИТЕЛЬНАЯ МЕХАНИКА. ОСНОВАНИЯ И ФУНДАМЕНТЫ, ПОДЗЕМНЫЕ СООРУЖЕНИЯ
RESEARCH PAPER / НАУЧНАЯ СТАТЬЯ УДК 624.012.45
DOI: 10.22227/1997-0935.2022.8.999-1007
The simultaneous impact of corrosion and the reinforcement ratio on the load-bearing capacity of reinforced concrete under axial
compression
Emmanuel Mikerego1, Niyokindi Lionel2
'University of Burundi; Bujumbura, Burundi; 2 Land Titles and National Cadastre Services in Burundi; Bujumbura, Burundi
ABSTRACT
Introduction. This study presents the results of an experimental assessment of the simultaneous impact of corrosion and the reinforcement ratio on the load-bearing capacity of standard reinforced concrete elements subjected to axial compression. Materials and methods. This study was conducted using 216 experimental specimens made of ordinary concrete longitudinally reinforced by high bond reinforcing steel FeE400. The cross-sectional dimension of our experimental reinforced concrete specimens was 20 * 20 cm, and their height was 32 cm. Six cases of bond strength degradation were considered in percent: 0, 20, 40, 60, 80 and 100 %. Experimental specimens had four diameters (0). Reinforcing steel rods had the following diameters: 010, 012, 014 and 016. For each bond degradation strength value, nine specimens were made using 4010, 4012, 4014 ^ g and 4016 rods. The longitudinal steel reinforcement had the reinforcement ratio of 0.80, 1.13, 1.54 and 2.01 %. Bond strength ® ® degradation was simulated by applying adhesive tape to the contour surface of the steel rods to prevent the adhesion between
i I
the reinforcement and the concrete, in compliance with the required extent of bond strength degradation. The experimental ^ ^
reinforced concrete specimens were subjected to axial compression 28 days later. The collapsing forces, thus obtained, were ^ *
transformed in compressive strength for the purpose of analysis and interpretation of the results. q 3
Results. For one and the same reinforcement ratio, the loss of the load-bearing capacity of reinforced concrete increases, U O
as bond strength degradation goes up. For the same bond strength degradation, the loss of the load-bearing capacity of * <
reinforced concrete also increases, if the reinforcement ratio goes up. Bond strength degradation from 0 to 100 % leads m 1
to the load-bearing capacity loss to 11.62, 16.52, 21.32, 26.26 % respectively for the reinforcement ratio |j of 0.80, 1.13, § $
1.54 and 2.01 %. The curves, demonstrating the load-bearing capacity loss by the reinforced concrete subjected to axial l Z
compression, are presented as functions that depend on bond strength degradation and the reinforcement ratio. j 9
Conclusions. Bond strength degradation from 0 to 100 % leads to the load-bearing capacity in the range of 11.62 to ° —
26.26 % for the reinforcement ratios between 0.80 and 2.01 %, respectively. The load-bearing capacity loss by reinforced 3 9
concrete elements subjected to axial compression is presented as the function depending simultaneously on bond Z 3
strength degradation and the reinforcement ratio. Evidently, excessive reinforcement will negatively affect the durability of
о w
the reinforced concrete element under axial compression. Over-reinforced concrete elements under axial compression will O be less durable compared to normally reinforced ones. S
KEYWORDS: corrosion of reinforcing steel, reinforcement ratio, degradation of bond strength, reinforced concrete element, axial compression, load-bearing capacity loss, durability of reinforced concrete
FOR CITATION: Mikerego E., Lionel N. The simultaneous impact of corrosion and the reinforcement ratio on the load-
bearing capacity of reinforced concrete under axial compression. Vestnik MGSU [Monthly Journal on Construction and _ .
Architecture]. 2022; 17(8):999-1007. DOI: 10.22227/1997-0935.2022.8.999-1007 > 6
o 0
Corresponding author: Emmanuel Mikerego, [email protected]. t (
d = >
со
CO
z 2
CO
о
w -I
Одновременное влияние коррозии и коэффициента армирования на несущую способность железобетона I
при осевом сжатии Л 7
1 ■
-1-2- . и
Эммануэль Микерего1, Нийокинди Лийонел2 11
1 Университет Бурунди; г. Бужумбура, Бурунди; | с
2 Земельные титулы и национальные кадастровые услуги Бурунди; г. Бужумбура, Бурунди ■ Л
ю ю
АННОТАЦИЯ О О
Введение. Представлены результаты экспериментальной оценки одновременного влияния коррозии и коэффици- 2 N3 ента армирования на несущую способность железобетонных элементов при осевом сжатии.
© Emmanuel Mikerego, Niyokindi Lionel, 2022
Распространяется на основании Creative Commons Attribution Non-Commercial (CC BY-NC)
Материалы и методы. Исследование проводилось на 216 экспериментальных образцах, изготовленных из обычного бетона, армированного в продольном направлении арматурными сталями с высокой связью FeE400. Размеры железобетонных экспериментальных образцов составляли 20 * 20 см в поперечном сечении и 32 см по высоте. Рассмотрено шесть случаев деградации прочности сцепления арматуры с бетоном: 0, 20, 40, 60, 80 и 100 %. В экспериментальных образцах использовались четыре вида диаметра: 010, 012, 014 и 016. Для каждой рассматриваемой деградации сцепления арматуры с бетоном изготовлено девять образцов соответственно с 4010, 4012, 4014 и 4016. Использованные количества продольной арматуры соответствовали значениям коэффициента армирования 0,80, 1,13, 1,54 и 2,01 %. Экспериментальные железобетонные образцы были подвергнуты осевому сжатию через 28 дней. Результаты. При одном и том же коэффициенте армирования потеря несущей способности железобетона увеличивается, с одной стороны, по мере снижения прочности сцепления. С другой стороны, при одинаковом снижении прочности сцепления потеря несущей способности железобетона также увеличивается при увеличении коэффициента армирования. Деградация прочности сцепления арматуры с бетоном в пределах от 0 до 100 % приводит к потере несущей способности железобетона до 11,62, 16,52, 21,32, 26,26 % соответственно при коэффициенте армирования |j, равном 0,80, 1,13, 1,54 и 2,01 %.
Выводы. Потеря несущей способности железобетона зависит одновременно от снижения прочности сцепления арматуры с бетоном и процента армирования. По полученным результатам установлены функции, описывающие зависимости между потерями несущей способности железобетона на осевом сжатии и снижением прочности сцепления и коэффициентом армирования. Установлено, что переармированные железобетонные элементы при осевом сжатии будут менее долговечными по сравнению с нормально армированными.
КЛЮЧЕВЫЕ СЛОВА: коррозия арматур, коэффициент армирования, деградация прочности сцепления, железобетонный элемент, осевое сжатие, потеря несущей способности, долговечность железобетона
ДЛЯ ЦИТИРОВАНИЯ: Mikerego E, Lionel N. The simultaneous impact of corrosion and the reinforcement ratio on the load-bearing capacity of reinforced concrete under axial compression // Вестник МГСУ. 2022. Т. 17. Вып. 8. С. 999-1007. DOI: 10.22227/1997-0935.2022.8.999-1007
Автор, ответственный за переписку: Эммануэль Микерего, [email protected].
N N N N О О N N
СО 00 К (V U 3
> (Л
с и m i»
i
- s
<D ф
O ё
о
о о
со <
со S:
8 «
™ §
ОТ "
от Е
Е О
CL ° с
ю о
S «
о Е
feo
СП ^ т- ^
от от
г
О (0
INTRODUCTION
The problem of the degradation of the reinforced concrete leads the building standards to set the normative service life of standard reinforced concrete structures to 50 years1. That problem have been found to be closely linked to the durability of reinforced concrete [1-4]. It is an ongoing research problem because the decrease in durability has an impact on the structural behaviour of reinforced concrete structures [1-9]. Several factors are mentioned in the literatures as the causes of the degradation of the reinforced concrete. However the corrosion between the reinforcing steels and the concrete is cited as the main cause of that degradation [10-13].
Various laboratory and field tests and modelling methods are used to analyse and predict the durability of reinforced concrete [14-20]. Nevertheless, even though
1 EN 1992-1-1. Design of concrete structures. Part 1-1: General rules and rules for buildings. 2004.
all these works have been carried out, there is a lack of studies that evaluate the simultaneous impact of the action of corrosion and the reinforcement ratio on the load-bearing capacity of the reinforced concrete structures. Thus this study represent a contribution in the understanding of the durability of the reinforced concrete structures.
MATERIALS AND METHODS
This study was specially originated from the observations of the degradation of the load-bearing elements of the reinforced concrete building structures in Burundi, dating back more than 60 years, such as the Kiriri Campus of the University of Burundi (Fig. 1). And there the idea: Do bond strength degradation and the reinforcement ratio contribute in the load-bearing capacity loss of the bearing elements of the reinforced concrete structures?
Then, for this study, the reinforced concrete elements under axial compression were taken into account. And the following specifics objectives were considered:
Fig. 1. Case of bond strength degradation at the base of the bearing columns of the building of the Institute of Physical Education and Sports at University of Burundi
• evaluation of the impact of the bond strength degradation on the bearing capacity of the ordinary reinforced concrete under axial compression;
• evaluation of the impact of the reinforcement ratio on the load-bearing capacity of a reinforced concrete element under axial compression;
• evaluation the impact of simultaneous action of bond strength degradation and the reinforcement ratio on the durability of reinforced concrete structures.
For to achieve the fixed objectives, the simulations of bond strength degradation designated by A in % between the reinforcing steels and the concrete in the reinforced concrete specimen subjected to axial compression test were made. In this study, 216 reinforced concrete experimental specimen were made with the ordinary concrete longitudinally reinforced by high bond reinforcing steels FeE400 tested (Table 1).
Due to the lack of equipment to conduct full-scale height column tests in the material laboratory of University of Burundi, the height (32 cm) of the experimental samples was chosen to correspond to one tenth of the height of the columns generally used in standard buildings. The cross-section of the reinforced concrete experimental specimen were defined by the dimensions of the moulds made from the wooden boards (Fig. 2).
The constituents of the used concrete (Table 2) were chosen taking into account the criteria of the grain size, the water content and the compactness of the standard concrete.
Each experimental specimen contained 4 longitudinal steels horizontally fixed along the height by three (3) transversal high bond steels (FeE400). The used quantities of longitudinal reinforcing steels in the experimental
JZgk
jOl
Fig. 2. Moulds made of wooden boards defining the dimensions of the used reinforced concrete experimental specimen
specimen were corresponding to the reinforcement ratio values of 0.80, 1.13, 1.54 and 2.01 %, calculated with:
% = (As/B>100,
with As — the cross-sectional area of the longitudinal reinforcing steels present in each reinforced concrete specimen; B — the gross cross-section area of the concrete of the reinforced concrete specimen.
The simulation of bond strength degradation A representing the corrosion between the reinforcing steels and the concrete was carried out by applying an adhesive tape (with thickness of 0.15 mm) on the contour surface, for each one of the four reinforcing longitudinal steels in an experimental sample (Fig. 3).
Used Simulated bond strength degradation A
steels A = 0 % A = 20 % A = 40 % A = 60 % A = 80 % A = 100 %
4010 9 specimens 9 specimens 9 specimens 9 specimens 9 specimens 9 specimens
4012 9 specimens 9 specimens 9 specimens 9 specimens 9 specimens 9 specimens
4014 9 specimens 9 specimens 9 specimens 9 specimens 9 specimens 9 specimens
4016 9 specimens 9 specimens 9 specimens 9 specimens 9 specimens 9 specimens
< n i h
Table 1. Quantity of experimental specimen used in simulating bond strength degradation in the reinforced concrete elements with different used diameters
0 Co n CO
1 z
y 1
J to
u-
^ I
n °
S 3 o
zs (
Oi o n
CO CO
l\J CO
o
r §6 c g
h o
c n
S )
ü
® 7 a ' . DO
■ T
s □
s y c o <D *
SPS,
2 2 O O 10 10 10 10
0)
Table 2. Constituents of the concrete used in the preparation of the experimental reinforced concrete samples to be subjected to axial compression
Materials Concrete constituent materials per cubic meter Concrete constituent materials for one specimen
Sand 556 kg/m3 8 kg
Gravel 1.377 kg/m3 18 kg
Cement (CEM I - 32.5) 336 kg/m3 5 kg
Water 189 l/m3 3 l
bed Fig. 3. The used approach for simulating bond strength degradation with an adhesive tape
The experimental reinforce concrete samples were prepared and made in the material laboratory of the University of Burundi (Fig. 4, a). And after 28 days of the curing, the made experimental samples were subjected to axial compression (Fig. 4, b).
The obtained breaking forces for the experimental specimen under axial compression were transformed into compressive strengths for analyses and
interpretation. After the exclusion the outsides values, the means values (x) were statistically calculated by:
X xJn.
i = 1
In this study, the following parameters were used in the analysis of the obtained and treated results: ^ — reinforcement ratio, %; A — bond strength degradation, %; 5 — load-bearing capacity loss.
N N
N N
o o
Ci N
CO CO
K (V
U 3 > in
E M
to I»
i
<U <u
o í¿
---' "t^
o
o <£ CO <f CD ^
S = 8 «
z ■ i w «
OT iE —
to
E o
CL ° c
Ln O
s H
o E
CD ^
T- ^
£
CO °
ü w
r
iE 3s
o iñ
a b
Fig. 4. Experimental reinforced concrete specimen under wet curing (a) and compression tests (b) of experimental reinforced concrete specimen after 28 days
RESULTS OF THE RESEARCH
In this study, the results were recorded and saved The statistically obtained means breaking forin tables (Table 3-7). The analysis and interpretation ces (x) for the reinforced concrete experimental speci-of the results are based on the diagrams presented in men tested under axial compression are also given as an figures (Fig. 5-8). histogram as presented in figure (Fig. 5).
Table 3. Breaking forces obtained under axial compression for the reinforced concrete experimental specimen with (4010)
Bond strength degradation
Breaking forces for experimental specimens under axial compression, kN
Experimental series
A, % 1 2 3 4 5 6 7 8 9
0 1,358.65 1,356.05 1,362.55 1,360.65 1,360.15 1,359.15 1,362.15 1,357.65 1,364.25
20 1,266.03 1,271.73 1,264.33 1,267.73 1,267.33 1,268.33 1,269.53 1,269.83 1,263.33
40 1,244.62 1,245.02 1,240.12 1,243.52 1,243.02 1,243.52 1,241.52 1,242.02 1,245.02
60 1,233.17 1,233.77 1,229.37 1,232.57 1,231.97 1,232.47 1,230.47 1,230.97 1,233.67
80 1,215.00 1,221.00 1,219.50 1,216.70 1,216.50 1,215.50 1,218.50 1,219.00 1,212.10
100 1,199.33 1,205.83 1,204.43 1,201.33 1,201.03 1,200.03 1,203.43 1,203.93 1,197.13
Table 4. Breaking forces obtained under axial compression for the reinforced concrete experimental specimen with (4012)
Bond strength degradation
Breaking forces for experimental specimens under axial compression, kN
Experimental series
A, % 1 2 3 4 5 6 7 8 9
0 1,427.16 1,424.56 1,431.06 1,429.16 1,428.66 1,427.66 1,430.66 1,426.16 1,432.76
20 1,321.28 1,326.98 1,319.58 1,322.98 1,322.58 1,323.58 1,324.78 1,325.08 1,318.58
40 1,286.61 1,287.01 1,282.11 1,285.51 1,285.01 1,285.51 1,283.51 1,284.01 1,287.01
60 1,261.90 1,262.50 1,258.10 1,261.30 1,260.70 1,261.20 1,259.20 1,259.70 1,262.40
80 1,228.26 1,234.26 1,232.76 1,229.96 1,229.76 1,228.76 1,231.76 1,232.26 1,225.36
100 1,190.49 1,196.99 1,195.59 1,192.49 1,192.19 1,191.19 1,194.59 1,195.09 1,188.29
Table 5. Breaking forces obtained under axial compression for the reinforced concrete experimental specimen with (4014)
Bond strength
Breaking forces for experimental specimen under axial compression, kN
Experimental series
1 2 3 4 5 6 7 8 9
0 1,508.93 1,506.33 1,512.83 1,510.93 1,510.43 1,509.43 1,512.43 1,507.93 1,514.53
20 1,385.37 1,391.07 1,383.67 1,387.07 1,386.67 1,387.67 1,388.87 1,389.17 1,382.67
40 1,339.65 1,340.05 1,335.15 1,338.55 1,338.05 1,338.55 1,336.55 1,337.05 1,340.05
60 1,297.26 1,297.86 1,293.46 1,296.66 1,296.06 1,296.56 1,294.56 1,295.06 1,297.76
80 1,243.73 1,249.73 1,248.23 1,245.43 1,245.23 1,244.23 1,247.23 1,247.73 1,240.83
100 1,186.07 1,192.57 1,191.17 1,188.07 1,187.77 1,186.77 1,190.17 1,190.67 1,183.87
< DO
8 8
i H
G I
S 2
0 Co § CO
1 C y 1 J to
u-
^ I
n °
CD 3 o
zs (
oi
o §
cn
u S
§ 2
n g
r 6 t ( Cc §
CD )
ii
® 7 a ' . DO
■ T
s □
W y c o (D X
s°s°
2 2 O O 2 2 2 2
Table 6. Breaking forces obtained under axial compression for the reinforced concrete experimental specimen with (4016)
Bond strength degradation
Breaking forces for experimental specimen under axial compression, kN
Experimental series
A, % 1 2 3 4 5 6 7 8 9
0 1,603.96 1,601.36 1,607.86 1,605.96 1,605.46 1,604.46 1,607.46 1,602.96 1,609.56
20 1,464.93 1,470.63 1,463.23 1,466.63 1,466.23 1,467.23 1,468.43 1,468.73 1,462.23
40 1,397.11 1,397.51 1,392.61 1,396.01 1,395.51 1,396.01 1,394.01 1,394.51 1,397.51
60 1,334.83 1,335.43 1,331.03 1,334.23 1,333.63 1,334.13 1,332.13 1,332.63 1,335.33
80 1,263.62 1,269.62 1,268.12 1,265.32 1,265.12 1,264.12 1,267.12 1,267.62 1,260.72
100 1,181.65 1,188.15 1,186.75 1,183.65 1,183.35 1,182.35 1,185.75 1,186.25 1,179.45
Dividing the mean breaking forces by the cross-section of the reinforced concrete experimental specimen gives the load-bearing capacity as compressive strength (Table 7).
Bond strength degradation A situated between 0 and 100 % leads to the load-bearing capacity losses 5 up to 11.62, 16.52, 21.32 and 26.26 % for the reinforcement ratios ^ of 0.80, 1.13, 1.54 and 2.01 respectively (Fig. 6).
I
S I « h S
£ u
M 3
■S Ö
M S
g 4010 in the experimental cross-section g 4012 in the experimental cross-section g 4014 in the experimental cross-section 4016 in the experimental cross-section
0 % 20 % 40 % 60 % 80 % 100 %
Bond strength degradation A between the reinforcing steels and the concrete Fig. 5. Means breaking forces values for the reinforced concrete experimental specimen subjected on axial compression
N N
N N
o o
CH N
CO CO
K (V
U 3 > in
E M
to I»
i - $
CD CD
O g
---' "t^
o
o <£ CO <f <D
S =
Z ■ ^
w «
co E —
to
E o
CL ° c
LT> O
s H
o E
CD ^
T- ^
s
CO o
ü w
r
iE 3s
Ü (0
Table 7. Compressive strength in MPa and load-bearing capacity losses 5 of the reinforced concrete specimen subjected to axial compression in the cases of different bond strength degradation A and reinforcement ratio ^ considered
Steel sections As and concrete section B and reinforcement ratios ^ Bond strength degradation A between the reinforcing steels and the concrete Load-bearing
Steel As, mm2 B, mm2 p, % 0 % 20 % 40 % 60 % 80 % 100 % capacity loss 5, %
Compressive strength, MPa
4010 314 40,000 0.8 34.00 31.69 31.08 30.80 30.34 30.05 11.62
4012 452 40,000 1.13 35.72 33.07 32.13 31.52 30.76 29.82 16.52
4014 616 40,000 1.54 37.76 34.67 33.45 32.40 31.15 29.71 21.32
4016 804 40,000 2.01 40.14 36.66 34.89 33.34 31.64 29.60 26.26
26.26
1.13 1.54
Reinforcement ratio %
Fig. 6. Load-bearing capacity losses 5 as a function depending on the reinforcement ratio ^ for the reinforced concrete specimens under axial compression for bond strength degradation A taken between 0 and 100 %
For the same reinforcement ratio the load- the reinforcing steels and the concrete. The load-bear-bearing capacity losses 5 are expressed as functions ing capacity losses of the reinforced concrete increases, depending on bond strength degradations A between as bond strength degradation A goes up (Fig. 7).
For the same bond strength degradation A between the reinforcing steels and the concrete, the load-bearing capacity losses 5 are also expressed as a function de-
pending on the reinforcement ratio The load-bearing capacity losses increase as the reinforcement ratio ^ increases (Fig. 8).
A
o M rt
00 « .2
.S £ g is S u
O R
Tt °
gig o
a 'S? °
1 J §
J <H
o
30 28 26 24 22 20 18 16 14 12 10 8 6 4 2 0
5 = 0.0785e06168*^
.o/o^-"'' 5 = 0 0746e0 5355*^
5 = 0.0721e043^ 5 = 0.0709e02974*^
-- ———' A = 60 % A = 40 %
0.8
I I 1 I I I I 1 1.2
+
■4-1-1 "t ■
5 = 0.0567e02236*^
1.4 1.6 1.8
Reinforcement ratio %
2.2
-H
2.4
Fig. 7. Load-bearing capacity losses as functions depending on bond strength degradation A and the reinforcement ratios ^ of the reinforced concrete element subjected to axial compression
n
a
• ^ c v® o.a^
G O o && ^
o M rt
00 M .2 & £ £
M ° S
"Y o R
Tt °
go °
cs
° 'S I
1 J §
J <H
o
30 28 26 24 22 20 18 16 14 12 10 8 6 4 2 0
5 = 0.0738e02601^ 5 = 0.0658e02423*^ 5 = 0.061e02m^ 5 = 0.0657e0 1279*^
-H-
-+-
4-
H
Bond strength degradation from 0 to 100 % leads to the load-bearing capacity in the range of 11.62 to 26.26 %, for the reinforcement ratios between 0.80 and 2.01 % respectively. Load-bearing capacity loss of a reinforced concrete element under axial compression is established by curves as function depending simultane-
< n
iH
G !
S 2
0 Co n CO
1 S
y 1
J to
^ I
n °
S 3 o
zs (
oi
o n
20 % 40 % 60 % 80 % 100 %
Bond strength degradation (A) between the reinforcing steels and the concrete
Fig. 8. The load-bearing capacity losses of reinforced concrete as a function depending on bond strength degradation A and the reinforcement ratio ^ in the reinforced concrete element subjected to axial compression
CONCLUSION AND DISCUSSION
CO CO
0)
ously on bond strength degradation and the reinforcement ratio. It is shown that the over-reinforcement negatively affect the durability of the reinforced concrete element under axial compression. The over-reinforced concrete element under axial compression will be less durable, comparing to the normally reinforced.
w
CO
o
r §6 c g
h o
S )
il
a '
. DO ■ £
s □
s y c o <D *
2 2 O O 10 10 10 10
2
REFERENCES / СПИСОК ИСТОЧНИКОВ
сч N
N N
О О
tv N
CO CO
¡É Ш
U 3 > 1Л
С И 2
CO N
i
- s
CD CD
O ¡Ü
о
о о CO <
8 « Si §
(Л [J от iE
E о
£ °
^ с
ю о
S «
о E
cd ^
T- ^
1. Saura-Gómez P., Rizo-Maestre C., Echarri-Iribarren V. The useful life of reinforced concrete structures with reinforcement corrosion due to car-bonation in non-aggressive and normal exposures in the Spanish Mediterranean. Materials. 2022; 15(3):745. DOI: 10.3390/ma15030745
2. Chemrouka M. The deteriorations of reinforced concrete and the option of high performances reinforced concrete. Procedía Engineering. 2015; 125:713-724. DOI: 10.1016/j.proeng.2015.11.112
3. Alexander M.G. Service life design and modelling of concrete structures — background, developments, and implementation. RevistaALCONPAT. 2018; 8(3):224-245. DOI: 10.21041/ra.v8i3.325
4. Felix E.F., Balabuch T.J.R., Posterlli M.C., Pos-san E., Carrazedo R. Análise da vida útil de estruturas de concreto armado sob corrosao uniforme por meio de um modelo com RNA acoplado ao MEF. Revista ALCONPAT. 2018; 8(1):1-15. DOI: 10.21041/ra.v8i1.256
5. Zandi K. Structural Behaviour of Deteriorated Concrete Structures. Gothenburg, Sweden, 2010.
6. Gajdosová K., Sonnenschein R., Blaho S., Kinceková S., Pecka J. Durability of FRP reinforcements and long-term properties. Slovak Journal of Civil Engineering. 2020; 28(2):50-55. DOI: 10.2478/sjce-2020-0015
7. Berlinov M., Berlinova M., Grigorjan A. Operational durability of reinforced concrete structures. E3S Web of Conferences. 2019; 91:02012. DOI: 10.1051/ e3sconf/20199102012
8. Karavokyros L., Batis G., Katsiotis N., Tza-nis E., Beazi-Katsioti M. Durability of reinforced concrete beams under simultaneous flexural load in corrosive environment. Journal of Materials Science and Chemical Engineering. 2020; 08(04):32-45. DOI: 10.4236/msce.2020.84003
9. Troconis de Rincon O. Durability of concrete structures: DURACON, an iberoamerican project. Preliminary results. Building and Environment. 2006; 41(7):952-962. DOI: 10.1016/j.buildenv.2005.04.005
10. Kamaitis Z. Damage to concrete bridges due to reinforcement corrosion. Transport. 2002; 17(4):137-142. DOI: 10.3846/16483840.2002.10414030
Received March 24, 2022.
Adopted in revised form on July 28, 2022.
Approved for publication on July 28, 2022.
11. Dacuan C.N., Abellana V.Y. Bond deterioration of corroded-damaged reinforced concrete structures exposed to severe aggressive marine environment. International Journal of Corrosion. 2021; 2021:1-13. DOI: 10.1155/2021/8847716
12. Berkowskia P., Kosior-Kazberukb M. Material and structural destruction of concrete elements in the industrial environment. Procedía Engineering. 2017; 172:96-103. DOI: 10.1016/j.proeng.2017.02.024
13. Haouara S., Guettala A. Les facteurs d'influence sur la dégradation des ouvrages en béton armé dans la région de Biskra. Courrier du Savoir. 2005; 109-116.
14. Czarnescki L., Woyciechowski P. Prediction of the reinforced concrete structure durability under the risk of carbonation and chloride aggression. Bulletin of the Polish Academy of Sciences: Technical Sciences. 2013; 61(1):173-181. DOI: 10.2478/bpasts-2013-0016
15. Llorens M., Serrrano A., Valcuende M. Sensors for determining the durability of reinforced concrete constructions. Revista ingeniería de construcción. 2019; 34(1). DOI: 10.4067/S0718-50732019000100081
16. Hulimka J., Kaluza M. Basic chemical tests of concrete during the assessment of structure suitability — discussion on selected industrial structures. Applied Sciences. 2020; 10(1):358. DOI: 10.3390/ app10010358
17. Loukil O. Etude expérimentale et numérique de la dégradation d'éléments structurels en béton armé par corrosion sous courant imposé. Génie civil. Université Paris-Est, 2017.
18. Nanukuttan S., Yang K., McCarter J., Basheer M. Methods of assessing the durability and service life of concrete structures. Institute of Concrete Technology Yearbook, 2017.
19. Robuschi S., Tengattini A., Dijkstra J., Fernandez I., Lundgren K. A closer look at corrosion of steel reinforcement bars in concrete using 3D neutron and X-ray computed tomography. Cement and Concrete Research. 2021; 144:106439. DOI: 10.1016/j.cem-conres.2021.106439
20. Grimaldi G., Raharinaïvo A. Vers une stratégie de réparation du béton armé dégradé. Bulletin des Laboratoires des Ponts et Chaussées. 1999; 223:59-70.
со
Ю
r
о in
BioNoiEs: Emmanuel Mikerego — Doctor (Ph.D.) in Engineering, Lecturer of the Faculty of Engineering Sciences; University of Burundi; B.P 2700, Bujumbura, Burundi; ORCID: 0000-0002-5743-6476; [email protected];
Niyokindi Lionel — Master; Land Titles and National Cadastre Services in Burundi; Bujumbura, Burundi; [email protected].
Contribution of the authors:
Emmanuel Mikerego — conceptualization, methodology, data processing, writing of the article, scientific editing of the text.
Niyokindi Lionel — methodology, data gathering and processing. The authors declare no conflict of interest.
Поступила в редакцию 24 марта 2022 г. Принята в доработанном виде 28 июля 2022 г. Одобрена для публикации 28 июля 2022 г.
Об авторах: Эммануэль Микерего — доктор технических наук, преподаватель факультета инженерных наук; Университет Бурунди; B.P 2700, г. Бужумбура, Бурунди; ORCID: 0000-0002-5743-6476; [email protected];
Нийокинди Лийонел — магистр; Земельные титулы и национальные кадастровые услуги Бурунди; г. Бужумбура, Бурунди; [email protected].
Вклад авторов:
Микерего Э. — концептуализация, методология, обработка данных, написание статьи, научное редактирование текста.
Лийонел Н. — методология, сбор и обработка данных. Авторы заявляют об отсутствии конфликта интересов.
< П
8 8 iH
G Г
S 2
0 со § CO
1 S
У 1
J to
^ I
n °
S> 3 o
zs (
о §
E w
§ 2
n 0
S 6
A CD
Г 6
t (
PT §
ф )
ii
® 7
. DO
■ T
s У с о <D X
s°s°
2 2 О О 2 2 2 2