Научная статья на тему 'The role and regulation of hypoxia-inducible transcription factor-1 and succinate receptor-1 in type 2 diabetes: a link to vascular complications'

The role and regulation of hypoxia-inducible transcription factor-1 and succinate receptor-1 in type 2 diabetes: a link to vascular complications Текст научной статьи по специальности «Фундаментальная медицина»

CC BY
178
19
i Надоели баннеры? Вы всегда можете отключить рекламу.
Журнал
Биомедицина
ВАК
RSCI
Ключевые слова
TYPE 2 DIABETES / HYPERGLYCEMIA / INSULIN / HYPOXIA INDUCIBLE FACTOR 1 (HIF-1) / SUCCINATE RECEPTOR 1 (SUCNR1) / MICROVASCULAR COMPLICATIONS / MACROVASCULAR COMPLICATIONS / САХАРНЫЙ ДИАБЕТ 2 ТИПА / ГИПЕРГЛИКЕМИЯ / ИНСУЛИН / ИНДУЦИРУЕМЫЙ ГИПОКСИЕЙ ФАКТОР 1 (HIF-1) / СУКЦИНАТНЫЙ РЕЦЕПТОР 1 (SUCNR1) / МИКРОСОСУДИСТЫЕ ОСЛОЖНЕНИЯ / МАКРОСОСУДИСТЫЕ ОСЛОЖНЕНИЯ

Аннотация научной статьи по фундаментальной медицине, автор научной работы — Pomytkin I.A., Karkischenko V.N.

Type 2 diabetes is a major metabolic disorder that leads over time to serious complications. Tight glycemic control is considered an essential strategy to prevent diabetes complications. However, randomized clinical trials accrued over last decades demonstrated no significant benefit of glycemic control on patient-important microand macrovascular outcomes, except for a 15% risk reduction in nonfatal myocardial infarction. Emerging evidence suggests that vascular complications of diabetes correlate with a dysregulation of angiogenic response governed by hypoxia-inducible transcription factor 1 (HIF-1) and succinate receptor 1 (SUCNR1). Type 2 diabetes affects HIF-1 activity at several levels, including HIF-1α subunit transcription, mRNA translation into HIF-1α protein, degradation of HIF-1α protein, and binding HIF-1α protein to co-activators that results in dysregulation of adaptive angiogenic response to hypoxia. Both hyperglycemia and insulin resistance are involved in these impairments. Diabetes affects SUCNR1 signaling in a tissue-specific manner. A cross-talk between HIF-1 and SUCNR1 signaling explains, at least partially, a tissue-specific paradoxical changes in the angiogenesis in diabetic microvascular complications, an excessive formation of blood vessels in the retina and a deficiency in small blood vessels in peripheral tissues, such as the skin. As a conclusion, targeting HIF-1 and SUCNR1 signaling seems to represent a novel promising approach for the prevention and treatment of vascular complications of type 2 diabetes.

i Надоели баннеры? Вы всегда можете отключить рекламу.

Похожие темы научных работ по фундаментальной медицине , автор научной работы — Pomytkin I.A., Karkischenko V.N.

iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.
i Надоели баннеры? Вы всегда можете отключить рекламу.

Роль и регуляция индуцируемого гипоксией фактора транскрипции-1 и сукцинатного рецептора-1 при диабете типа 2: связь с сосудистыми осложнениями

Диабет 2 типа является основным метаболическим заболеванием, которое со временем приводит к серьезным осложнениям. Жесткий контроль уровней глюкозы в крови считается важной мерой, позволяющей предотвратить осложнения диабета. Однако, рандомизированные клинические испытания, проведенные за последние десятилетия, не выявили существенной пользы гликемического контроля для предотвращения микрои макрососудистых осложнений диабета, за исключением снижения риска нефатального инфаркта миокарда на 15%. В то же время появляются данные, что существует корреляция между возникновением сосудистых осложнений сахарного диабета и нарушениями в регуляции ангиогенеза управляемой индуцируемым гипоксией фактором 1 (HIF-1) и сукцинатным рецептором 1 (SUCNR1). Диабет 2 типа влияет на активность HIF-1 на нескольких уровнях, включая транскрипцию субъединицы HIF-1α, трансляцию мРНК в белок HIF-1α, деградацию белка HIF-1α и связывание белка HIF-1α с ко-активаторами, что в итоге приводит к нарушению адаптивного ангиогенного ответа на гипоксию. Гипергликемия и инсулиновая резистентность участвуют в этих нарушениях. Кроме того, диабет влияет на передачу сигналов сукцинатного рецептора 1 тканеспецифическим образом. Перекрестное взаимодействие между HIF-1 и SUCNR1 объясняет, по крайней мере частично, парадоксальные тканеспецифические изменения ангиогенеза при диабетических микрососудистых осложнениях, а именно чрезмерное образование кровеносных сосудов в сетчатке и дефицит мелких кровеносных сосудов в периферических тканях. такие как кожа. В заключение, терапевтической воздействие на сигнальные системы HIF-1 и SUCNR1 может стать новым многообещающим подходом к профилактике и лечению сосудистых осложнений диабета 2 типа.

Текст научной работы на тему «The role and regulation of hypoxia-inducible transcription factor-1 and succinate receptor-1 in type 2 diabetes: a link to vascular complications»

https://doi.org/10.33647/2074-5982-15-1-48-61

(«О

BY 4.0

THE ROLE AND REGULATION OF HYPOXIA-INDUCIBLE TRANSCRIPTION FACTOR-1 AND SUCCINATE RECEPTOR-1 IN TYPE 2 DIABETES: A LINK TO VASCULAR COMPLICATIONS

Igor A. Pomytkin1*, Vladislav N. Karkischenko2

11.M. Sechenov First Moscow State Medical University 119991, Russian Federation, Moscow, Trubetskaya str, 8/2

2 Scientific Center of Biomedical Technologies of the Federal Medical Biological Agency of Russia 143442, Russian Federation, Moscow region, Krasnogorsk, Setllement Svetlye Gory, building 1

Type 2 diabetes is a major metabolic disorder that leads over time to serious complications. Tight glycemic control is considered to be an essential strategy for preventing diabetes-related complications. However, randomized clinical trials accrued over last decades have demonstrated no significant benefit of glycemic control in terms of decreasing micro- and macrovascular complications, except for a 15% reduction in the risk of nonfatal myocardial infarction. Emerging evidence suggests that vascular complications of diabetes correlate with a dysregulation of the angiogenic response governed by hypoxia-inducible transcription factor 1 (HIF-1) and succinate receptor 1 (SUCNR1). Type 2 diabetes affects HIF-1 activity at several levels, including HIF-1a subunit transcription, mRNA translation into the HIF-1a protein, degradation of the HIF-la protein and binding of the HIF-la protein to co-activators, which eventually results in a dysregulation of the adaptive angiogenic response to hypoxia. Both hyperglycemia and insulin resistance are involved in these impairments. Diabetes affects SUCNR1 signaling in a tissue-specific manner. A cross-talk between HIF-1 and SUCNR1 signaling explains, at least partially, paradoxical tissue-specific changes in the angiogenesis in diabetic microvascular complications, an excessive formation of blood vessels in the retina and a deficiency in small blood vessels in peripheral tissues, such as the skin. As a conclusion, targeting HIF-1 and SUCNR1 signaling seems to represent a novel promising approach for the prevention and treatment of diabetes-related vascular complications.

Keywords: Type 2 diabetes, hyperglycemia, insulin, hypoxia inducible factor 1 (HIF-1), succinate receptor 1 (SUCNR1), microvascular complications, macrovascular complications Conflict of interest: the authors declare no conflict of interest.

Funding: The work was supported by the Russian Foundation for Basic Research, grant RFBR No. 18015-00450.

For citation: Pomytkin I.A., Karkischenko V.N. The Role and Regulation of Hypoxia-Inducible Transcription Factor-1 and Succinate Receptor-1 in Type 2 Diabetes: a Link to Vascular Complications. Biomedicine. 2019;15(1):48-61. https://doi.org/10.33647/2074-5982-15-1-48-61

Submitted 01.02.2019 Revised 11.02.2019 Published 10.03.2019

РОЛЬ И РЕГУЛЯЦИЯ ИНДУЦИРУЕМОГО ГИПОКСИЕИ ФАКТОРА

ТРАНСКРИПЦИИ-1 И СУКЦИНАТНОГО РЕЦЕПТОРА-1 ПРИ ДИАБЕТЕ ТИПА 2: СВЯЗЬ С СОСУДИСТЫМИ ОСЛОЖНЕНИЯМИ

И.А. Помыткин1'*, В.Н. Каркищенко2

1 ФГАОУ ВО «Первый Московский государственный медицинский университет им. И.М. Сеченова» Минздрава России (Сеченовский университет) 119991, Российская Федерация, Москва, ул. Трубецкая, д. 8, стр. 2

2 ФГБУН «Научный центр биомедицинских технологий Федерального медико-биологического агентства России» 143442, Российская Федерация, Московская обл., Красногорский р-н, п. Светлые горы, владение 1

Диабет 2 типа является основным метаболическим заболеванием, которое со временем приводит к серьезным осложнениям. Жесткий контроль уровней глюкозы в крови считается важной мерой, позволяющей предотвратить осложнения диабета. Однако рандомизированные клинические испытания, проведенные за последние десятилетия, не выявили существенной пользы гликемического контроля для предотвращения микро- и макрососудистых осложнений диабета, за исключением снижения риска нефатального инфаркта миокарда на 15%. В то же время появляются данные, что существует корреляция между возникновением сосудистых осложнений сахарного диабета и нарушениями в регуляции ангиогенеза управляемой индуцируемым гипоксией фактором 1 (HIF-1) и сукцинатным рецептором 1 (SUCNR1). Диабет 2 типа влияет на активность HIF-1 на нескольких уровнях, включая транскрипцию субъединицы HIF-1a, трансляцию мРНК в белок HIF-1a, деградацию белка HIF-1a и связывание белка HIF-1a с коактиваторами, что в итоге приводит к нарушению адаптивного ангиогенного ответа на гипоксию. Гипергликемия и инсулиновая резистентность участвуют в этих нарушениях. Кроме того, диабет влияет на передачу сигналов сукцинатного рецептора 1 тканеспецифическим образом. Перекрестное взаимодействие между HIF-1 и SUCNR1 объясняет, по крайней мере частично, парадоксальные тканеспецифические изменения ангиогенеза при диабетических микрососудистых осложнениях, а именно чрезмерное образование кровеносных сосудов в сетчатке и дефицит мелких кровеносных сосудов в периферических тканях, таких как кожа. В заключение, терапевтическое воздействие на сигнальные системы HIF-1 и SUCNR1 может стать новым многообещающим подходом к профилактике и лечению сосудистых осложнений диабета 2 типа.

Ключевые слова: сахарный диабет 2 типа, гипергликемия, инсулин, индуцируемый гипоксией фактор 1 (HIF-1), сукцинатный рецептор 1 (SUCNR1), микрососудистые осложнения, макрососудистые осложнения

Конфликт интересов: авторы заявили об отсутствии конфликта интересов. Финансирование: Работа выполнена при поддержке РФФИ: Грант РФФИ № 18-015-00450. Для цитирования: Помыткин И.А., Каркищенко В.Н. Роль и регуляция индуцируемого гипоксией фактора транскрипции-1 и сукцинатного рецептора-1 при диабете типа 2: связь с сосудистыми осложнениями. Биомедицина. 2019;15(1):48-61. https://doi.org/10.33647/2074-5982-15-1-48-61

Поступила 01.02.2019

Принята после доработки 11.02.2019

Опубликована 10.03.2019

Introduction and slowing the progression of diabetic retino-

Diabetes mellitus (DM) is a major metabolic pathy, nephropathy, and neuropathy, as well as

disorder with a global prevalence of 8.5% [1]. for reducing the risk of macrovascular diseases

Type 1 diabetes and type 2 diabetes are the in patients suffering from type 1 diabetes [2].

two chronic forms of DM, formerly known as In 1998, the UK Prospective Diabetes Study

insulin-dependent and non-insulin-dependent Group showed that intensive blood-glucose

diabetes mellitus, respectively. Type 2 diabetes control could substantially decrease the risk of

accounts for approximately 90% of all dia- microvascular complications, rather than mac-

betes cases and leads over time to serious com- rovascular diseases, in patients with type 2 dia-

plications. In 1993, the Diabetes Control and betes [3]. Practice guideline recommendations

Complications Trial demonstrated the benefit and clinical care standards have since focused

of tight glycemic control for delaying the onset on achieving tight glycemic control to prevent

complications in patients with both type 1 and type 2 diabetes. Contrary to the emerged consensus, findings from the ACCORD randomised trial (n=10,251) have demonstrated that intensive glucose lowering therapy does not reduce the risk of advanced measures of microvascular outcomes [4], nor does it reduce major cardiovascular events, while resulting in increased mortality [5]. Evidence from randomized clinical trials accrued over last decades and recent meta-analyses has led to scepticism about the value of tight glycemic control for the prevention of complications in patients with type 2 diabetes, since no significant benefit of such a therapy has been shown in terms of patient-important micro- and macrovascular outcomes, with the exception of a 15% reduction in the risk of nonfatal myocardial infarction [6]. These findings spur the need to explore other factors beyong glycemic control in order to discover new therapeutic approaches for the prevention of vascular complications caused by type 2 diabetes.

An impaired adaptive response to hypoxia is a key pathological characteristic of type 2 diabetes. In general, the adaptive response is mediated by signaling of two oxygen sensors, i.e. hypoxia-inducible transcription factors (HIFs) and succinate receptor 1 (SUCNR1). Growing evidence suggests that type 2 diabetes results in dysregulation of HIFs and SUCNR1 signaling. It may contribute to vascular complications, given that the angiogenic response is an essential part of HIFs and SUCNR1 action. This review summarizes the role and regulation of hypoxia-inducible transcription factors and SUCNR1 in type 2 diabetes, as well as the vascular complications thereof.

Hypoxia-inducible transcription factors

Hypoxia-inducible transcription factors were originally discovered as oxygen sensors that play key roles in the transcriptional response to hypoxia [7, 8]. HIFs are heterodi-meric proteins consisting of a unique O2-reg-ulated alpha subunit (HIF-1a, HIF-2a or

HIF-3a) and an oxygen-independent HIF-1P subunit. HIF-1a is ubiquitously expressed in the body, whereas expression of a structurally similar HIF-2a is restricted to certain cell types, mainly endothelial and epithelial cells, as well as neurons [9, 10]. There is a consensus that HIF-1 and HIF-2 are activators of the tran-scriptional response to hypoxia, while HIF-3 is generally viewed as a negative regulator of HIF-1/HIF-2 activity [11]. The most knowledge about the roles of HIFs in adaption to hypoxia was obtained from studies on HIF-1. Upon activation, HIF-1 directly regulates the expression of more than 1,000 human genes in a cell type-specific manner [12, 13]. In particular, HIF-1 activates expression of genes encoding glucose transporters 1 (GLUT1) and 3 (GLUT3) and virtually all glycolytic enzymes to provide a metabolic shift from oxidative phosphorylation towards glycolysis. In addition, HIF-1 upregulates expression of a set of angiogenic factors, mainly vascular endothelium growth factor (VEGF), as well as receptors and signaling molecules involved in angiogenesis, vascular remodeling and vascular response (Table 1). Therefore, HIF-1 plays a key role in vascularization of body tissues, and its dysregulation may lead to vascular complications in type 2 diabetes.

Regulation of HIF-1 activity

HIF-1 activity is controlled by a steady-state level of the HIF-1a protein through a tight regulation of the balance between its synthesis and degradation. Insulin stimulates HIF-1a synthesis via activation of the canonical phos-phatidylinositol-3-kinase PI3K/AKT/mTOR signaling pathway that increases the rate of HIF-1a mRNA translation into the HIF-1a protein [25, 26, 27]. Certain cytokines and growth factors, including insulin-like growth factor 1 (IGF-1) and 2 (IGF-2) [28, 29], increase HIF-1a synthesis in a manner similar to that for insulin [30].

HIF-1a degradation is a key process in the regulation of the cellular response to hypoxia.

Table 1. Examples of HIF-1 target genes encoding angiogenic factors

Таблица 1. Примеры генов-мишеней HIF-1, кодирующих факторы ангиогенеза

Encoding protein Gene Refs

Adrenomedullin ADM [14][15]

Angiopoietin 1 ANGPT1 [16] [17]

Angiopoietin 2 ANGPT2 [17] [18]

Apelin APLN [19]

Endothelin 1 EDN1 [20] [21]

Placental growth factor PGF [17]

Platelet-derived growth factor B PDGFB [17]

Vascular endothelial growth factor VEGF [22]

VEGF receptor 1 FLT1 [23] [24]

Table 2. IC values for inhibition of 4-prolyl hydroxylases with succinate and fumarate Таблица 2. Значения ICS0 для ингибирования 4-пролилгидроксилаз с сукцинатом и фумаратом

4-Prolyl hydroxylase IC50, |JM Km, |JM

Succinate [39] Fumarate [39] 2-Oxoglutarate [32]

PHD1 830 120 60

PHD2 510 80 60

PHD3 570 60 55

Under normoxia, hydroxylation of HIF-1a at one or two proline residues with 4-prolyl hydroxylases (PHDs) triggers ubiquitination and a rapid proteasomal degradation of the HIF-1a protein. The degradation is rapid, with a halflife of HIF-1a being less than 5 min at 21% O2 in well-oxygenated cells [31]. 4-Prolyl hy-droxylases act as oxygen sensors, since their activity directly depend on oxygen concentrations. All three isoforms — PHD1, PHD2 and PHD3 — utilize O2 and 2-oxoglutarate, the metabolite of the citric acid cycle, as substrates with the Km values of 230-250 ^M and 5560 ^M, respectively [32]. Since the Km values for O2 are slightly above the atmospheric concentration of O2 (about 200 ^M), even a small shift to hypoxia dicreases the activity of PHDs and slows the rate of HIF-1a degradation. Accumulated HIF-1a dimerizes with HIF-ip, binds to the hypoxia response element (HRE), recruits the transcriptional co-activators p300/ CBP and activates the transcription of target genes [33, 15]. In parallel, hypoxia unlocks the HIF-1a/p300 interaction via downreguling

HIF-1a protein hydroxylation at the aspar-agine residue with a factor inhibiting HIF-1 (FIH-1) [34, 35].

Among the three isoforms of 4-prolyl hydroxylases, PHD2 is the major negative regulator for HIF-1a and the most abundant isoform in normoxic cells [36]. PHD2 is the major negative regulator for VEGF [37] and the most potent inhibitor of vascular growth in tissues [38]. Therefore, PHD2 is considered to be a promising target for therapeutic interventions, and several PHD2 antagonists are currently under development as drug candidates.

Succinate and fumarate — intermediates of the citric acid cycle — are metabolic inhibitors of 4-prolyl hydroxylases [39]. The half-maximal inhibitory concentrations (IC50) values for succinate- and fumarate-in-duced inhibition of 4-prolyl hydroxylases in comparison with Km values for 2-oxoglutar-ate are presented in Table 2.

Fumarate is a competitive inhibitor of 4-prolyl hydroxylases due to its structural similarity with 2-oxoglutarate. The fumarate IC50 value

for PHD2 inhibition is close to Km values for 2-oxoglutarate, suggesting that fumarate can prevent a PHD2-induced degradation of the HIF-1a protein and may play a role in the regulation of HIF-1 activity under physiologically relevant conditions.

Succinate is characterized by a much weaker inhibiting activity compared to fumarate, with its IC50 values of > 500 ^M being distinct from its range of physiological concentrations. For the reference, succinate levels in human plasma vary from 1 to 9 ^M at rest and increase up to 125 ^M under hypoxic conditions (treadmill running or breath-hold diving) [40, 41]. Therefore, succinate plays a role in the inhibition of HIF-1a degradation only in cases of severe ischemia, when succinate levels can rise up to millimolar values [42].

Succinate receptor 1

Succinate receptor 1 (SUCNR1) is an alternative oxygen sensor that triggers an angiogenic response to hypoxia. SUCNR1 is a member of the rhodopsin-like G protein-coupled receptor family (GPCRs) [43]. It was discovered in 2001 as a GPR91 receptor and was initially viewed as a new purinergic receptor due to its similarity with such molecules [44]. Later, the receptor was established to be highly specific towards succinate [45], subsequently being re-named as succinate receptor 1. Half-maximum potency (EC50) values for the succin-ate-induced SUCNR1 activation vary within the 17-56 ^M range, depending on the type of cells transfected with human SUCNR1 and assay methods [45, 46, 47]. The EC50 value for succinate in the SUCNR1-mediated calcium mobilization is at least by one-order lower compared to that for such intermediates of the citric acid cycle as oxaloacetate (171 ^M), L-malate (207 ^M), 2-oxoglutarate (7.3 mM) and fumarate (>1 mM) [45, 48]. Upon binding, succinate triggers the activation of the SUCNR1/MAPK/ERK signaling pathway, calcium mobilization and the Gi protein-mediated inhibition of cAMP production [43].

Under hypoxia, when succinate concentrations rise, the SUCNR1 receptor triggers angiogen-esis in a way alternative to HIF-1. The succin-ate/SUCNRl signaling pathway upregulates the expression of VEGF, angiopoietins 1 and 2, as well as other angiogenic genes in a tissue-specific manner, which results in revascularization of hypoxic tissues [49]. Therefore, dysregulation of SUCNR1 signaling may lead to vascular complications of type 2 diabetes.

SUCNR1 expression in murine tissues was originally considered to be limited to the kidney, liver, spleen and small intestine [45]. However, later studies have shown SUCNR1 to be ubiquitously expressed, although its amount varying greatly between types of cells. The highest expression of SUCNR1 mRNA and protein was observed in the peripheral white adipose tissue and the kidney, followed by organs of various functional systems including the respiratory, urinary, digestive, reproductive, central and peripheral nervous systems [50, 51]. At the organ level, SUCNR1 expression is cell-specific. In the kidney, SUCNR1 localizes to the renal vascular lumen, in particular the afferent arteriole and the glomerular vasculature, as well as in the luminal membrane of multiple segments of the renal tubules [52, 46]. In the liver, SUCNR1 is exclusively expressed in quiescent hepatic stellate cells [53]. In the heart, SUCNR1 expression is low [51], while some studies have demonstrated that SUCNR1 is expressed in the ventricular cardiomyo-cytes, mainly in the sarcolemma membrane and T-tubules [54, 55, 56]. In the retina, SUCNR1 is predominantly expressed in the cell bodies of the retinal ganglion cell layer [57]. In the brain, SUCNR1 is expressed in cortical neurons, astrocytes [49], and neural stem cells [58]. SUNCR1 plays a key role in haematopoiesis. Stimulation of SUCNR1 on hematopoietic progenitor cells (HPC) of the bone marrow induces the proliferation of erythroid and megakaryocyte progenitor cells [59]. SUCNR1 is expressed in human plate-

lets [60], dendritic cells, [61], T lymphocytes (CD4+ and CD8+) and B (CD19+) cells [62].

Diabetes affects an adaptive angiogenic response to hypoxia

VEGF is the major angiogenic factor that mediates the HIF-1- and SUCNRl-induced adaptive response to hypoxia. VEGF induces vascular permeability and drives the proliferation and migration of vascular endothelial cells [63]. In 2002, Chou et al discovered that diabetes affects the VEGF-mediated angiogenesis in microvascular and cardiac tissues in an opposite manner [64]. The expression of mRNA and protein for VEGF and its receptors in diabetic rats was as twice as low in the myocardium, while being as twice as high in the retina and glomeruli [64]. The differential regulation function of VEGF has since been shown for other diabetic tissues.

1. Cardiovascular complications of diabetes

Cardiovascular complications of diabetes mellitus are the leading causes of diabetes-related morbidity and mortality [65]. Growing evidence suggests that coronary vessel an-omalities correlate with a reduced HIF-1 and VEGF signaling in the diabetic heart. In the coronary circulation, impaired collateral vessel formation has been demonstrated in the hearts of patients with diabetes [66, 67, 68]. A two-fold decrease in the VEGF mRNA and VEGF receptor 2 (VEGFR-2) mRNA levels was observed in cardiac samples from patients with type 1 and 2 diabetes compared to non-diabetic donors [64]. Ventricular biopsy specimens from type 2 diabetic patients showed a decrease in the HIF-1a and VEGF levels in comparison with a non-diabetic control group [69]. Animal experiments have demonstrated that the HIF-1a reduction in ventricular cardi-omyocytes leads to a significant reduction of vessel counts in the myocardium compared with controls [70], and that such an altered HIF-1 signaling coincides with the left and right coronary artery anomalies [71]. Collectively, these findings indicate that a reduction

in HIF-1/VEGF signaling in the diabetic heart correlates with cardiovascular complications and seems to underlie a diminished adaptive response to hypoxia. The mechanisms behind the HIF-1a cardiac reduction in diabetes have been found to be of metabolic origin and driven by increased fatty acids [72] and hyperglycemia [73].

2. Diabetic nephropathy

Diabetic nephropathy (DN) is a leading cause of end-stage renal disease that accounts for the increased mortality rate in type 1 and type 2 diabetes [74, 75]. Hypoxia represents an early event in the development and progression of DN. HIF-1 has been shown to mediate the metabolic responses to renal hypoxia [76]. Renal expression of the HIF-1 target genes, VEGF and its receptors was up-regulated in experimental animals and patients with type 1 and type 2 diabetes, especially early in the course of diabetes [77]. Hyperglycemia upregulates HIF-1a transcription in the glomeruli of diabetic model mice through a glucose-responsive carbohydrate-responsive element-binding protein (ChREBP) [78, 79]. It still remains controversial whether HIF-1 activation exerts a beneficial or harmful role in the development of diabetic nephropathy [80]. Evidence suggests that activation of HIF-1 may even prevent diabetic nephropathy [81, 82], whereas impairement of HIF-1 signaling accelerates progression of kidney disease [83]. A short, but not prolonged, therapeutic activation of HIF-1 has been proposed as a promising protective approach to the treatment of kidney disease in patients with diabetes [76].

3. Diabetic retinopathy

Diabetic retinopathy remains a leading cause of blindness in persons with diabetes [84]. VEGF upregulation has been considered to be a major cause of retinal neovascularization and vascular leakage that lead to the progression of proliferative diabetic retinopathy (PDR) and diabetic macular edema (DME)

[85, 86]. The reduction of VEGF in diabetic retina is believed to be an effective therapy against DME and PDR. In line with this, multiple anti-VEGF drugs are widely used as the first line of treatment [87]. The increase of HIF-1a correlates temporally and spatially with increased retinal VEGF levels in hypoxic retina [88]. However, SUCNR1-dependent, rather than HIF-1 dependent, VEGF production is considered to be the major cause of proliferative diabetic retinopathy. SUCNR1 is predominately expressed in retinal ganglion cells, with its activation triggering the release of pro-angiogenic factors, such as VEGF and angiopoietins [57]. Succinate levels rise regionally in retina in response to hypergly-cemia. Mean succinate concentrations in the vitreous fluid of patients with proliferative diabetic retinopathy were 1.7-fold higher than those in non-diabetic control groups [89]. A local rise in retinal succinate triggers VEGF expression through the SUCNR1/ERK1,2/ EBP p (c-Fos) and ERK1/2-COX-2/PGE2 signaling pathways [90, 91]. The inhibition of retinal SUCNR1 signaling prevents a high glucose-induced VEGF protein production [90], identifying SUCNR1 as a promising target in the treatment of proliferative diabetic retinopathy.

4. Diabetic foot ulceration

Diabetic foot ulceration (DFU) is a chronic major complication of diabetes mellitus characterized by impaired wound healing that frequently leads to the lower limb amputations [92]. Hypoxia is an essential feature of a wound, thus being a critical stimulus for normal wound healing [93]. Transcutaneous oxygen tension has been shown to be predictive of ulcer healing in patients with diabetes and chronic foot ulcers [94]. Emerging evidence suggests that impaired cellular response to hypoxia is a causative factor for delayed wound healing in diabetic patients. Biopsy specimens from patients with DFU demonstrated lower HIF-1a protein levels in com-

parison with those from patients with chronic venous ulcers [95]. Fibroblasts from the dermis of diabetic db/db mice exhibited a seven-fold decrease in the basal VEGF production (P < 0.001) compared to wild-type fibroblasts, thus having lost responsiveness to hypoxia [96]. Markedly lower levels of VEGF expression in the skin were found in streptozotocin (STZ)-induced mice and db/db mice following cutaneous ischemia compared to wild-type mice [97]. Dermal fibroblasts from patients with type 2 diabetes demonstrated a two-fold decrease in the production of VEGF protein in respose to hypoxia (0.5% O2) compared to age-matched nondiabetic control, which effect was linked to hyperglycemia [97, 98]. Hyper-glycemia is believed to be central to the repression of HIF-1 signaling in diabetic wounds. In vitro studies in primary human dermal fibro-blasts and endothelial cells, as well as in db/db mouse primary fibroblasts [99], have demonstrated hyperglycemia to destabilize HIF-1a protein and down-regulate the transcription of several HIF-1 target genes essential for wound healing, including heat shock protein 90, VEGF-A, VEGF-R1, stromal cell-derived factor (SDF)-1a and stromal cell factor (SCF) [99]. Non-selective inhibitors of 4-prolyl hydroxylases counteract the hyperglycemia-in-duced repressive effect on HIF-1 functions and improve wound healing in db/db mice [99]. PHD2 silencing improves diabetic murine wound closure [100]. The molecular basis for the repression of HIF-1 signaling under hyperglycemia is still debated. The glyoxalase 1 (GLO1) substrate methylglyoxal was shown to modify HIF-1a and co-activator p300 under hyperglycemia, hampering its interaction critical for the activation of transcription of HIF-1 target genes [101, 97].

Mechanisms underlying diabetes-induced impairment of the adaptive response to hypoxia

The aforepresented data demonstrate the dysregulation of HIF-1 and SUCNR1 signal-

ing to correlate with both an impaired adaptive response to hypoxia and vascular complications in type 2 diabetes. Reduced HIF-1 levels are a major factor in vascular complications in type 2 diabetes, with the exception of proliferative diabetic retinopathy caused by SUCNR1 overactivity.

Type 2 diabetes affects HIF-1 signaling at least at five regulatory points (Figure).

Hyperglycemia upregulates HIF-1a transcription through the glucose-responsive car-

bohydrate- responsive element-binding protein (ChREBP) [78, 79], but destabilizes the HIF-la protein under hypoxia [95, 99]. This destabilizing effect is mediated by methyl-gyoxal, a highly reactive metabolite of spontaneous decomposition of triose phosphate intermediates in glycolysis, which levels increase under hyperglycemia [73]. Additionally, methylglyoxal modifies the arginine and lysine residues in proteins involved in HIF-1 signaling, such as HIF-la and co-activator

Fig. Type 2 diabetes affects the HIF-1-mediated angiogenic response to hypoxia.

Under hypoxic conditions, the HIF-1aprotein accumulates, dimerizes with HIF-lft, recruits co-activatorsp300/CBP and binds to hypoxia response elements (HREs) to activate the transcription of target genes encoding angiogenic factors. Type 2 diabetes affects the HIF-1-mediated angiogenic response at least at five levels. Red circles indicate regulatory points at which HIF-1 signaling is affected by type 2 diabetes. @ — Hyperglycemia upregulates transcription of HIF-la mRNA; — Methylglyoxal/hyperglycemia downregulates transcription of HIF-1 target genes, preventing

HIF-la/HIF-ip and HIF-1a/p300 interactions within the transcription complex; @ — Methylglyoxal/hyperglycemia downregulates HIF-la accumulation, promoting degradation of HIF-la protein; @ — Insulin resistance presumably downregulates HIF-la protein synthesis, affecting the insulin-stimulated translation of HIF-la mRNA to protein. Рис. Диабет 2 типа влияет на ангиогенный ответ на гипоксию опосредованный HIF-l.

В условиях гипоксии белок HIF-la накапливается, образует димер с HIF-lft, рекрутирует ко-активаторы p300 / CBP и связывается с HIF-чувствительными элементами в промоторах (HRE) и, так, активирует транскрипции генов-мишеней, кодирующих факторы ангиогенеза. Диабет 2 типа влияет на HIF-l-опосредованный ангиогенный ответ, по меньшей мере, на пяти уровнях. Красным отмечены регуляторные точки, в которых диабет 2 типа влияет на передачу сигналов HIF-l. @ — Гипергликемия активирует транскрипцию мРНКHIF-la субъединицы. @ — Метилглиоксаль / гипергликемия подавляют транскрипцию генов-мишеней HIF-l, предотвращая взаимодействия между HIF-la /HIF-lft и HIF-la /p300 в транскрипционном комплексе. @ — Метилглиоксаль /гипергликемия способствуют деградации белка HIF-la и, так, подавляют накопление HIF-la при гипоксии. @ — Инсулиновая резистентность подавляет синтез белка HIF-la, влияя на стимулированный инсулином процесс трансляции мРНК HIF-la.

p300, which results in hampering interactions between HIF-1a, HIF-1P and p300 within the transcription complex and inhibiting activation of the transcription of HIF-1 target genes [101, 97].

Insulin resistance is a hallmark of type 2 diabetes. The Consensus Development Conference on Insulin Resistance has defined insulin resistance as an impaired biological response to insulin, which should not be confined solely to glucose metabolism parameters, but should apply to all biological actions of insulin [102]. Previous studies have demonstrated that insulin directly upregulates HIF-1a protein synthesis, leading to HIF-1a accumulation even under normoxic conditions [25, 26, 27]. However, the effect of insulin resistance on HIF-1a protein synthesis in type 2 diabetes is yet to be revealed. It seems likely that insulin resistance can downregulate HIF-1a protein synthesis. In this context, insulin resistance and hypergly-cemia, acting as pathologic factors in type 2 diabetes, will both lead to a reduction in HIF-1a protein, although by two different mechanisms. Hyperglycemia affects HIF-1a degradation, while insulin resistance is likely affect HIF-1a protein synthesis. The undervalued role of insulin resistance in HIF-1-mediated angiogenic response seems to explain why tight glycemic control alone is not sufficient for the prevention of vascular complications in type 2 diabetes.

Succinate deficiency caused by a switch to free fatty acid metabolism has been shown to be an alternative factor behind the HIF-1a reduction in diabetic hearts, in view that succin-ate can promote HIF-1a accumulation through inhibition of regulatory 4-prolyl hydroxylases (Table 2) [72].

REFERENCES_

1. World Health Organization. Global report on diabetes.

iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.

Geneva: 2016. https://www.who.int/diabetes/global-

report/en/ (accessed Jan 15, 2019).

2. Diabetes Control and Complications Trial Research

Group, Nathan D.M., Genuth S., Lachin J., Cleary P.,

Conclusion and prospects

In general, a tissue-specific dysregulation of the HIF-1-mediated angiogenic response to hypoxia correlates with micro- and macrovascular complications of type 2 diabetes. The retina-specific overactivation of succinate/ SUCNR1 signaling explains, at least partially, paradoxical tissue-specific changes in the an-giogenesis in diabetic microvascular complications, an excessive formation of premature blood vessels in the retina and a deficiency in the formation of small blood vessels in peripheral tissues, such as the skin.

Although current research is mainly focused on the role of hyperglycemia in the vascular complications of diabetes, hyperglycemia seems to be not the sole factor causal to dysregulation of HIF-1 signaling in type 2 diabetes. There is strong evidence that insulin directly upregulates HIF-1a protein synthesis. Therefore, local insulin resistance might downregu-late the HIF-1-mediated response to hypoxia, thus contributing to the development of vascular complications in type 2 diabetes. This seems to explain, at least partially, recent findings that have showen no significant benefit of tight glucose control in terms of patient-important micro- and macrovascular outcomes, with the exception of a 15% reduction in the relative risk of nonfatal myocardial infarction [6]. Future research should aim at veryfying the hypothesis about the role of insulin resistance in the HIF-1 related angiogenic response in type 2 diabetes.

In addition, the improvement of insulin receptor signaling at target hypoxic regions seems to be a novel promising approach to the treatment of vascular complications caused by type 2 diabetes.

Crofford O., Davis M., Rand L., Siebert C. The effect of intensive treatment of diabetes on the development and progression of long-term complications in insulin-dependent diabetes mellitus. N. Engl. J. Med. 1993 Sep 30;329(14):977-86.

3. [No authors listed] Intensive blood-glucose control with sulphonylureas or insulin compared with conventional treatment and risk of complications in patients with type 2 diabetes (UKPDS 33). UK Prospective Diabetes Study (UKPDS) Group. Lancet. 1998 Sep 12;352(9131):837-53.

4. Ismail-Beigi F., Craven T., Banerji M.A., Basile J., Calles J., Cohen R.M., Cuddihy R., Cushman W.C., Genuth S., Grimm R.H.Jr., Hamilton B.P., Hoogwerf B., Karl D., Katz L., Krikorian A., O'Connor P., Pop-Busui R., Schubart U., Simmons D., Taylor H., Thomas A., Weiss D., Hramiak I.; ACCORD trial group. Effect of intensive treatment of hyperglycaemia on microvascular outc omes in type 2 diabetes: an analysis of the ACCORD randomised trial. Lancet. 2010 Aug 7;376(9739):419-30.

5. Action to Control Cardiovascular Risk in Diabetes Study Group, Gerstein H.C., Miller M.E., Bying-ton R.P., Goff D.C. Jr., Bigger J.T., Buse J.B., Cushman W.C., Genuth S., Ismail-Beigi F., Grimm R.H. Jr., Probstfield J.L., Simons-Morton D.G., Friedewald W.T. Effects of intensive glucose lowering in type 2 diabetes. N. Engl. J. Med. 2008 Jun 12;358(24):2545-59.

6. Rodríguez-Gutiérrez R., Montori V.M. Glycemic Control for Patients With Type 2 Diabetes Mellitus: Our Evolving Faith in the Face of Evidence. Circ Cardi-ovasc Qual Outcomes. 2016 Sep;9(5):504-12.

7. Semenza G.L., Nejfelt M.K., Chi S.M., Antonara-kis S.E. Hypoxia-inducible nuclear factors bind to an enhancer element located 3' to the human erythropoietin gene. Proc Natl Acad Sci USA. 1991;88:5680-4

8. Samanta D., Semenza G.L. Maintenance of redox homeostasis by hypoxia-inducible factors. Redox Biol. 2017 Oct;13:331-5.

9. Flamme I., Fröhlich T., von Reutern M., Kappel A., Damert A., Risau W. HRF, a putative basic helix-loop-helix-PAS-domain transcription factor is closely related to hypoxia-inducible factor-1 alpha and develop-mentally expressed in blood vessels. Mech Dev. 1997 Apr;63(1):51-60.

10. Wiesener M.S., Turley H., Allen W.E., Willam C., Eck-ardt K.U., Talks K.L., Wood S.M., Gatter K.C., Harris A.L., Pugh C.W., Ratcliffe P. J., Maxwell P.H. Induction of endothelial PAS domain protein-1 by hypoxia: characterization and comparison with hypoxia-indu-cible factor-1alpha. Blood. 1998 Oct 1;92(7):2260-8.

11. Ravenna L., Salvatori L., Russo M.A. HIF3a: the little we know. FEBS J. 2016 Mar;283(6):993-1003.

12. Semenza G.L. Hypoxia-inducible factor 1 and cardiovascular disease. Annu Rev Physiol. 2014;76:39-56.

13. Hellwig-Bürgel T., Stiehl D.P., Wagner A.E., Metzen E., Jelkmann W. Review: hypoxia-inducible factor-1 (HIF-1): a novel transcription factor in immune reactions. J Interferon Cytokine Res. 2005 Jun;25(6):297-310.

14. Cormier-Regard S., Nguyen S.V., Claycomb W.C. Ad-renomedullin gene expression is developmentally regulated and induced by hypoxia in rat ventricular cardiac myocytes. J. Biol. Chem. 1998 Jul 10;273(28):17787-92.

15. Manalo D.J., Rowan A., Lavoie T., Natarajan L., Kelly B.D., Ye S.Q., Garcia J.G., Semenza G.L. Transcriptional regulation of vascular endothelial cell responses to hypoxia by HIF-1. Blood. 2005 Jan 15;105(2):659-69.

16. Bosch-Marce M., Okuyama H., Wesley J.B., Sarkar K., Kimura H., Liu Y.V., Zhang H., Strazza M., Rey S., Savino L., Zhou Y.F., McDonald K.R., Na Y., Van-diver S., Rabi A., Shaked Y., Kerbel R., Lavallee T., Semenza G.L. Effects of aging and hypoxia-inducible factor-1 activity on angiogenic cell mobilization and recovery of perfusion after limb ischemia. Circ Res. 2007 Dec 7;101(12):1310-8.

17. Kelly B.D., Hackett S.F., Hirota K., Oshima Y., Cai Z., Berg-Dixon S., Rowan A., Yan Z., Campochiaro P.A., Semenza G.L. Cell type-specific regulation of an-giogenic growth factor gene expression and induction of angiogenesis in nonischemic tissue by a con-stitutively active form of hypoxia-inducible factor 1. Circ Res. 2003 Nov 28;93(11):1074-81.

18. Simon M.P., Tournaire R., Pouyssegur J. The angi-opoietin-2 gene of endothelial cells is up-regulated in hypoxia by a HIF binding site located in its first intron and by the central factors GATA-2 and Ets-1. J Cell Physiol. 2008 Dec;217(3):809-18.

19. Eyries M., Siegfried G., Ciumas M., Montagne K., Agrapart M., Lebrin F., Soubrier F. Hypoxia-induced apelin expression regulates endothelial cell proliferation and regenerative angiogenesis. Circ Res. 2008 Aug 15;103(4):432-40.

20. Hu J., Discher D.J., Bishopric N.H., Webster K.A. Hypoxia regulates expression of the endothelin-1 gene through a proximal hypoxia-inducible factor-1 binding site on the antisense strand. Biochem Biophys Res Commun. 1998 Apr 28;245(3):894-9.

21. Camenisch G., Stroka D.M., Gassmann M., Wenger R.H. Attenuation of HIF-1 DNA-binding activity limits hypoxia-inducible endothelin-1 expression. Pflugers Arch. 2001 Nov;443(2):240-9.

22. Forsythe J.A., Jiang B.H., Iyer N.V., Agani F., Leung S.W., Koos R.D., Semenza G.L. Activation of vascular endothelial growth factor gene transcription by hypoxia-inducible factor 1. Mol Cell Biol. 1996 Sep;16(9):4604-13.

23. Gerber H.P., Condorelli F., Park J., Ferrara N. Differential transcriptional regulation of the two vascular endothelial growth factor receptor genes. Flt-1, but not Flk-1/KDR, is up-regulated by hypoxia. J. Biol. Chem. 1997 Sep 19;272(38):23659-67.

24. Okuyama H., Krishnamachary B., Zhou Y.F., Nagas-awa H., Bosch-Marce M., Semenza G.L. Expression of vascular endothelial growth factor receptor 1 in bone marrow-derived mesenchymal cells is dependent on hypoxia-inducible factor 1. J. Biol. Chem. 2006 Jun 2;281(22):15554-63.

25. Zelzer E., Levy Y., Kahana C., Shilo B.Z., Rubinstein M., Cohen B. Insulin induces transcription of target genes through the hypoxia-inducible factor HIF-1al-pha/ARNT. EMBO J. 1998 Sep 1;17(17):5085-94.

26. Treins C., Giorgetti-Peraldi S., Murdaca J., Se-menza G.L., Van Obberghen E. Insulin stimulates hyp-oxia-inducible factor 1 through a phosphatidylinositol 3-kinase/target of rapamycin-dependent signaling pathway. J. Biol. Chem. 2002 Aug 2;277(31):27975-81.

27. Stiehl D.P., Jelkmann W., Wenger R.H., Hell-wig-Burgel T. Normoxic induction of the hypoxia-in-ducible factor 1alpha by insulin and interleukin-1beta involves the phosphatidylinositol 3-kinase pathway. FEBS Lett. 2002 Feb 13;512(1-3):157-62.

28. Feldser D., Agani F., Iyer N.V., Pak B., Ferreira G., Semenza G.L. Reciprocal positive regulation of hyp-oxia-inducible factor 1alpha and insulin-like growth factor 2. Cancer Res. 1999 Aug 15;59(16):3915-8.

29. Jiang B.H., Jiang G., Zheng J.Z., Lu Z., Hunter T., Vogt P.K. Phosphatidylinositol 3-kinase signaling controls levels of hypoxia-inducible factor 1. Cell Growth Differ. 2001 Jul;12(7):363-9.

30. Masoud G.N., Li W. HIF-1a pathway: role, regulation and intervention for cancer therapy. Acta Pharm Sin B. 2015 Sep;5(5):378-89.

31. Salceda S., Caro J. Hypoxia-inducible factor 1alpha (HIF-1alpha) protein is rapidly degraded by the ubi-quitin-proteasome system under normoxic conditions. Its stabilization by hypoxia depends on redox-induced changes. J. Biol. Chem. 1997 Sep 5;272(36):22642-7.

32. Hirsila M., Koivunen P., Gunzler V., Kivirikko K.I., Myllyharju J. 2003. Characterization of the human prolyl 4-hydroxylases that modify the hypoxia-indu-cible factor. J. Biol. Chem. 278:30772-80.

33. Poellinger L., Johnson R.S. HIF-1 and hypoxic response: the plot thickens. Curr Opin Genet Dev. 2004 Feb;14(1):81-5.

34. Mahon P.C., Hirota K., Semenza G.L. FIH-1: a novel protein that interacts with HIF-1alpha and VHL to mediate repression of HIF-1 transcriptional activity. Genes Dev (2001) 15:2675-86.

35. Lando D., Peet D.J., Whelan D.A., Gorman J.J., Whitelaw M.L. Asparagine hydroxylation of the HIF transactivation domain a hypoxic switch. Science (2002) 295:858-61.

36. Appelhoff R.J., Tian Y.M., Raval R.R., Turley H., Harris A.L., Pugh C.W., Ratcliffe P.J., Gleadle J.M. Differential function of the prolyl hydroxylases PHD1, PHD2, and PHD3 in the regulation of hyp-oxia-inducible factor. J. Biol. Chem. 2004 Sep 10;279(37):38458-65.

37. Wu S., Nishiyama N., Kano M.R., Morishita Y., Miyazono K., Itaka K., Chung U.I., Kataoka K. Enhancement of angiogenesis through stabilization of hypoxia-inducible factor-1 by silencing pro-lyl hydroxylase domain-2 gene. Mol Ther. 2008 Jul;16(7):1227-34.

38. Takeda K., Cowan A., Fong G.H. Essential role for prolyl hydroxylase domain protein 2 in oxygen

homeostasis of the adult vascular system. Circulation. 2007 Aug 14;116(7):774-81.

39. Koivunen P., Hirsilä M., Remes A.M., Hassinen I.E., Kivirikko K.I., Myllyharju J. Inhibition of hypoxia-in-ducible factor (HIF) hydroxylases by citric acid cycle intermediates: possible links between cell metabolism and stabilization of HIF. J. Biol. Chem. 2007 Feb 16;282(7):4524-32.

40. Komaromy-Hiller G., Sundquist P.D., Jacobsen L.J., Nuttall K.L. Serum succinate by capillary zone elec-trophoresis: marker candidate for hypoxia. Ann Clin Lab Sci. 1997 Mar-Apr;27(2):163-8.

41. Hochachka P.W., Dressendorfer R.H. Succinate accumulation in man during exercise. Eur. J. Appl. Physiol. Occup. Physiol. 1976 Sep 23;35(4):235-42.

42. Chouchani E.T., Pell V.R., Gaude E., Aksentijevic D., Sundier S.Y., Robb E.L., Logan A., Nadtochiy S.M., Ord E.NJ., Smith A.C., Eyassu F., Shirley R., Hu C.H., Dare A.J., James A.M., Rogatti S., Hartley R.C, Eaton S., Costa A.S.H., Brookes P.S., Davidson S.M., Duchen M.R, Saeb-Parsy K., Shattock M.J., Robinson A.J., Work L.M, Frezza C., Krieg T., Murphy M.P. Ischaemic accumulation of succinate controls reperfusion injury through mitochondrial ROS. Nature. 2014 Nov 20;515(7527):431-5.

43. Gilissen J., Jouret F., Pirotte B., Hanson J.. Insight into SUCNR1 (GPR91) structure and function. Pharmacol Ther. 2016 Mar;159:56-65.

44. Wittenberger T., Schaller H.C., Hellebrand S. An expressed sequence tag (EST) data mining strategy succeeding in the discovery of new G-pro-tein coupled receptors. J Mol Biol. 2001 Mar 30;307(3):799-813.

45. He W., Miao F.J., Lin D.C., Schwandner R.T., Wang Z., Gao J., Chen J.L., Tian H., Ling L. Citric acid cycle intermediates as ligands for orphan G-protein-coupled receptors. Nature. 2004 May 13;429(6988):188-93.

46. Robben J.H., Fenton R.A., Vargas S.L., Schweer H., Peti-Peterdi J., Deen P.M., Milligan G. Localization of the succinate receptor in the distal nephron and its signaling in polarized MDCK cells. Kidney Int. 2009 Dec;76(12):1258-67.

47. Sundström L., Greasley P.J., Engberg S., Wallander M., Ryberg E. Succinate receptor GPR91, a Ga(i) coupled receptor that increases intracellular calcium concentrations through PLCß. FEBS Lett. 2013 Aug 2;587(15):2399-404.

48. Trauelsen M., Rexen Ulven E., Hjorth S.A., Brvar M., Monaco C., Frimurer T.M., Schwartz T.W. Receptor structure-based discovery of non-metabolite agonists for the succinate receptor GPR91. Mol Metab. 2017 Dec;6(12):1585-96.

49. Hamel D., Sanchez M., Duhamel F., Roy O., Honoré J.C., Noueihed B., Zhou T., Nadeau-Vallée M., Hou X., Lavoie J.C., Mitchell G., Mamer O.A., Chemtob S. G-protein-coupled receptor 91 and suc-cinate are key contributors in neonatal postcerebral

hypoxia-ischemia recovery. Arterioscler Thromb Vasc Biol. 2014 Feb;34(2):285-93.

50. Regard J.B., Sato I.T., Coughlin S.R. Anatomical profiling of G protein-coupled receptor expression. Cell. 2008 Oct 31;135(3):561—71.

51. Diehl J., Gries B., Pfeil U., Goldenberg A., Mermer P., Kummer W., Paddenberg R. Expression and localization of GPR91 and GPR99 in murine organs. Cell Tissue Res. 2016 May;364(2):245-62.

52. Toma I., Kang J.J., Sipos A., Vargas S., Bansal E., Hanner F., Meer E., Peti-Peterdi J. Succinate receptor GPR91 provides a direct link between high glucose levels and renin release in murine and rabbit kidney. J Clin Invest. 2008 Jul;118(7):2526-34.

53. Correa P.R., Kruglov E.A., Thompson M., Leite M.F., Dranoff J.A., Nathanson M.H. Succinate is a parac-rine signal for liver damage. J Hepatol. 2007 Aug;47(2):262-9.

54. Aguiar C.J., Andrade V.L., Gomes E.R., Alves M.N., Ladeira M.S., Pinheiro A.C., Gomes D.A., Almeida A.P., Goes A.M., Resende R.R., Guatimosim S., Leite M.F. Succinate modulates Ca(2+) transient and cardiomyocyte viability through PKA-dependent pathway. Cell Calcium. 2010 Jan;47(1):37-46.

55. Aguiar C.J., Rocha-Franco J.A., Sousa P.A., Santos A.K., Ladeira M., Rocha-Resende C., Ladeira L.O., Resende R.R., Botoni F.A., Barrouin Melo M., Lima C.X., Carballido J.M., Cunha T.M., Menezes G.B., Guatimosim S., Leite M.F. Succinate causes pathological cardiomyocyte hypertrophy through GPR91 activation. Cell Commun Signal. 2014 Dec 24;12:78.

56. Yang L., Yu D., Fan H.H., Feng Y., Hu L., Zhang W.Y., Zhou K., Mo X.M. Triggering the succinate receptor GPR91 enhances pressure overload-induced right ventricular hypertrophy. Int J Clin Exp Pathol. 2014 Aug 15;7(9):5415-28.

57. Sapieha P., Sirinyan M., Hamel D., Zaniolo K., Joyal J.S., Cho J.H., Honoré J.C., Kermorvant-Duchemin E., Varma D.R., Tremblay S., Leduc M., Rihakova L., Hardy P., Klein W.H., Mu X., Mamer O., Lachapelle P., Di Polo A., Beauséjour C., Andelfinger G., Mitchell G., Sennlaub F., Chemtob S. The succinate receptor GPR91 in neurons has a major role in retinal angiogenesis. Nat Med. 2008 Oct;14(10):1067-76.

58. Peruzzotti-Jametti L., Bernstock J.D., Vicario N., Costa A.S.H., Kwok C.K., Leonardi T., Booty L.M., Bicci I., Balzarotti B., Volpe G., Mallucci G., Manfer-rari G., Donegà M., Iraci N., Braga A., Hallenbeck J.M., Murphy M.P., Edenhofer F., Frezza C., Pluchino S. Macrophage-Derived Extracellular Succinate Licenses Neural Stem Cells to Suppress Chronic Neuroinflammation. Cell Stem Cell. 2018 Mar 1;22(3):355-368.e13.

59. Hakak Y., Lehmann-Bruinsma K., Phillips S., Le T., Liaw C., Connolly D.T., Behan D.P. The role of the GPR91 ligand succinate in hematopoiesis. J Leukoc Biol. 2009 May;85(5):837-43.

60. Högberg C., Gidlöf O., Tan C., Svensson S., Nils-son-Öhman J., Erlinge D., Olde B. Succinate independently stimulates full platelet activation via cAMP and phosphoinositide 3-kinase-ß signaling. J Thromb Haemost. 2011 Feb;9(2):361-72.

61. Rubic T., Lametschwandtner G., Jost S., Hinteregger S., Kund J., Carballido-Perrig N., Schwärzler C., Junt T., Voshol H., Meingassner J.G., Mao X., Werner G., Rot A., Carballido J.M. Triggering the succinate receptor GPR91 on dendritic cells enhances immunity. Nat Immunol. 2008 Nov;9(11):1261-9.

62. Macaulay I.C., Tijssen M.R., Thijssen-Timmer D.C., Gusnanto A., Steward M., Burns P., Langford C.F., Ellis P.D., Dudbridge F., Zwaginga J.J, Watkins N.A., van der Schoot C.E., Ouwehand W.H. Comparative gene expression profiling of in vitro differentiated megakaryocytes and erythroblasts identifies novel activatory and inhibitory platelet membrane proteins. Blood. 2007 Apr 15;109(8):3260-9.

63. Vempati P., Popel A.S., Mac Gabhann F. Extracellular regulation of VEGF: isoforms, proteolysis, and vascular patterning. Cytokine Growth Factor Rev. 2014 Feb;25(1):1-19.

64. Chou E., Suzuma I., Way K.J., Opland D., Cler-mont A.C., Naruse K., Suzuma K., Bowling N.L., Vlahos C.J., Aiello L.P., King G.L. Decreased cardiac expression of vascular endothelial growth factor and its receptors in insulin-resistant and diabetic States: a possible explanation for impaired collateral formation in cardiac tissue. Circulation. 2002 Jan 22;105(3):373-9.

65. Pappachan J.M., Varughese G.I., Sriraman R., Ar-unagirinathan G. Diabetic cardiomyopathy: Patho-physiology, diagnostic evaluation and management. World J Diabetes. 2013 Oct 15;4(5):177-89.

66. Abaci A., Oguzhan A., Kahraman S., Eryol N.K., Unal S., Arinj H., Ergin A. Effect of diabetes mellitus on formation of coronary collateral vessels. Circulation. 1999 May 4;99(17):2239-42.

67. Rzeczuch K., Jagielski D., Kolodziej A., Kaczmarek A., Mielnik M., Banasiak W., Ponikowski P. Coronary collateral circulation is less developed when ischaemic heart disease coexists with diabetes. Kardiol Pol. 2003 Feb;58(2):85-92.

68. Islam M.M., Ali A., Khan N.A., Rahman A., Majum-der A.S., Chowdhury W.A., Faruque G.M., Faruque M., Jalaluddin M. Comparative study of coronary collaterals in diabetic and nondiabetic patients by angiography. Mymensingh Med J. 2006 Jul;15(2):170-5.

69. Marfella R., Esposito K., Nappo F., Siniscalchi M., Sasso F.C., Portoghese M., Di Marino M.P., Baldi A., Cuzzocrea S., Di Filippo C., Barboso G., Baldi F., Rossi F., D'Amico M., Giugliano D. Expression of angiogenic factors during acute coronary syndromes in human type 2 diabetes. Diabetes. 2004 Sep;53(9):2383-91.

70. Huang Y, Hickey RP, Yeh JL, Liu D, Dadak A, Young LH, Johnson RS, Giordano FJ. Cardiac myo-

cyte-specific HIF-1alpha deletion alters vascularization, energy availability, calcium flux, and contractility in the normoxic heart. FASEB J. 2004 Jul;18(10):1138-40.

71. Wikenheiser J., Wolfram J.A., Gargesha M., Yang K., Karunamuni G., Wilson D.L., Semenza G.L., Agani F., Fisher S.A., Ward N., Watanabe M. Altered hypox-ia-inducible factor-1 alpha expression levels correlate with coronary vessel anomalies. Dev Dyn. 2009 0ct;238(10):2688-700.

72. Dodd M.S., Sousa Fialho M.D.L., Montes Aparicio C.N., Kerr M., Timm K.N., Griffin J.L., Luiken J.J.F.P., Glatz J.F.C., Tyler D.J., Heather L.C. Fatty Acids Prevent Hypoxia-Inducible Factor-1a Signaling Through Decreased Succinate in Diabetes. JACC Basic Transl Sci. 2018 Aug 28;3(4):485-98.

73. Ramalho A.R., Toscano A., Pereira P., Girao H., Gonjalves L., Marques C. Hyperglycemia-induced degradation of HIF-1a contributes to impaired response of cardiomyocytes to hypoxia. Rev Port Cardiol. 2017 May;36(5):367-73.

74. Orchard T.J., Secrest A.M., Miller R.G., Costacou T. In the absence of renal disease, 20 year mortality risk in type 1 diabetes is comparable to that of the general population: a report from the Pittsburgh Epidemiology of Diabetes Complications Study. Diabetologia. 2010 Nov;53(11):2312-9.

75. Afkarian M., Sachs M.C., Kestenbaum B., Hirsch I.B., Tuttle K.R., Himmelfarb J., de Boer I.H. Kidney disease and increased mortality risk in type 2 diabetes. J Am Soc Nephrol. 2013 Feb;24(2):302-8.

76. Takiyama Y., Haneda M. Hypoxia in diabetic kidneys. Biomed Res Int. 2014;2014:837421.

77. Schrijvers B.F., Flyvbjerg A., De Vriese A.S. The role of vascular endothelial growth factor (VEGF) in renal pathophysiology. Kidney Int. 2004 Jun;65(6):2003-17.

78. Makino H., Miyamoto Y., Sawai K., Mori K., Mukoy-ama M., Nakao K., Yoshimasa Y., Suga S. Altered gene expression related to glomerulogenesis and podocyte structure in early diabetic nephropathy of db/db mice and its restoration by pioglitazone. Diabetes. 2006 0ct;55(10):2747-56.

79. Isoe T., Makino Y., Mizumoto K., Sakagami H., Fujita Y., Honjo J., Takiyama Y., Itoh H., Haneda M. High glucose activates HIF-1-mediated signal trans-duction in glomerular mesangial cells through a carbohydrate response element binding protein. Kidney Int. 2010 Jul;78(1):48-59.

80. Persson P., Palm F. Hypoxia-inducible factor activation in diabetic kidney disease. Curr Opin Nephrol Hy-pertens. 2017 Sep;26(5):345-50.

81. Krishan P., Singh G., Bedi O. Carbohydrate restriction ameliorates nephropathy by reducing oxidative stress and upregulating HIF-1a levels in type-1 diabetic rats. J Diabetes Metab Disord. 2017 Dec 19;16:47.

82. Nordquist L., Friederich-Persson M., Fasching A., Liss P., Shoji K., Nangaku M., Hansell P., Palm F. Activation of hypoxia-inducible factors prevents diabetic nephropathy. J Am Soc Nephrol. 2015 Feb;26(2):328-38.

83. Bohuslavova R., Cerychova R., Nepomucka K., Pavlinkova G. Renal injury is accelerated by global hypoxia-inducible factor 1 alpha deficiency in a mouse model of STZ-induced diabetes. BMC Endocr Disord. 2017 Aug 3;17(1):48.

84. Yau J.W., Rogers S.L., Kawasaki R., Lamoureux E.L., Kowalski J.W., Bek T., Chen S.J., Dekker J.M., Fletcher A., Grauslund J., Haffner S., Hamman R.F., Ikram M.K., Kayama T., Klein B.E., Klein R., Krish-naiah S., Mayurasakorn K., O'Hare J.P., Orchard T.J., Porta M., Rema M., Roy M.S., Sharma T., Shaw J., Taylor H., Tielsch J.M., Varma R., Wang J.J., Wang N., West S., Xu L., Yasuda M., Zhang X., Mitchell P., Wong T.Y. Meta-Analysis for Eye Disease (META-EYE) Study Group. Global prevalence and major risk factors of diabetic retinopathy. Diabetes Care. 2012 Mar;35(3):556-64.

85. Aiello L.P., Avery R.L., Arrigg P.G., Keyt B.A., Jampel H.D., Shah S.T., Pasquale L.R., Thieme H., Iwamoto M.A., Park J.E., et al. Vascular endothelial growth factor in ocular fluid of patients with diabetic retinopathy and other retinal disorders. N. Engl. J. Med. 1994 Dec 1;331(22):1480-7.

86. Ajlan R.S., Silva P.S., Sun J.K. Vascular Endothelial Growth Factor and Diabetic Retinal Disease. Semin Ophthalmol. 2016;31(1-2):40-8.

87. Urias E.A., Urias G.A., Monickaraj F., McGuire P., Das A. Novel therapeutic targets in diabetic macular edema: Beyond VEGF. Vision Res. 2017 Oct;139:221-7.

88. Ozaki H., Yu A.Y., Della N., Ozaki K., Luna J.D., Yamada H., Hackett S.F., Okamoto N., Zack D.J., Semenza G.L., Campochiaro P.A. Hypoxia inducible factor-1alpha is increased in ischemic retina: temporal and spatial correlation with VEGF expression. Invest Ophthalmol Vis Sci. 1999 Jan;40(1):182-9.

89. Matsumoto M., Suzuma K., Maki T., Kinoshita H., Tsuiki E., Fujikawa A., Kitaoka T. Succinate increases in the vitreous fluid of patients with active prolifer-ative diabetic retinopathy. Am J Ophthalmol. 2012 May;153(5):896-902.e1.

90. Hu J., Wu Q., Li T., Chen Y., Wang S. Inhibition of high glucose-induced VEGF release in retinal ganglion cells by RNA interference targeting G protein-coupled receptor 91. Exp Eye Res. 2013 Apr;109:31-9.

iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.

91. Hu J., Li T., Du X., Wu Q., Le Y.Z. G protein-coupled receptor 91 signaling in diabetic retinopathy and hyp-oxic retinal diseases. Vision Res. 2017 Oct;139:59-64.

92. Jeffcoate W. J., Vileikyte L., Boyko E.J., Armstrong D.G., Boulton A.J.M. Current Challenges and Opportunities in the Prevention and Management of Diabetic Foot Ulcers. Diabetes Care. 2018 Apr;41(4):645-52.

93. Knighton D.R., Silver I.A., Hunt T.K. Regulation of wound-healing angiogenesis-effect of oxygen gradients and inspired oxygen concentration. Surgery. 1981 Aug;90(2):262-70.

94. Kalani M., Brismar K., Fagrell B., Ostergren J., Jörneskog G. Transcutaneous oxygen tension and toe

blood pressure as predictors for outcome of diabetic foot ulcers. Diabetes Care. 1999 Jan;22(1):147-51.

95. Catrina S.B., Okamoto K., Pereira T., Brismar K., Poellinger L. Hyperglycemia regulates hypoxia-indu-cible factor-1alpha protein stability and function. Diabetes. 2004 Dec;53(12):3226-32.

96. Lerman O.Z., Galiano R.D., Armour M., Levine J.P., Gurtner G.C. Cellular dysfunction in the diabetic fibro-blast: impairment in migration, vascular endothelial growth factor production, and response to hypoxia. Am. J. Pathol. 2003 Jan;162(1):303-12.

97. Thangarajah H., Yao D., Chang E.I., Shi Y., Jazayeri L., Vial I.N., Galiano R.D., Du X.L., Grogan R., Galvez M.G., Januszyk M., Brownlee M., Gurtner G.C. The molecular basis for impaired hypoxia-induced VEGF expression in diabetic tissues. Proc Natl Acad Sci U S A. 2009 Aug 11;106(32):13505-10.

98. Thangarajah H., Vial I.N., Grogan R.H., Yao D., Shi Y., Januszyk M., Galiano R.D., Chang E.I, Galvez M.G., Glotzbach J.P., Wong V.W., Brownlee M., Gurt-

ner G.C. HIF-1alpha dysfunction in diabetes. Cell Cycle. 2010 Jan 1;9(1):75-9.

99. Botusan I.R., Sunkari V.G., Savu O., Catrina A.I., Grünler J., Lindberg S., Pereira T., Ylä-Herttuala S., Poellinger L., Brismar K., Catrina S.B. Stabilization of HIF-1alpha is critical to improve wound healing in diabetic mice. Proc Natl Acad Sci U S A. 2008 Dec 9;105(49):19426-31.

100. Wetterau M., George F., Weinstein A., Nguyen P.D., Tutela J.P., Knobel D., Cohen Ba.O., Warren S.M., Saadeh P.B. Topical prolyl hydroxylase domain-2 silencing improves diabetic murine wound closure. Wound Repair Regen. 2011 Jul-Aug;19(4):481-6.

101. Ceradini D.J., Yao D., Grogan R.H., Callaghan M.J., Edelstein D., Brownlee M., Gurtner G.C. Decreasing intracellular superoxide corrects defective ischemia-induced new vessel formation in diabetic mice. J. Biol. Chem. 2008 Apr 18;283(16):10930-8.

102. Consensus Development Conference on Insulin Resistance: 5-6 november 1997. Diabetes Care 1998, 21(2):310-14.

СВЕДЕНИЯ ОБ АВТОРАХ | INFORMATION ABOUT THE AUTHORS

Помыткин Игорь Анатольевич*, ФГАОУ ВО «Первый Московский государственный медицинский университет им. И.М. Сеченова» Минздрава России (Сеченовский университет); e-mail: ipomytkin@mail.ru

Igor A. Pomytkin*, I.M. Sechenov First Moscow State Medical University; e-mail: ipomytkin@mail.ru

Каркищенко Владислав Николаевич, д.м.н., проф., ФГБУН «Научный центр биомедицинских технологий Федерального медико-биологического агентства России»; e-mail: scbmt@yandex.ru

Vladislav N. Karkischenko, Dr. Sci. (Med ), Prof., Scientific Center of Biomedical Technologies of the Federal Medical Biological Agency of Russia;

e-mail: scbmt@yandex.ru

Автор, ответственный за переписку / Corresponding author

i Надоели баннеры? Вы всегда можете отключить рекламу.