Научная статья на тему 'The polariton blockade in a microcavity dimer'

The polariton blockade in a microcavity dimer Текст научной статьи по специальности «Физика»

CC BY
51
2
i Надоели баннеры? Вы всегда можете отключить рекламу.
i Надоели баннеры? Вы всегда можете отключить рекламу.
iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.
i Надоели баннеры? Вы всегда можете отключить рекламу.

Текст научной работы на тему «The polariton blockade in a microcavity dimer»

*

ALT'23

The 30th International Conference on Advanced Laser Technologies

P-O-3

The polariton blockade in a microcavity dimer

T.A.Khudaiberganov1, I.Yu.Chestnov2, S.MArakelian1

1- Department of Physics and Applied Mathematics, Vladimir State University named after A. G. and N. G. Stoletovs,

87 Gorkii st., 600000 Vladimir, Russia 2- ITMO University, St. Petersburg, 197101, Russia Main author email address: thomasheisenberg@mail.ru Exciton-polaritons are composite quasiparticles consisting of exciton and photon components. The quantum statistics of exciton polaritons is of interest in the sense that they using as a platform for the development of quantum computation [1]. The statistics of radiation from micropillar can be sub-Poisson, while the statistics of the polariton states themselves remain Poisson [2-3]. This is due to the weak nonlinearity U/y<<1 (of the exciton fraction) in the exciton-polariton system [4]. The quantum blockade is effect of suppressing the probability of finding two polaritons in a certain state. The mechanism of unconventional quantum blockade, based on destructive interference ways |00>—>|10>—>|20> h |00>—|10>^|01>—|11>^|20>[5], see fig.lb, makes it possible to achieve the effect of polariton blockade in polariton dimer - a system of two coupled micropillars under conditions of resonant pumping, see fig.la. The following Hamiltonian describes system coupled anharmonic oscillators under laser pump energy (in the rotate wave approximation):

H = A1â+â1 + A2â+â2 + g12â+â2 + g21â+â1 + —â+â+â1â1 + — â+â+â2â2

(1)

Here a(a+) annihilates (creates) bosons operators; A = - are the cavity detunings, - frequency driving fields Fi, which we will set equal to each other; amplitudes of the driving fields; U is the Kerr nonlinearity parameters (due to exciton-exciton scattering); gj = g^ are coupling constant between i- cavity

and j - cavity (for polaritons is rabi energy, for coupled microcavity is hopping amplitude between the two cavities.)

Govern master equation by a matrix density for Hamiltonian (1),

g = -i[He/f,p] + Y1D[a1] + Y2D[a2] (2)

Where we introduce the follow dissipators: D[&1] = SL1pcLl+ -1[afa1,p]+,D[a2] = a2pa+ -1[a+a2,p]+.

dt +

2 Jt&i,P]+, D[â2] = a2pa+ -1 The criterion for anticorrelations is the second moment of the correlation function. The second order correlation function we can define as,

n(2) ^n,mn(n-1)Pn,n,m,m P2,2,0,0

gi i\< ^ ~ n2

(Ln,m nPn,n,m,m ) P1,1,0,0

Here p

(3)

n,n',m,mr

= (n'm'\p\nm).

Figure 1 - (a) Sketh a polariton dimer; (b) the scheme of state population. (c-d) The matrix elements of the density matrix; (e) The second order correlation function of the lower-polaritons in dependency of detuning for the first micropillar. for U = 0.01y, g = 5.62y, Fp = y.

The minimum value for the system under consideration is gmm(2) ~ 10-3. The system of microresonators is asymmetric (pumped only first micropillar). In this case, the radiation statistics of the second microcavity remains coherent, and the statistics of the radiation of the first microcavity are nonclassicality.

[1] Ghosh S., Liew, T. C. Quantum computing with exciton-polariton condensates. npj Quantum Information, 6(1), 1-6. (2020).

[2] Verger A., Ciuti C., Carusotto I. Polariton quantum blockade in a photonic dot. Physical Review B, 73(19), 193306. (2006).

[3] Khudaiberganov T.A., Chestnov I.Yu., Arakelian S.M. Quantum statistics of light emitted from a pillar microcavity. Applied Physics B. v. 128. №. 7. P. 117. (2022).

[4] Zubizarreta Casalengua E., et.al. Conventional and unconventional photon statistics. Laser & Photonics Reviews, 14(6), 1900279. (2020)

[5] Flayac, H., Savona, V. Unconventional photon blockade. Physical Review A, 96(5), 053810. (2017).

i Надоели баннеры? Вы всегда можете отключить рекламу.