Научная статья на тему 'THE OPERATING ALGORITHM OF THE DELAY DEVICE PROCESSING TIME OVERLAPPED PULSES IN A MATRIX RECEIVER'

THE OPERATING ALGORITHM OF THE DELAY DEVICE PROCESSING TIME OVERLAPPED PULSES IN A MATRIX RECEIVER Текст научной статьи по специальности «Электротехника, электронная техника, информационные технологии»

CC BY
23
13
i Надоели баннеры? Вы всегда можете отключить рекламу.
Ключевые слова
MATRIX RECEIVER / FIBER-OPTIC DELAY LINE / ABNORMAL ERROR / FREQUENCY AMBIGUITY / WIDEBAND ANALYSIS / WIDEBAND RECEIVER

Аннотация научной статьи по электротехнике, электронной технике, информационным технологиям, автор научной работы — Podstrigaev A.S., Lukiyanov A.S.

Matrix receiver from about the 1960s is used for wideband analysis of the signal environment (SE). Its use provides simultaneously a wide instantaneous analysis bandwidth, relatively high sensitivity, no signal gaps and the possibility of narrow-band processing of the output signal. However, there is a high probability of time-overlapping for pulses from pulse streams created by various radio emission sources in modern SE. When processing time-overlapped pulses in a classical matrix receiver, measurement ambiguities and abnormal errors occur. Therefore, multiple approaches are used to improve its efficiency in a complex SE. One such approach is based on installing a delay device to the wideband receiver's input. The principle of operation of the delay device consists of multiple signal transfers from the microwave range to the optical one and vice versa with the passage through fiber segments of various lengths. However, the operation algorithm of such a device has not been developed in detail. That's why our purpose is to substantiate and develop the algorithm for operating the delay device installed at the input of the matrix receiver to ensure the processing of time-overlapped pulses. In addition to the main algorithm for adapting the delay value to the pulse duration, we developed a nested algorithm for choosing a segment of the adjustable delay line. To store the pulse for the duration of processing by the receiver of previously received pulses, we developed a nested algorithm for executing the delay cycle. The use of the delay device operating following the proposed algorithm makes it possible to reduce the likelihood of measurement ambiguity and abnormal errors during the operation of the matrix receiver in the complex SE.

i Надоели баннеры? Вы всегда можете отключить рекламу.
iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.
i Надоели баннеры? Вы всегда можете отключить рекламу.

Текст научной работы на тему «THE OPERATING ALGORITHM OF THE DELAY DEVICE PROCESSING TIME OVERLAPPED PULSES IN A MATRIX RECEIVER»

THE OPERATING ALGORITHM OF THE DELAY DEVICE PROCESSING TIME OVERLAPPED PULSES IN A MATRIX RECEIVER

DOI: 10.36724/2072-8735-2022-16-3-36-42

Alexey S. Podstrigaev,

Saint Petersburg Electrotechnical University "LETI", St. Petersburg, Russia, ap0d@ya.ru

Manuscript received 07 February 2022; Accepted 28 February 2022

Alexander S. Lukiyanov,

Saint Petersburg Electrotechnical University "LETI",

St. Petersburg, Russia, alexanderlukiyanov@gmail.com

Keywords: matrix receiver, fiber-optic delay line, abnormal error, frequency ambiguity, wideband analysis, wideband receiver

Matrix receiver from about the 1960s is used for wideband analysis of the signal environment (SE). Its use provides simultaneously a wide instantaneous analysis bandwidth, relatively high sensitivity, no signal gaps and the possibility of narrow-band processing of the output signal. However, there is a high probability of time-overlapping for pulses from pulse streams created by various radio emission sources in modern SE. When processing time-overlapped pulses in a classical matrix receiver, measurement ambiguities and abnormal errors occur. Therefore, multiple approaches are used to improve its efficiency in a complex SE. One such approach is based on installing a delay device to the wideband receiver's input. The principle of operation of the delay device consists of multiple signal transfers from the microwave range to the optical one and vice versa with the passage through fiber segments of various lengths. However, the operation algorithm of such a device has not been developed in detail. That's why our purpose is to substantiate and develop the algorithm for operating the delay device installed at the input of the matrix receiver to ensure the processing of time-overlapped pulses. In addition to the main algorithm for adapting the delay value to the pulse duration, we developed a nested algorithm for choosing a segment of the adjustable delay line. To store the pulse for the duration of processing by the receiver of previously received pulses, we developed a nested algorithm for executing the delay cycle. The use of the delay device operating following the proposed algorithm makes it possible to reduce the likelihood of measurement ambiguity and abnormal errors during the operation of the matrix receiver in the complex SE.

Information about authors:

Alexey S. Podstrigaev, Cand. Sci. (Eng.), doctoral student and associate professor of the Department of Radio-Electronic Means, Saint Petersburg Electrotechnical University "LETI", St. Petersburg, Russia

Alexander S. Lukiyanov, postgraduate student of the Department of Radio-Electronic Means, Saint Petersburg Electrotechnical University "LETI", St. Petersburg, Russia

Для цитирования:

Подстригаев А.С., Лукиянов А.С. Алгоритм работы устройства задержки, обеспечивающего обработку наложенных во времени импульсов в матричном приемнике // T-Comm: Телекоммуникации и транспорт. 2022. Том 16. №3. С. 36-42.

For citation:

Podstrigaev A.S., Lukiyanov A.S. (2022) The operating algorithm of the delay device processing time overlapped pulses in a matrix receiver. T-Comm, vol. 16, no.3, pр. 36-42. (in Russian)

Introduction

Matrix receiver from about the 1960s is used for wideband analysis of the signal environment (SE) [1, 2]. Its use provides simultaneously a wide instantaneous analysis bandwidth, relatively high sensitivity, no signal gaps and the possibility of narrow-band processing of the output signal [3-8].

However, modern SE, especially in areas of large transport hubs, mass events, military exercises, in the event of multipath propagation of radio waves and at industrial facilities with a high degree of automation, is characterized by high complexity [9-18]. At the same time, as an indicator of complexity (from the point of view of wideband analysis), it was proposed in [19, 20] to use the probability of time-overlapping for pulses from pulse streams created by various radio emission sources.

Unfortunately, measurement ambiguities and abnormal errors occur when processing time-overlapped pulses in a classical matrix receiver [5-7, 21-24]. Therefore, to improve its efficiency in a complex SE, various means are used: the adding of a frequency meter in each stage of the receiver [23, 25], parallel processing in the output path [26-30], the adding of a fixed delay line at an intermediate frequency and a control device [31]. The paper [32] shows that with the relative simplicity of modifying existing matrix receivers and maintaining high sensitivity, the method based on installing the wideband delay device at the receiver's input allows increasing the number of simultaneously processed pulses. However, the delay device's operation algorithm proposed in [32] requires additional elaboration.

The upper channel of the delay device (according to the scheme) contains fixed (FDL) and adjustable (ADL) delay lines, as well as a key K1 between them. The lower channel provides the passage of the pulse without introducing a delay. The channels are connected to the input of the matrix receiver by the K2 switch. The matrix receiver sends to the control device (CD) the current numbers tdef of channels in which there are pulses

(ldet = 1, NMR1 , where NMR1 is the number of frequency

channels of the first stage of the matrix receiver). Based on these data, the CD generates the control commands Con. 1 - Con. 5.

The delay device works as follows. The first pulse passes to the input of the matrix receiver through the lower channel without introducing a delay. Then the first pulse is detected in one of the Nmr1 frequency channels of the receiver's first stage.

The purpose of the work is to substantiate and develop the operation algorithm for the delay device installed at the input of a matrix receiver to ensure the processing of time-overlapped pulses.

Delay device

The delay device contains at least two channels. One of the channels provides a direct passage of the pulse to the receiver's input without introducing a delay. The remaining channels are designed to delay time-overlapped pulses - one in each channel. We give the following description for the two-channel delay device (Fig. 1).

Fig. 1. Scheme for connecting the delay device to a matrix receiver

If during the processing time in another channel of the receiver's first stage a pulse is detected, the key K1 sends the input spectrum to the ADL for recording. The time for detection, passing control commands and switching the key K1 is compensated with the help of the FDL. After receiving the pulse in the lower channel of the delay device, the switch K2 connects the ADL's output to the input of the matrix receiver. The delay device must not complete the recording of the second pulse before it is completed, even after overlapping.

Since the duration of the received pulse is a priori unknown, the ADL provides adaptive tuning of the delay time. Based on the requirements for the ability to control the insertion delay, wide bandwidth, low weight and overall dimensions, the ADL can be made according to the principle proposed in [32] (Fig. 2).

Fig. 2. Block diagram of the ADL

(i ■N

According to [32], the ADL is based on elements of RF photonics and works as follows. The input microwave signal enters the input 1 of the switch K1' (device input), which transmits the signal to the input of the optical modulator (OM). The OM transfers the useful microwave signal to an optical carrier and sends it to the optical splitter (OS) with a dimension of 1 xp. From the splitter's outputs, the signal enters the bank of fiber segments, which have insignificant losses. From the outputs of the fiber-optic segments, the signal arrives at the corresponding inputs of the photodetectors bank, which return the signal to the microwave range. From one of the outputs of the photodetectors bank, the signal enters the switch K2'. In one of the fiber segments, the excess of the delay time is minimal compared to the duration of the delayed pulse. The input that corresponds to this segment is connected to the output of the switch K2'. Switch K2' transmits a signal from its output to the input of switch K3'. Switch K3' sends a signal to the device's output or back to the input switch K1' to pass the required number of delay cycles. The commands Con. 2 - Con. 4 from the CD perform the necessary control of the switches (see Fig. 1). To compensate for the attenuation introduced during signal conversion from the optical range to the microwave range and

vice versa, amplifiers are installed in the delay device (not shown in the block diagram).

The delay introduced by the p-th fiber segment is defined as tp = ngLmjc , where ng is the refractive index of the optical

fiber core, Lp is the length of the p-th fiber segment ^p = j^p"^,

c is the speed of light in a vacuum.

Operation algorithm of the delay device

The above-described principles of the delay device operation and the ADL from its composition make it possible to substantiate the operation algorithm for the entire device (Fig. 3).

In the initial state, the switches are in the following positions: K1 - In position "1", K2 - in position "2", K1' - in position "1", K2' - in position "1", K3' - in position "1 ". At the starting point of the algorithm, the following values of the variables are set: counter of the duration of the received pulse tl = 0 , counter of

the duration of the pulse recorded in the ADL trec = 0 , and the

flag for exceeding the maximum delay time of the ADL

tmax = 0 .

Fig. 3. Flowchart of operation algorithm for delay device

I

T-Comm Tом 16. #3-2022

According to the presented algorithm, first, the number of

channels N

det,i

in which detection has occurred is checked.

Then, if Ndet i > 1 and the ADL does not contain a previously

recorded pulse, the following parallel processes are performed:

- the duration counter for the received pulse tt is turned on,

after which the algorithm for selecting the ADL's segment closest to the pulse duration is executed;

- key K1 opens (set to position "2"); the channel number idet of the first stage of the matrix receiver is recorded, in which the detection occurred last; then, the check is made for the completion of receiving the pulse in the channel idet and for

exceeding the maximum delay time t max in the ADL (if the pulse has ended or its duration has exceeded tmax , then we go

to the next part of the algorithm, marked "1").

When hitting point "1" of the algorithm, the pulse duration counter ti is turned off, and the key K1 opens (set to position

"1"). The receiver then checks to see if it can handle the delayed pulse. To do this, for example, we can analyze the pulses idet in

the absence of which the receiver can be considered ready to receive and process the next pulse. If the receiver is currently receiving a pulse, then the pulse delay cycle algorithm is executed, after which the availability of the receiver is rechecked. This process is performed cyclically. When the receiver becomes available, a delayed pulse is sent to it. For that, switch K2 is set to position "1". Then the duration counter for the recorded pulse trec is turned on. After that, it is continuously

checked whether the duration of the recorded pulse trec

exceeded the previously measured value of the pulse duration ti .

Until the condition trec < tt is met, we increment the value

trec . When this condition is met, the overlapped pulse is

considered to be sent to the receiver. All switches are set to original positions, the variables are set to zero, and the algorithm returns to the beginning.

The described algorithm for the operation of the delay device includes the algorithm for selecting the ADL segment (Fig. 4, a) and the algorithm for execution the delay loop (Fig. 4, b), described below.

Algorithm for selecting the ADL segment

We consider the algorithm for choosing a segment of the ADL in a general form - for P segments of the optical fiber. In practice, based on the optical signal multiplexers manufactured by the industry and economic indicators, for most tasks it is enough to choose P = 3...4. The length of the fiber segments increases with the growth of their serial number.

The algorithm works as follows. First, the initial setting of the variable corresponding to the number of the shortest fiber segment is performed: p = 1. Then, we continuously compare the duration of the received pulse with the delay time of the current p-th segment of the optical fiber.

When the condition tt < t^DL p ceases to be true for the

current p-th fiber segment, the same comparison is made for the next longest (p+1)-th fiber segment, and so on until the last P-th

segment with delay time tADL,P . The verification process occurs in parallel with the incrementation of the variable ti . If the pulse duration ti becomes equal to the delay time in the longest P-th fiber segment, then the variable tmax is set to "1".

Cl)

^ S ta it

KI' —> 2, K2* —f position "p" <p= 1 ...P\ K3' ->2

b)

Fig. 4. Flowcharts of algorithms for: a) selecting the ADL segment; b) execution the delay loop

Algorithm for execution the delay loop in the ADL

At the input of this algorithm (Fig. 4, b), the switches are changed to the following positions: K1' - to position "2", K2' - to position "p" (p = 1...P), K3' - to position "2".

7TT

This ensures the connection of the p-th segment of the optical fiber selected in the previous algorithm to the ADL input. In this case, the ADL input becomes unavailable for receiving a new pulse. Then, according to the algorithm, the delay time counter tdel is turned on, providing a fiber segment. The value tdel is then continuously compared with the duration of the received pulse tl . After the values of the variables tdel and tl are equal,

the switches K1' and K3' are set to their original positions, then the algorithm exits.

Conclusion

The developed algorithm describes in detail the operation process of the delay device installed at the input of the matrix receiver for processing time-overlapped pulses. We designed this algorithm to store a delayed pulse in the radar while the receiver is processing another pulse. The algorithm considers the adaptability of the delay time for the time-overlapped pulses due to the a priori uncertainty of the signal parameters. Adaptability reduces the number of missed pulses because the processing device connected to the output of the matrix receiver has one channel, while another pulse may arrive at the receiver input during the recording of the time-overlapped pulse.

However, the probability of pulse missing still remains. The main reason is the passage of pulses during the reading of the recorded pulse from the ADL. This disadvantage can be compensated by adding another channel, which, however, significantly complicates the design and operation algorithm, and in addition, increases the cost of the delay device by almost two times.

We should note that in practice, in the above algorithms, it is necessary to also consider corrections for the response time of the switches and the passage of control commands.

The use of the delay device operating following the proposed algorithm makes it possible to reduce the likelihood of measurement ambiguity and abnormal errors during the operation of the matrix receiver in the complex SE. When using one ADL in the delay device, the number of pulse signals simultaneously processed without errors will increase at least two times for SE formed by pulse radars [32].

References

1. R.D. Shlezinger (1963), Radioelektronnaya vojna [Electronic warfare], Voenizdat, Moscow, Russia.

2. S.A. Vakin and L.N. Shustov (1968), Osnovy radioprotivodejstviya i radiotekhnicheskoj razvedki [Fundamentals of radio countermeasures and electronic intelligence], Sovetskoe radio, Moscow, Russia.

3. J.B.Y. Tsui (2005), Microwave receivers with electronic warfare applications, SciTech Publishing Inc, New York, United States.

4. Yu.M. Perunov, V.V. Macukevich and A.A. Vasil'ev (2010), Zarubezhnye radioelektronnye sredstva. Kniga 2. Sistemy radioelektronnoj bor'by [Foreign electronic means. Book 2. Electronic warfare systems], Radiotekhnika, Moscow, Russia.

5. Yu.M. Perunov and A.I. Kupriyanov (2016), Metody i sredstva radioelektronnoj bor'by [Methods and means of electronic warfare], Infra-Inzheneriya, Moscow, Vologda, Russia.

6. A.I. Kupriyanov and A.V. Saharov (2003), Radioelektronnye sistemy v informacionnom konflikte [Radioelectronic systems in the information conflict], Vuzovskaya kniga, Moscow, Russia.

7. A.V. Len'shin (2014), Bortovye sistemy i kompleksy radioelektronnogo podavleniya [Airborne systems and complexes of electronic suppression], Nauchnaya kniga, Voronezh, Russia.

8. Yu.P. Mel'nikov and S.V. Popov (2009), "Methods for evaluating the effectiveness of a wide-range multi-channel-functional (matrix) receiver", Elektromagnitnye volny i elektronnye sistemy, vol. 14, no. 3, pp. 52-61.

9. V.I. Vladimirov, V.P. Lihachev, and V.M. Shlyahin (2004), Antagonisticheskij konflikt radioelektronnyh sistem. Metody i matematicheskie modeli [Antagonistic conflict of radio-electronic systems. Methods and mathematical models], Radiotekhnika, Moscow, Russia.

10. E.A. Kirsanov and A.A. Sirota (2012), Obrabotka informacii v prostranstvenno-raspredelennyh sistemah radiomonitoringa: statisticheskij i nejrosetevye podhody. [Information Processing in Spatially Distributed Radio Monitoring Systems: Statistical and Neural Network Approaches], Fiziko-matematicheskaya literature, Moscow, Russia.

11. M.L. Artemov (ed.) (2021), Avtomatizirovannye sistemy upravleniya, radiosvyazi i radioelektronnoj bor'by. Osnovy teorii i principy postroeniya. Monograph. [Automated control systems, radio communications and electronic warfare. Fundamentals of theory and principles of construction. Monograph], Radiotekhnika, Moscow, Russia.

12. V.F. Korotkov and R.S. Zyryanov (2017), "Separation of pulse sequences in a mixed signal stream", Izvestiya vysshih uchebnyh zavedenijRossii. Radioelektronika, no. 3, pp. 5-10.

iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.

13. S.A. Bogdanov, P.V. Kupriyanov, S.V. Nikolaev and S.A. Petrov (2018), "Investigation of Ways of Dynamic Range Expansion for Broadband Receiver Microwave Devices in Multi-Signal Mode", Izvestiya vysshih uchebnyh zavedenij Rossii. Radioelektronika, no. 3, pp. 85-90. DOI: 10.32603/1993-8985-2018-21-3-85-90.

14. S.V. Dvornikov, S.S.Dvornikov, and A.V. Pshenichnikov (2019) "Analysis of frequency resource for FHSS mode", Informatsionno-upravliaiushchie sistemy, no. 4, pp. 62-68. DOI:10.31799/1684-8853-2019-4-62-68.

15. M.E. Sinitsyn, A.S. Podstrigaev, A.V. Smolyakov and V.V. Davydov (2019), "Analysis of the Sea Surface Influence on the Shape of Microwave Spiral Antenna Radiation Pattern", Proceedings of the 2019 Antennas Design and Measurement International Conference, ADMInC 2019, Saint-Petersburg, Russia, 16-18 October 2019, pp. 72-74. DOI: 10.1109/ADMInC47948.2019.8969319.

16. A.K. Ermakov and N.V. Povarenkin (2020), "Simulation of a signal re-reflected from the underlying surface when sounding a low-flying air object using the Kirchhoff method", Uspekhi sovremennoj radioelektroniki, vol. 74, no. 11, pp. 39-43. DOI: 10.18127/j20700784-202011-07.

17. V. Fadeenko, I. Fadeenko, V. Davydov, V. Reznik, V. Kruglov, A. Moroz, N.Popovskiy, V. Dudkin, and D. Nikolaev (2019), "Remote environmental monitoring in the area of a nuclear power plant", IOP Conference Series: Earth and Environmental Science : XVI-th International Youth Science and Environmental Baltic Region Countries Forum, Gdansk, Poland, 07-09 October 2019. DOI: 10.1088/1755-1315/390/1/012022.

18. V. Davydov, V. Fadeenko, I. Fadeenko, V. Reznik, V. Kruglov, N. Popovskiy and V. Rud (2019), "Multifunctional method for remote monitoring of the environment in the area of nuclear facilities", E3S Web of Conferences: International Scientific Conference on Energy, Environmental and Construction Engineering, EECE 2019, Saint-Petersburg, Russia, 19-20 November 2019. DOI: 10.1051/e3sconf/201914007006.

19. A.S. Podstrigaev, A.V. Smolyakov, V.V. Davydov, N.S. Myazin, N.M. Grebenikova and R.V. Davydov (2019), "New Method for Determining the Probability of Signals Overlapping for the Estimation of the Stability of the Radio Monitoring Systems in a Complex Signal Environment", Lecture Notes in Computer Science, vol. 11660, pp. 525-533. DOI: 10.1007/978-3-030-30859-9_45.

20. A.S. Podstrigaev, A.V. Smolyakov and I.V. Maslov (2020), "Probability of Pulse Overlap as a Quantitative Indicator of Signal Environment Complexity", Izvestiya vysshih uchebnyh zavedenij Rossii. Radioelektronika, no. 23(5), pp. 37-45. DOI: 10.32603/1993-89852020-23-5-37-45.

21. Mel'nikov Yu.P. and Popov S.V. (2008), Radiotekhnicheskaya razvedka. Metody ocenki effektivnosti mestoopredeleniya istochnikov izlucheniya [Radio intelligence. Methods for assessing the effectiveness of the location of radiation sources], Radiotekhnika, Moscow, Russia.

22. Mochalov S.A. (2014), Avtomatizirovannyj sintez mnogofunkcional'noj integrirovannoj radioelektronnoj sistemy. Metodologiya issledovaniya aviacionnyh kompleksov VMF [Automated synthesis of a multifunctional integrated radio-electronic system. Methodology for the study of aviation complexes of the VMF], Radiotekhnika, Moscow, Russia.

23. Podstrigaev A.S. and Lihachev V.P. (2015), "Ambiguity in determining the frequency in the matrix receiver", Zhurnal radioelektroniki, no. 2.

24. Podstrigaev A.S. (2016), "Wideband matrix-parallel receiver with reduced frequency determination ambiguity of radar signals for radio intelligence tools", Ph.D. dissertation, Radar and radio navigation, Saint Petersburg Electrotechnical University "LETI", Saint Petersburg, Russia.

25. Podstrigaev A.S. and Lihachev V.P. JSC "Bryansk Electromechanical Plant" (2016), Sposob opredeleniya chastoty v matrichnom priemnike i ustrojstvo dlya ego osushchestvleniya [Method for determining frequency in a matrix receiver and a device for its implementation], Rospatent, Bryansk, RU, Pat. 2587645 RF.

26. Borisov A.A., Borisov A.A., Brykalov P.A., Primak V.P., Chubarov A.V., and Shevchenko V.I., DGUP «NTC «Brigantina» (2004), Korabel'nyj kompleks radioelektronnogo protivodejstviya

[Shipborne electronic countermeasures complex], Rospatent, Rostov-na-donu, RU, Pat. 2237907 RF.

27. Bajlov V.S., Grishkov A.F., Doruh I.G., and Chekrygin A.E., FGUP «TNIIS» (2006), Korabel'naya sistema radiotekhnicheskogo kontrolya [Shipborne radio control system], Rospatent, Taganrog, RU, Pat. 2284545 RF.

28. Tsui J.B.Y., Hedge J.N., Chakravarthy V.D., and Graves K.M., Government of The United States of America as represented by The Secretary of The Air Force (2002), Channelized monobit electronic warfare radio receiver, USA, Pat. US 6448921 B1.

29. Wiegand R.J. (1991), Radar Electronic Countermeasures System Design, Artech House, Norwood, USA.

30. Podstrigaev A.S. and Bezzub A.I. (2014), "Broadband receiver of an electronic warfare station", Izvestiya vysshih uchebnyh zavedenijRossii. Radioelektronika, no. 4, pp. 37-44.

31. Anohin V.D., Anohin E.V., Kil'djushevskaja V.G., and Simohammed F. Federal State Educational Institution of Higher Professional Education "Military Aviation Engineering University" (Voronezh) of the Ministry of Defense of the Russian Federation (2011), Matrichnyj priemnik [Matrix receiver], Rospatent, Voronezh, RU, Pat. 2422845 RF.

32. Podstrigaev A.S. (2021), "Improving the efficiency of a matrix receiver in a complex signal environment based on a fiber optic delay line", Proceedings of the Moscow Aviation Institute, no. 116. DOI: 10.34759/trd-2021-116-08.

АЛГОРИТМ РАБОТЫ УСТРОЙСТВА ЗАДЕРЖКИ, ОБЕСПЕЧИВАЮЩЕГО ОБРАБОТКУ НАЛОЖЕННЫХ ВО ВРЕМЕНИ ИМПУЛЬСОВ В МАТРИЧНОМ ПРИЕМНИКЕ

Подстригаев Алексей Сергеевич, Санкт-Петербургский государственный электротехнический университет "ЛЭТИ"

им. В.И. Ульянова (Ленина), г. Санкт-Петербург, Россия, ap0d@ya.ru Лукиянов Александр Сергеевич, Санкт-Петербургский государственный электротехнический университет "ЛЭТИ" им. В.И. Ульянова (Ленина), г. Санкт-Петербург, Россия, alexanderlukiyanov@gmail.com

Аннотация

Матричный приемник приблизительно с 60-х гг. прошлого века используется для широкополосного анализа сигнальной обстановки (СО). Его применение обеспечивает одновременно широкую мгновенную полосу анализа, относительно высокую чувствительность, отсутствие пропусков сигналов и возможность узкополосной обработки выходного сигнала. Однако в современной СО высока вероятность наложения во времени импульсов из импульсных потоков, создаваемых различными источниками радиоизлучения. При обработке наложенных во времени импульсов в классическом матричном приемнике возникают неоднозначности измерений и аномальные ошибки. Поэтому для повышения его эффективности в сложной СО используются различные подходы. Один из таких подходов основан на установке широкополосного устройства задержки на вход приемника. Принцип действия устройства задержки заключается в многократных переносах сигнала из диапазона СВЧ в оптический и обратно с прохождением по отрезкам оптоволокна различной длины. Однако алгоритм работы такого устройства подробно не прорабатывался. Поэтому целью работы является обоснование и разработка алгоритма функционирования устройства задержки, устанавливаемого на вход матричного приемника для обеспечения обработки наложенных во времени импульсов. Помимо основного алгоритма для адаптации величины задержки к длительности импульса разработан вложенный алгоритм выбора отрезка регулируемой линии задержки. Для хранения импульса на время обработки приемником ранее принятых импульсов разработан вложенный алгоритм выполнения цикла задержки. Использование устройства задержки, работающего в соответствии с предложенным алгоритмом, позволяет уменьшить вероятности возникновения неоднозначности измерений и аномальных ошибок при работе матричного приемника в сложной сигнальной обстановке.

Ключевые слова: матричный приемник, оптоволоконная линия задержки, аномальная ошибка, неоднозначность определения частоты, широкополосный анализ, широкополосный приемник.

4I

( i л

Литература

1. Шлезингер Р. Д. Радиоэлектронная война. М.: Изд. Воениздат, 1963. 320 с.

2. Вакин С. А., Шустов Л. Н. Основы радиопротиводействия и радиотехнической разведки. М.: Сов. радио, 1968.

3. TsuiJ.B.Y. Microwave receivers with electronic warfare applications. SciTech Publishing Inc, US, New York, 2005.

4. Перунов Ю.М., Мацукевич В.В., Васильев А.А. Зарубежные радиоэлектронные средства Кн. 2 Системы радиоэлектронной борьбы. М.: Радиотехника, 2010. 352 с.

5. Перунов Ю.М., Куприянов А.И. Методы и средства радиоэлектронной борьбы. М.: Инфра-Известия, 2016. 190 с.

6. Куприянов А. И., Сахаров А. В. Радиоэлектронные системы в информационном конфликте. М.: Вузовская книга, 2003. 528 с.

7. Леньшин А В. Бортовые системы и комплексы радиоэлектронного подавления. Воронеж: Научная книга, 2014. 590 с.

8. Мельников Ю. П., Попов С. В. Методы оценки эффективности широкодиапазонного многоканально-функционального ("матричного") приемника с многоступенчатым преобразованием частоты // Электромагнитные волны и электронные системы. 2009. Т. 14, № 3. С. 52-61.

9. Владимиров В. И., Лихачев В. П., Шляхин В. М. Антагонистический конфликт радиоэлектронных систем. Методы и математические модели. М.: Радиотехника, 2004. 384 с.

10. Кирсанов Э. А., Сирота А А. Обработка информации в пространственно-распределенных системах радиомониторинга: статистический и нейросетевые подходы. М.: Физматлит, 2012. 344 с.

11. Автоматизированные системы управления, радиосвязи и радиоэлектронной борьбы. Основы теории и принципы построения / под ред. М. Л. Артемова. М.: Радиотехника, 2021. 556 с.

12. Коротков В. Ф., Зырянов Р. С. Разделение импульсных последовательностей в смешанном потоке сигналов // Известия вузов России. Сер. Радиоэлектроника. 2017. № 3. C. 5-10.

13. Богданов С.А., Куприянов П.В., Николаев С.В., Петров С.А. Исследование путей расширения динамического диапазона широкополосных приемных устройств СВЧ в многосигнальном режиме // Известия высших учебных заведений России. Радиоэлектроника. 2018. № 3. С. 85-90. DOI: 10.32603/19938985-2018-21-3-85-90.

14. Дворников С. В., Дворников С. С., Пшеничников А В. Аппарат анализа частотного ресурса для режима псевдослучайной перестройки рабочей частоты // Информационно-управляющие системы. 2019. № 4 (101). С. 62-68. D0I:l0.3l799/l684-8853-20l9-4-62-68.

15. Sinitsyn M.E., Podstrigaev A.S., Smolyakov A.V., Davydov V.V. "Analysis of the Sea Surface Influence on the Shape of Microwave Spiral Antenna Radiation Pattern," 2019 Antennas Design and Measurement International Conference (ADMInC), St. Petersburg, Russia, 2019, pp. 72-74. DOI: l0.ll09/ADMInC47948.20l9.89693l9.

16. Ермаков А.К., Поваренкин Н.В. Моделирование сигнала, переотразившегося от подстилающей поверхности, при зондировании низколетящего воздушного объекта с использованием метода Кирхгофа // Успехи современной радиоэлектроники. 2020. Т. 74, № ll. С. 39-43. DOI: l0.l8l27/j20700784-2020ll-07.

17. Remote environmental monitoring in the area of a nuclear power plant / V. Fadeenko, I. Fadeenko, V. Davydov [et al.] // IOP Conference Series: Earth and Environmental Science : XVI-th International Youth Science and Environmental Baltic Region Countries Forum, Gdansk, 07-09 October 20l9. Gdansk: Institute of Physics Publishing, 20l9. P. 0l2022. DOI: l0.l088/l755-l3l5/390/l/0l2022.

18. Multifunctional method for remote monitoring of the environment in the area of nuclear facilities / V. Davydov, V. Fadeenko, I. Fadeenko [et al.] // E3S Web of Conferences : International Scientific Conference on Energy, Environmental and Construction Engineering, EECE 20l9, Saint-Petersburg, l9-20 November 20l9. Saint-Petersburg: EDP Sciences, 20l9. P. 07006. DOI: l0.l05l/e3sconf/20l9l4007006.

19. Podstrigaev A.S., Smolyakov A.V., Davydov V.V., Myazin N.S., Grebenikova N.M., and Davydov R.V. New Method for Determining the Probability of Signals Overlapping for the Estimation of the Stability of the Radio Monitoring Systems in a Complex Signal Environment // Lecture Notes in Computer Science. 20l9. V. ll660. Pp. 525-533. DOI: l0.l007/978-3-030-30859-9_45.

20. Podstrigaev AS., Smolyakov AV. and Maslov I.V. Probability of Pulse Overlap as a Quantitative Indicator of Signal Environment Complexity // Известия высших учебных заведений России. Радиоэлектроника. 2020. № 23(5). С. 37-45. DOI: l0.32603/l993-8985-2020-23-5-37-45.

21. Мельников Ю. П., Попов С. В. Радиотехническая разведка. Методы оценки эффективности местоопределения источников излучения. М.: Радиотехника, 2008. 432 с.

22. Мочалов С. А. Автоматизированный синтез многофункциональной интегрированной радиоэлектронной системы. Методология исследования авиационных комплексов ВМФ. М.: Радиотехника, 20l4. 240 с.

23. Подстригаев А С., Лихачев В. П. Неоднозначность определения частоты в матричном приемнике // Журнал радиоэлектроники. 2015. № 2. URL: http://jre.cplire.ru/jre/febl5/l3/text.pdf

24. Подстригаев А. С. Широкополосный матрично-параллельный приемник средств радиотехнической разведки с пониженной неоднозначностью определения частоты радиолокационных сигналов : дис. ... канд. техн. наук : 05.l2.l4. СПб, 20l6. l68 с.

25. Подстригаев А С., Лихачев В. П. АО "Брянский электромеханический завод". Способ определения частоты в матричном приемнике и устройство для его осуществления. Патент RU № 2587645. Бюлл. № l7, 20.06.20l6.

26. Борисов А А., Борисов А А., Брыкалов П. А., Примак В. П., Чубарое А. В., Шевченко В. И. ДГУП "НТЦ "Бригантина". Корабельный комплекс радиоэлектронного противодействия. Пат. 2237907 РФ. l0.l0.2004.

27. Байлов В. С., Гришков А Ф., Дорух И. Г., Чекрыгин А Э. ФГУП "ТНИИС" (2006). Корабельная система радиотехнического контроля. Пат. 2284545 РФ. l0.0l.2006.

28. Tsui J.B.Y., Hedge J. N., Chakravarthy V. D. and Graves K. M. Government of The United States of America as represented by The Secretary of The Air Force.

Channelized monobit electronic warfare radio receiver. Pat. US 6448921 Bl. 10.09.2002.

29. Wiegelnd R.J. Radar Electronic Countermeasures System Design. Artech House, Norwood, USA, 1991.

30. Подстригаев А С., Беззуб А И. Широкополосное приемное устройство станции радиоэлектронной борьбы // Известия высших учебных заведений России. Радиоэлектроника. 2014. № 4. С. 37-44.

31. Анохин В. Д., Анохин Е. В., Кильдюшееская В. Г., Симохаммед Ф. ФГОУ ВПО "Военный авиационный инженерный университет" (г. Воронеж) МО РФ, Матричный приемник. Пат. № 2422845 РФ. Бюлл. № 18, 27.02.2011.

32. Подстригаев А С. Повышение эффективности матричного приемника в сложной сигнальной обстановке на основе оптоволоконной линии задержки // Труды МАИ. 2021. № 116. DOI: l0.34759/trd-202l-ll6-08.

Инфомрация об авторах:

Подстригаев Алексей Сергеевич, докторант, доцент кафедры радиоэлектронных средств, к.т.н., доцент, Санкт-Петербургский государственный электротехнический университет "ЛЭТИ" им. В.И. Ульянова (Ленина), г. Санкт-Петербург, Россия

Лукиянов Александр Сергеевич, аспирант кафедры радиоэлектронных средств, Санкт-Петербургский государственный электротехнический университет "ЛЭТИ" им. В.И. Ульянова (Ленина), г. Санкт-Петербург, Россия

i Надоели баннеры? Вы всегда можете отключить рекламу.