Научная статья на тему 'THE NUMBER OF CANCER STEM CELLS IN THE TUMOR TISSUE AND PERIFOCAL TISSUE OF NON-MUSCLE INVASIVE BLADDER CANCER'

THE NUMBER OF CANCER STEM CELLS IN THE TUMOR TISSUE AND PERIFOCAL TISSUE OF NON-MUSCLE INVASIVE BLADDER CANCER Текст научной статьи по специальности «Биотехнологии в медицине»

CC BY
51
30
i Надоели баннеры? Вы всегда можете отключить рекламу.
Ключевые слова
non-muscle-invasive bladder cancer / cancer stem cells / perifocal tissues / мышечно-неинвазивный рак мочевого пузыря / опухолевые стволовые клетки / перитуморальная зона

Аннотация научной статьи по биотехнологиям в медицине, автор научной работы — Lyubov I. Belyakova, Alexey N. Shevchenko, Aleksandr B. Sagakyants, Elena S. Bondarenko, Oksana G. Shulgina

Purpose of the study. Determine the content of cancer stem cells (CSCs) in the tumor tissue (TT) and perifocal tissues (PT) in muscle-non-invasive bladder cancer. Materials and methods. We’ve examined fragments of TT and PT of 7 muscle-non-invasive bladder cancer (NMIBC) after surgical intervention – transurethral resection of the urinary bladder (TUR). In tissue samples that were used to obtain cell suspension of TT and PT using the BD Medimachine apparatus (BD, USA) was treated with monoclonal antibodies CD45-APCCy7, CD44-FITC, CD133-РЕ, CD24-PE (BD, USA) and were assessed on flow cytometer FacsCantoII (BD, USA). The percentage of cells with CSC phenotypic markers was determined in the analysis sample: CD45-CD44+CD24+, CD45-CD44+, CD45-CD24+, CD45-CD133+, CD45-CD44+CD133+. The presence of significant differences in the groups was evaluated using the STATISTICA 13 software package and the differences between the samples were considered significant at p < 0.05. The percentage of cells of the corresponding phenotype was calculated relative to the total number of cells. The percentage of cells with the corresponding phenotype was calculated relative to the total number of cells. Results. The relative numbers of cells with CSC phenotypic markers, such as CD24, CD44, were 77 % and 58 % higher in TT than in PT: 18.3 ± 3.5 vs. 4.3 ± 2.1, p ≤ 0.044 and 15.5 ± 5.3 vs. 6.5 ± 0.8, p ≤ 0.043, respectively. The number of CD133+ cells was 83 % higher in PT compared to TT – 41.6 ± 12.1 vs. 22.7 ± 7.6, p ≤ 0.047. Conclusion. The study of CSCs is a promising direction for the study of oncogenesis and can be used to assess the nature of the further development of relapse and / or progression of the disease, as well as various therapeutic approaches that are aimed at eliminating with CSC phenotypic markers and blocking the pathways leading to the emergence and maintenance of this cell population in patients with NMIBC.

i Надоели баннеры? Вы всегда можете отключить рекламу.

Похожие темы научных работ по биотехнологиям в медицине , автор научной работы — Lyubov I. Belyakova, Alexey N. Shevchenko, Aleksandr B. Sagakyants, Elena S. Bondarenko, Oksana G. Shulgina

iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.
i Надоели баннеры? Вы всегда можете отключить рекламу.

ОТНОСИТЕЛЬНОЕ СОДЕРЖАНИЕ ОПУХОЛЕВЫХ СТВОЛОВЫХ КЛЕТОК В ТКАНИ ОПУХОЛИ И ПЕРИТУМОРАЛЬНОЙ ЗОНЕ МЫШЕЧНО-НЕИНВАЗИВНОГО РАКА МОЧЕВОГО ПУЗЫРЯ

Цель исследования. Определить содержание опухолевых клеток с фенотипом стволовых (ОСК) в ткани опухоли и перитуморальной зоне при мышечно-неинвазивном раке мочевого пузыря (МНИРМП). Материалы и методы. Исследованы фрагменты опухолевой ткани (ОП) и ткани перитуморальной зоны (ПЗ) 7 пациентов с впервые выявленным мышечно-неинвазивным раком мочевого пузыря (МНИРМП) после проведения оперативного вмешательства в объеме трансуретральной резекции мочевого пузыря (ТУР). В образцах тканей, которые использовались для получения клеточной суспензии ОП и ПЗ с помощью аппарата BD Medimachine (BD, USA), с использованием моноклональных антител CD45-APC-Cy7, CD44-FITC, CD133-РЕ, CD24-PE (BD, USA), осуществляли определение фенотипических характеристик клеток на проточном цитометре FacsCantoII (BD, USA). В анализируемых образцах определяли процентное содержание клеток с фенотипом стволовых: CD45-CD44+CD24+, CD45-CD44+, CD45-CD24+, CD45-CD133+, CD45-CD44+CD133+. Наличие достоверности различий в группах оценивали при помощи программного пакета Statistica 13, различия между выборками считали достоверными при р < 0,05. Расчёт процентного содержание клеток соответствующего фенотипа производился относительно общего числа клеток. Результаты. Относительное содержание клеток, имеющих фенотипические маркеры ОСК такие как CD24, CD44, в ОП были на 77 % и 58 % больше, чем в ПЗ, соответственно 18,3 ± 3,5 против 4,3 ± 2,1, р ≤ 0,044 15,5 ± 5,3 против 6,5 ± 0,8, р ≤ 0,043. Количество CD133+ – клеток оказалось больше на 83 % в ПЗ по сравнению с ОП – 41,6 ± 12,1 против 22,7 ± 7,6, р ≤ 0,047. Заключение. Изучение опухолевых стволовых клеток в настоящее время является перспективным направлением для изучения развития злокачественного процесса и может быть использовано для предикции и оценки характера дальнейшего развития рецидива и/или прогрессирования заболевания, а также, в дальнейшем, для применения различных подходов терапии, которые будут направлены на устранение клеток с фенотипом стволовых и блокирования путей, которые приводят к возникновению и поддержанию данной популяции клеток у больных с МНИРМП.

Текст научной работы на тему «THE NUMBER OF CANCER STEM CELLS IN THE TUMOR TISSUE AND PERIFOCAL TISSUE OF NON-MUSCLE INVASIVE BLADDER CANCER»

South Russian Journal of Cancer 2022, Vol.3, No. 1, P. 6-14 https://doi.org/10.37748/2686-9039-2022-3-1-1 ORIGINAL ARTICLE

THE NUMBER OF CANCER STEM CELLS IN THE TUMOR TISSUE AND PERIFOCAL TISSUE OF NON-MUSCLE INVASIVE BLADDER CANCER

L. I. Belyakova3, A. N. Shevchenko, A. B. Sagakyants, E. S. Bondarenko, O. G. Shulgina, E. P. Ulyanova, E. V. Filatova, I. A. Khomutenko

National Medical Research Centre for Oncology, Rostov-on-Don, Russian Federation E [email protected]

ABSTRACT

Purpose of the study. Determine the content of cancer stem cells (CSCs) in the tumor tissue (TT) and perifocal tissues (PT) in muscle-non-invasive bladder cancer.

Materials and methods. We've examined fragments of TT and PT of 7 muscle-non-invasive bladder cancer (NMIBC) after surgical intervention - transurethral resection of the urinary bladder (TUR). In tissue samples that were used to obtain cell suspension of TT and PT using the BD Medimachine apparatus (BD, USA) was treated with monoclonal antibodies CD45-APC-Cy7, CD44-FITC, CD133-PE, CD24-PE (BD, USA) and were assessed on flow cytometer FacsCantoll (BD, USA). The percentage of cells with CSC phenotypic markers was determined in the analysis sample: CD45-CD44+CD24+, CD45-CD44+, CD45-CD24+, CD45-CD133+, CD45-CD44+CD133+. The presence of significant differences in the groups was evaluated using the STATISTICA 13 software package and the differences between the samples were considered significant at p < 0.05. The percentage of cells of the corresponding phenotype was calculated relative to the total number of cells. The percentage of cells with the corresponding phenotype was calculated relative to the total number of cells.

Results. The relative numbers of cells with CSC phenotypic markers, such as CD24, CD44, were 77 % and 58 % higher in TT than in PT: 18.3 ± 3.5 vs. 4.3 ± 2.1, p < 0.044 and 15.5 ± 5.3 vs. 6.5 ± 0.8, p < 0.043, respectively. The number of CD133+ cells was 83 % higher in PT compared to TT - 41.6 ± 12.1 vs. 22.7 ± 7.6, p < 0.047.

Conclusion. The study of CSCs is a promising direction for the study of oncogenesis and can be used to assess the nature of the further development of relapse and / or progression of the disease, as well as various therapeutic approaches that are aimed at eliminating with CSC phenotypic markers and blocking the pathways leading to the emergence and maintenance of this cell population in patients with NMIBC.

Keywords:

non-muscle-invasive bladder cancer, cancer stem cells, perifocal tissues

For correspondence:

Lyubov I. Belyakova - PhD student, National Medical Research Centre for Oncology, Rostov-on-Don, Russian Federation.

Address: 63 14 line str., Rostov-on-Don 344037, Russian Federation

E-mail: [email protected]

ORCID: https://orcid.org/0000-0001-7955-3473

SPIN: 3382-8559, AuthorlD: 1080471

ResearcherlD: AAH-7729-2020

Funding: this work was not funded.

Conflict of interest: authors report no conflict of interest.

For citation:

Belyakova L. I., Shevchenko A. N., Sagakyants A. B., Bondarenko E. S., Shulgina O. G., Ulyanova E. P., Filatova E. V., Khomutenko I. A. The number of cancer stem cells in the tumor tissue and perifocal tissue of non-muscle invasive bladder cancer. South Russian Journal of Cancer. 2022; 3(1): 6-14. (In Russ.). https://doi.org/10.37748/2686-9039-2022-3-1-1.

The article was submitted 27.07.2021; approved after reviewing 18.01.2022; accepted for publication 14.03.2022. © Belyakova L. I., Shevchenko A. N., Sagakyants A. B., Bondarenko E. S., Shulgina O. G., Ulyanova E. P., Filatova E. V., Khomutenko I. A., 2022

ОТНОСИТЕЛЬНОЕ СОДЕРЖАНИЕ ОПУХОЛЕВЫХ СТВОЛОВЫХ КЛЕТОК В ТКАНИ ОПУХОЛИ И ПЕРИТУМОРАЛЬНОЙ ЗОНЕ МЫШЕЧНО-НЕИНВАЗИВНОГО РАКА МОЧЕВОГО ПУЗЫРЯ

Л. И. Белякова^, А. Н. Шевченко, А. Б. Сагакянц, Е. С. Бондаренко, О. Г. Шульгина, Е. П. Ульянова, Е. В. Филатова, И. А. Хомутенко

НМИЦ онкологии, г. Ростов-на-Дону, Российская Федерация И [email protected]

РЕЗЮМЕ

Цель исследования. Определить содержание опухолевых клеток с фенотипом стволовых (ОСК) в ткани опухоли и перитуморальной зоне при мышечно-неинвазивном раке мочевого пузыря (МНИРМП).

Материалы и методы. Исследованы фрагменты опухолевой ткани (ОП) и ткани перитуморальной зоны (ПЗ) 7 пациентов с впервые выявленным мышечно-неинвазивным раком мочевого пузыря (МНИРМП) после проведения оперативного вмешательства в объеме трансуретральной резекции мочевого пузыря (ТУР). В образцах тканей, которые использовались для получения клеточной суспензии ОП и ПЗ с помощью аппарата BD Medimachine (В^ USA), с использованием моноклональных антител CD45-APC-Cy7, CD44-FITC, CD133-РЕ, CD24-PE (В^ USA), осуществляли определение фенотипических характеристик клеток на проточном цитометре FacsCantoII (В^ USA). В анализируемых образцах определяли процентное содержание клеток с фенотипом стволовых: CD45-CD44tCD24t, CD45-CD44t, CD45-CD24+, CD45-CD133+, CD45-CD44+CD133+. Наличие достоверности различий в группах оценивали при помощи программного пакета Statistica 13, различия между выборками считали достоверными при р < 0,05. Расчёт процентного содержание клеток соответствующего фенотипа производился относительно общего числа клеток. Результаты. Относительное содержание клеток, имеющих фенотипические маркеры ОСК такие как СР24, СР44, в ОП были на 77 % и 58 % больше, чем в ПЗ, соответственно 18,3 ± 3,5 против 4,3 ± 2,1, р < 0,044 15,5 ± 5,3 против 6,5 ± 0,8, р < 0,043. Количество CD133t - клеток оказалось больше на 83 % в ПЗ по сравнению с ОП - 41,6 ± 12,1 против 22,7 ± 7,6, р < 0,047.

Заключение. Изучение опухолевых стволовых клеток в настоящее время является перспективным направлением для изучения развития злокачественного процесса и может быть использовано для предикции и оценки характера дальнейшего развития рецидива и/или прогрессирования заболевания, а также, в дальнейшем, для применения различных подходов терапии, которые будут направлены на устранение клеток с фенотипом стволовых и блокирования путей, которые приводят к возникновению и поддержанию данной популяции клеток у больных с МНИРМП.

Ключевые слова:

мышечно-неинвазивный рак мочевого пузыря, опухолевые стволовые клетки, перитуморальная зона

Для корреспонденции:

Белякова Любовь Игоревна - аспирант, ФГБУ «НМИЦ онкологии» Минздрава России, г. Ростов-на-Дону, Российская Федерация.

Адрес: 344037, Российская Федерация, г. Ростов-на-Дону, ул. 14-я линия, д. 63

E-mail: [email protected]

ORCID: https://orcid.org/0000-0001-7955-3473

SPIN: 3382-8559, AuthorlD: 1080471

ResearcherlD: AAH-7729-2020

Финансирование: финансирование данной работы не проводилось. Конфликт интересов: авторы заявляют об отсутствии конфликта интересов.

Для цитирования:

Белякова Л. И., Шевченко А. Н., Сагакянц А. Б., Бондаренко Е. С., Шульгина О. Г, Ульянова Е. П., Филатова Е. В., Хомутенко И. А. Относительное содержание опухолевых стволовых клеток в ткани опухоли и перитуморальной зоне мышечно-неинвазивного рака мочевого пузыря. Южно-Российский онкологический журнал. 2022; 3(1): 6-14. https://doi.org/10.37748/2686-9039-2022-3-1-1.

Статья поступила в редакцию 27.07.2021; одобрена после рецензирования 18.02.2022; принята к публикации 14.03.2022.

Bladder cancer (BC) is one of the main problems in the structure of the general oncourological morbidity accounts for 4.6 %, inferior to malignant kidney formations [1; 2]. Without appropriate and timely assistance, this malignant neoplasm (MN) can lead to severe disability and a significant deterioration in the quality of life of patients. About 400 thousand new cases of the disease are registered annually in the world [3]. BC is on the 7th place in the structure of cancer incidence in men and 17th place in women in the world [2]. In the structure of the general (both sexes) oncological morbidity in Russia, BC occupies the 13th place (2.7 %), in men this pathology occupies the 9th place (4.6 %), and the 16th in women, thereby forming a fairly significant group of malignant neoplasms of the genitourinary system, accounting for 25.1 % of all MN. The average age of men who became ill in Russia is 66.7 years, women - 68.8 years [4]. In 2020 1,594 people with newly diagnosed BC were registered in the Southern Federal District, and 389 people were registered in the Rostov Region [5].

Muscle-noninvasive BC (NMIBC) at the stages of Ta, T1, q carcinoma (CIS) according to the TNM classification accounts for about 70 % of cases [2], muscle-invasive BC (MIBC), as well as metastatic forms - about 30 % [6]. The metastatic form is characterized by a rather aggressive course and high mortality. The 5-year survival rate for patients with metastatic BC is less than 6 % [7].

Currently, treatment methods and prognosis of the further course of BC are based on the classification of TNM and for NMIBC on prognosis groups, taking into account a number of factors. Despite this, the long-term results of treatment of patients belonging to the same classification groups and receiving identical treatment may vary significantly. In this regard, in

order to fully predict the course of BC, it is necessary not only to determine the histological structure of the tumor, the degree of its differentiation, but also to take into account the influence of individual factors that determine the clinical behavior and biological aggressiveness of the tumor [8].

Under the influence of carcinogens in the epithelium of the bladder, the probability of changing the functional state of a heterogeneous cell population increases, the mechanisms of cell cycle control are disrupted, various mutations occur, which leads to changes in the processes of cell proliferation and differentiation. Studies on transgenic mice have shown that epithelial stem cells with HRAS or FGFR3 mutations can transform into tumor stem cells of bladder cancer that develop in NMIBC (local mutations in 12, 13 or 61 codons of the oncogene HRAS1 [9], activating local mutation in 7 and 10 exons of the fibroblast growth factor receptor gene 3 [10], PIK-3CA missense mutations [11]), whereas stem cells with mutations of the p53/Rb/PTEN gene transform into tumor stem cells of the urothelium, which cause NMIBC (deletion of chromosome 9p21, etc.) [9; 12]. The characteristic features of NMIBC are activating mutations and overexpression of proto-oncogenes (FGFR3, HRAS, etc.), in most cases, which are acquired gene abnormalities [9].

Currently, the main method of diagnosis of NMIBC is histological analysis of the material obtained after transurethral resection of the bladder, with which it is possible to determine the depth of invasion and the degree of differentiation of the tumor [13].

Recently, the question of early prediction and prevention of BC development has become acute, on which the course of the disease and it's outcome depend, as well as the possibility of timely qualified care.

Table 1. Bladder cancer biomarkers' characteristics in terms of urine study

Marker Sensitivity, % Specificity, %

UroVysion 71 66

BTA assessment test (Bladder Tumor Antigen) 64 for G1, 92 for G3 90

Cytokeratin level measurement 19 (CYFRA 21-1) 55.7 for G,, 91.9 for G3 85.5

NMP22 55.7 85.7

ImmunoCyt/uCyt+ essay 79.3 for G,, 92.1 for G3 80 for G,, 92 for G3

Южно-Российский онкологический журнал 2022, Т. 3, № 1, С. 6-14 Белякова Л. И.н, Шевченко А. Н., Сагакянц А. Б., Бондаренко Е. С., Шульгина О. Г, Ульянова Е. П., Филатова Е. В., Хомутенко И. А. / Относительное содержание опухолевых стволовых клеток в ткани опухоли и перитуморальной зоне мышечно-неинвазивного рака

мочевого пузыря

The diagnostic spectrum of BC biomarkers is diverse, but the accuracy of the techniques and their prognostic value aren't high enough and have limited use in the clinic, as can be seen from the Table 1, which presents some markers for the diagnosis of BC and their main characteristics, according to various studies published at the moment [14].

Recently, the role of tumor stem cells (CSC) in the diagnosis and evaluation of the effectiveness of cancer treatment has been actively studied. CSC (CSC-Cancer Stem Cells) is a specific tumor cell, which is characterized by the ability to asymmetric division, self-renewal in vivo, causes the growth of a tumor identical to the original one. A distinctive feature of CSS is their increased resistance to antitumor effects. It is known that antitumor drugs are aimed at eliminating most of the tumor masses sensitive to the antitumor agent, however, it has been proven that the nucleus of cells in the form of CSC remains in the body, which, in turn, may have the ability to restore, proliferate and progress the disease [15]. In this regard, the identification of CSC is an important aspect in assessing the effectiveness of the methods used to treat cancer pathology.

Despite the experimental and theoretical data accumulated to date, many biological properties of CSC, their involvement in the pathological process and their influence on the processes of recurrence and progression remain poorly understood.

The purpose of the study: was to determine the content of tumor cells with the stem cell phenotype in tumor tissue and peritumoral area in noninvasive muscle BC.

MATERIALS AND METHODS

Fragments of tumor tissue (TT) and tissue of the peritumoral zone (PZ) of 7 patients with newly diagnosed noninvasive muscle bladder cancer (NMIBC), all patients have given written consent to the transfer of biological material and the processing of personal data. Histological structure - papillary urothelial carcinoma of low malignancy (low-grade). In 2 people, the tumor is localized along the back wall of the bladder, in 5 people, the tumor is localized on the side walls of the bladder. 5 patients had 1 -2 tumors in the bladder, in 2 patients the tumor had a multifocal character. The 1st patient has a history of MN of a different localization (prostate cancer), 1 patient has a history of chronic viral hepatitis C and HIV

of art. III, 1 patient is a convalescent of COVID-19 pneumonia.

All patients underwent transurethral resection of the bladder (TUR), in which material was taken: a fragment of the tumor (up to 1.5 cm in size), a fragment of the perifocal zone (retreating from the tumor by at least 0.8 cm, but not more than 1.5 cm). The obtained tissue fragments immediately after sampling and delivery to the laboratory were used to obtain a cell suspension using BD Medimachine (BD, USA). The cell suspension was treated with a panel of monoclonal antibodies: CD45-APC-Cy7, CD44-FITC, CD133-PE, CD24-PE in accordance with the manufacturer's instructions (BD, USA). The phenotypic characteristics of the cell suspension in order to identify cells with the USC phenotype were evaluated on a FacsCantoII flow cytometer (BD, USA). In the analyzed samples, the percentage of cells with the USC phenotype was determined: CD45XD44+CD24+, CD45XD44+, CD45-CD24+, CD45-CD133+, CD45-CD44+CD133+. The percentage of cells of the corresponding phenotype relative to the total number of cells was calculated.

Patients after the treatment in the volume of the TOUR are under dynamic observation, continue to receive adequate treatment in accordance with the clinical recommendations of the AOR in the volume of intravesical chemotherapy, followed by a control study and, if necessary (the presence of relapse or progression of the disease), a decision on further diagnosis and treatment tactics.

Statistical processing was performed using the STATISTICA 13 package (StatSoft Inc., USA). The nature of the distribution of the obtained data was evaluated using the Shapiro-Wilk criterion. Since the obtained data had a normal distribution, the results were presented in the form of the arithmetic mean and the standard error of the arithmetic mean (M ± s). To compare the average values of quantitative indicators in groups, in the case of a normal distribution law, the parametric Student criterion was used, in another case, the nonparametric Mann-Whitney criterion. The differences were considered significant at p < 0.05.

RESEARCH RESULTS

The conducted research revealed a number of features of the relative content and distribution of tumor cells with the stem phenotype. It should be noted that the decisive role in the development of

cancer is played by the environment of the tumor, i.e. those interactions formed between the tumor cell and different types of surrounding cells in the peritumoral zone, changes in which can contribute to further invasion of the process. The number of CD45-cells was analyzed, the pool of which is highly likely to include tumor cells with a stem phenotype. The number of CD45 cells in TT and PZ did not differ significantly, amounting to 61.3 ± 5.8 and 71.8 ± 12.6. The relative content of cells with phenotypic CSC markers such as CD24, CD44 in TT were 77 % and 58 % higher than in PZ, respectively, 18.3 ± 3.5 vs. 4.3 ± 2.1, p < 0.044, 15.5 ± 5.3 vs. 6.5 ± 0.8, p < 0.043. The number of CD133+ cells was 83 % higher in PZ compared to TT - 41.6 ± 12.1 vs. 22.7 ± 7.6, p < 0.047. In tumors of the BC content of the cells with the phenotype CD44+CD24+ and CD44+CD133+ exceeded the values in PZ 80 % and 63 %, respectively, of 10.3 ± 4,9 vs 2,1 ± 0,4, p < 0.039 inch, 9,0 ± 4,5 versus 3.3 ± 0,9, p < 0,046.

So, cells with the CSC phenotype (CD45-CD44+CD24+, CD45-CD44+, CD45-CD44+CD24+ and CD45-CD44+CD133+) predominate in the tumor tissue. The peritumoral zone was dominated by cells with the CD45-CD133+ phenotype (Fig. 1).

DISCUSSION

For the first time, CSCs were isolated by D. Bonnet and Y. E. Dick (1997) in acute myeloid leukemia CD34+/CD38-, and later in various solid tumors [16].

In BC, USCS were first described in 2009 by K. S. Chan et al., their greater content was found in MIBC than in NMIBS [17]. Markers of CSC in BC are a number of phenotypic determinants CD44, CD133, CD47, CD49, 67LR (67-kD laminin receptor), as well as a characteristic set of cytokeratins (keratin 14, 5 and others) [15]. The use of CD133 for the detection of CSC in MN of the bladder is not often noted, its study continues in terms of informativeness in this pathology.

Based on the sequencing of 59 cells from three bladder cancer samples (including BC stem cells, non-BC stem cells, epithelial bladder stem cells, epithelial non-bladder stem cells) Yangetal. the origin of BC tumor cells from epithelial stem cells of the bladder or epithelial non-stem cells of the bladder has been suggested [18]. Probably, urothelial stem cells are located in the basal cell layer and are able to repair damage to the bladder. Based on the conducted studies of the experimental mod-

80

70

60

o

50

40

•Js 30

n

« 20

10

71.8

61.3

<5>

41.6

18.3 *

15.5 *

15.5*6.5 4.3

10.3 *

J?

9 *

4.9 3.3

6.5 *

<? c/

Tumor ■ Peritumoral zone

iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.

J?

Fig. 1. Relative count of CSC, TT and PZ.

0

0

Южно-Российский онкологический журнал 2022, Т. 3, № 1, С. 6-14 Белякова Л. И.н, Шевченко А. Н., Сагакянц А. Б., Бондаренко Е. С., Шульгина О. Г., Ульянова Е. П., Филатова Е. В., Хомутенко И. А. / Относительное содержание опухолевых стволовых клеток в ткани опухоли и перитуморальной зоне мышечно-неинвазивного рака

мочевого пузыря

el, the origin of MIBC from urothelial stem cells of the basal cell layer was confirmed. BC tumor stem cells are CD44+CK5+CK20-, have phenotypic markers characteristic of basal cells [19]. CD44+ cells were detected in the basal layer of normal urothelium and urothelial carcinoma, in addition, the cells of the intermediate layer also express CD44. It has been shown that due to a mutation in the FGFR3 gene, intermediate layer cells transform into malignant papillary carcinoma of low malignancy and bladder hyperplasia [20].

Experiments to track clones on a mouse tumor model, to which cells isolated in vivo were injected intradermally, demonstrated that papillary tumor cells mainly originate from the intermediate layer. In the study of more than 300 samples of patients with transitional cell carcinoma of the bladder, 40 % contained CD44+ cells. Histological analysis showed that the xenografts of the tumor retained a histology similar to that of the patient's original tumor. Cells with the CD44+ phenotype have a high oncogenicity (200 times higher than CD44-tumor cells of BC), and the ability to self-renew. The frequent and significant expression of CD44 in normal tissues and tumors contradicts the idea of the relative rarity of USC, and therefore there is a need to combine CD44 with other markers, for example, CD133 or CD24 to detect CSC [14].

It is known that increased expression in CD44 tumor cells causes metastasis, self-maintenance of these cellular elements, and also contributes to the formation of drug resistance against the background of resistance to apoptosis. A number of studies have revealed a correlation between the presence of CD44 and the degree of prevalence of BC. The presence of CD44+ showed a lower survival rate and incomplete response to previous therapy (chemo and/or radiotherapy), thus, a change in the expression of CD44, which is an adhesive protein and promotes cell migration, can act as one of the mechanisms causing the process of recurrence and progression of BC [21].

Summarizing the data obtained from our work, we found a greater number of CD44+ cells in the tumor tissue, which is consistent with the literature data and may indicate an unfavorable course of the disease, as well as the possibility of using this marker as a marker for predicting disease recurrence after complex treatment.

CD133 (AC133, prominin 1) is a glycoprotein that

was first discovered by H. Yu et al. in 1997 as a cell surface protein expressed on CD34+ hematopoietic progenitor cells [22]. Transplantation of tumor stem cells expressing CD133 to mice with immunodeficiency generated histologically similar tumor tissue with self-renewal [23]. In a study by Huang P. and co-author in 2013. It was demonstrated that the CD133+ subpopulation of human bladder cancer cells was characterized by activation of pluripotent stem cell markers - Oct-4 and Sox-2, while demonstrating more aggressive proliferation compared to the CD133-sub-population. The CD133+ subpopulation also tended to form colonies, which indicates a strong clonogenic ability, i.e. they have phenotypic features associated with CSC [24]. The presence of CD133 on the surface of tumor cells causes the preservation of their stem properties, as well as the launch of the formation of differentiated malignant cells [25].

In our work, CSC with the CD133+ phenotype were found in greater numbers in the peritumoral zone. Based on this, it can be assumed that this marker functions as a modulator of the effects of a wide range of cytokines, affects the activity of various membrane receptors, and an increase in this marker can lead to structural and functional changes in cells with an increase in the probability of their tumor transformation.

Previously published studies have proven the important role of CD24 in the development of oncogenesis and the progression of various types of malignant neoplasms, including renal cell carcinoma (RCC), nasopharyngeal cancer, hepatocellular carcinoma (HCC), ovarian cancer, non-small cell lung cancer (NSCLC), breast cancer and others. This mu-cin-like cell membrane protein is expressed in many types of tumor tissue. In breast cancer, a correlation was noted between the overexpression of CD24, the prevalence and progression of the disease [26]. CD24 expression was slightly correlated with lymphovas-cular invasion of the BC tumor, whereas CD133 was associated with distant metastases and aggressiveness of the tumor process. Tumor cells with the phenotype of stem CD133+CD24+ are characteristic of more aggressive forms, low differentiated (high grade) bladder carcinomas of high malignancy [25].

CONCLUSION

Thus, based on a small sample size, it's possible to assume some phenotypic and quantitative features of

CSC in tumor tissue and peritumoral zone in NMIBC.

The study of CSC is a promising direction for the study of oncogenesis, and with further study, there is a high probability of using these markers to assess the nature of the development of relapse and/ or progression of the disease, as well as for new different therapy approaches aimed at eliminating cells with the CSC phenotype by affecting surface

markers and corresponding signaling pathways that lead to the emergence and maintenance of this cell population. Despite all the available scientific work related to the search for new effective methods of diagnosis, the study of CSC and their impact on the process of occurrence, metastasis in BC - have not been studied enough, and therefore it is planned to further study these cells with the stem phenotype.

Reference

1. Kit OI, Franciyanc EM, Dimiriadi SN, Kaplieva IV, Trepitaki LK. Neoangiogenesis and fibrinolytic system biomarkers expression in the dynamics of experimental kidney ischemia in rats. Experimental and clinical urology. 2015;(1):20-23. (In Russ.).

2. Hakenberg OW (Chair), Compérat E, Minhas S, Necchi A, Protzel C, Watkin N. (Vice-chair) Guidelines Associate: Robinson R. EAU Guidelines on Penile Cancer. European Association of Urology, 2020. Available at: https://uroweb.org/guideline/penile-cancer/. Accessed: 17.01.2022.

3. Dzidzaria AG, Pavlov AYu, Gafanov RA, Fastovets SV, Kravtsov IB. Current issues in molecular diagnostics of bladder cancer. RMJ 2019;(2):56-60. (In Russ.).

4. Malignant neoplasms in Russia in 2020 (morbidity and mortality). Ed. by Kaprina AD, Starinsky VV, Shakhzadova AO, 2021, 252 p. Available at: https://oncology-association.ru/wp-content/uploads/2021/11/zis-2020-elektronnaya-versiya.pdf, Accessed: 17.01.2022. (In Russ.).

5. The state of oncological care to the population of Russia in 2019. Ed. by AD Kaprin, VV Starinsky, AO Shakhzadova. Moscow: P. A. Hertsen Moscow Oncology Research Institute - Branch of the National Medical Research Radiological Centre 2020, 239 p. (In Russ.).

6. Mikhaylenko DS, Sergienko SA, Zaborsky IN, Saflullin KN, Serebryany SA, Safronova NYu, et al. The role of molecular genetic alterations in sensitivity of the adjuvant intravesical therapy for non-muscle invasive bladder cancer. Cancer Urology. 2018;14(4):124-138. (In Russ.). https://doi.org/10.17650/1726-9776-2018-14-4-124-138

7. Osmanov YuI, Gaibov ZhA, Tursunov KhZ, Demyashkin GA, Barzak RI. Molecular characteristics of urotelial carcinomas of the urinary system. Crimea Journal of Experimental and Clinical Medicine 2019;9(2):76-82. (In Russ.).

8. Kit OI, Shevchenko AN, Komarova EF, Pakus DI, Maksimov AJu. Effect of conjugation matrix metalloproteinase genes polymorphism and their tissue inhibitors with the activity of extracellular proteolysis basement membrane components at early recurrence in patients with superficial bladder cancer. Ural Medical Journal 2015;(7(130)):73-78. (In Russ.).

9. Mikhaylenko DS, Perepechin DV, Efremov GD, Sivkov AV, Apolikhin OI. Detection of FGFR3 and PIK3CA mutations in DNA isolated from urine sediment of bladder cancer patients. Experimental and Clinical Urology. 2015;(4):38-41. (In Russ.).

10. Robertson AG, Kim J, Al-Ahmadie H, Bellmunt J, Guo G, Cherniack AD, et al. Comprehensive Molecular Characterization of Muscle-Invasive Bladder Cancer. Cell. 2017 Oct 19;171(3):540-556.e25. https://doi.org/10.1016/j.cell.2017.09.007

11. Segovia C, Martínez-Fernández M, Dueñas M, Rubio C, López-Calderón FF, Costa C, et al. Opposing roles of PIK3CA gene alterations to EZH2 signaling in non-muscle invasive bladder cancer. Oncotarget. 2017 Feb 7;8(6):10531-10542. https://doi.org/10.18632/oncotarget.14453

12. Sergienko SA, Mikhaylenko DS, Safronova NY, Efremov GD, Kaprin AD, Alekseev BYa. Somatic mutation profiling and functioning of intracellular signaling pathways at various stages of bladder cancer and their significance for targeted therapy. Experimental and Clinical Urology. 2020;(1):42-51. https://doi.org/10.29188/2222-8543-2020-12-1-42-51

13. Burger M, Catto JWF, Dalbagni G, Grossman HB, Herr H, Karakiewicz P, et al. Epidemiology and risk factors of urothelial bladder cancer. Eur Urol. 2013 Feb;63(2):234-241. https://doi.org/10.1016/j.eururo.2012.07.033

14. Belyakova LI, Shevchenko AN, Sagakyants AB, Filatova EV. Markers of bladder cancer: their role and prognostic significance (literature review). Cancer Urology. 2021;17(2):145-156. (In Russ.). https://doi.org/10.17650/17269776-2021-17-2-145-156

Южно-Российский онкологический журнал 2022, Т. 3, № 1, С. 6-14 Белякова Л. И.н, Шевченко А. Н., Сагакянц А. Б., Бондаренко Е. С., Шульгина О. Г, Ульянова Е. П., Филатова Е. В., Хомутенко И. А. / Относительное содержание опухолевых стволовых клеток в ткани опухоли и перитуморальной зоне мышечно-неинвазивного рака

мочевого пузыря

15. Puchinskaya MV. Cancer stem cell markers and their prognostic value. Arkhiv Patologii. 2016;78(2):47-54. (In Russ.). https://doi.org/10.17116/patol201678247-54

16. Bonnet D, Dick JE. Human acute myeloid leukemia is organized as a hierarchy that originates from a primitive hematopoietic cell. Nat Med. 1997 Jul;3(7):730-737. https://doi.org/10.1038/nm0797-730

17. Chan KS, Espinosa I, Chao M, Wong D, Ailles L, Diehn M, et al. Identification, molecular characterization, clinical prognosis, and therapeutic targeting of human bladder tumor-initiating cells. Proc Natl Acad Sci U S A. 2009 Aug 18;106(33):14016-14021. https://doi.org/10.1073/pnas.0906549106

18. Yang Z, Li C, Fan Z, Liu H, Zhang X, Cai Z, et al. Single-cell Sequencing Reveals Variants in ARID1A, GPRC5A and MLL2 Driving Self-renewal of Human Bladder Cancer Stem Cells. Eur Urol. 2017 Jan;71(1):8-12. https://doi.org/10.1016/j.eururo.2016.06.025

19. Van Batavia J, Yamany T, Molotkov A, Dan H, Mansukhani M, Batourina E, et al. Bladder cancers arise from distinct urothelial sub-populations. Nat Cell Biol. 2014 0ct;16(10):982-991. https://doi.org/10.1038/ncb3038

20. Li Y, Lin K, Yang Z, Han N, Quan X, Guo X, et al. Bladder cancer stem cells: clonal origin and therapeutic perspectives. Onco-target. 2017 Sep 12;8(39):66668-66679. https://doi.org/10.18632/oncotarget.19112

21. Wu C-T, Lin W-Y, Chang Y-H, Chen W-C, Chen M-F. Impact of CD44 expression on radiation response for bladder cancer. J Cancer. 2017;8(7):1137-1144. https://doi.org/10.7150/jca.18297

22. Yu X, Lin Y, Yan X, Tian Q, Li L, Lin EH. CD133, Stem Cells, and Cancer Stem Cells: Myth or Reality? Curr Colorectal Cancer Rep. 2011 Dec;7(4):253-259. https://doi.org/10.1007/s11888-011-0106-1

23. Shmelkov SV, Butler JM, Hooper AT, Hormigo A, Kushner J, Milde T, et al. CD133 expression is not restricted to stem cells, and both CD133+ and CD133- metastatic colon cancer cells initiate tumors. J Clin Invest. 2008 Jun;118(6):2111-2120. https://doi.org/10.1172/JCI34401

24. Huang P, Watanabe M, Kaku H, Ueki H, Noguchi H, Sugimoto M, et al. Cancer stem cell-like characteristics of a CD133+ subpopulation in the J82 human bladder cancer cell line. Mol Clin Oncol. 2013 Jan;1(1):180-184.

https://doi.org/10.3892/mco.2012.29

25. Rola RM, Sammour SA-E, Shehab ElDin ZA, Salman MI, Omran TI. Expression of CD133 and CD24 and their different pheno-types in urinary bladder carcinoma. Cancer Manag Res. 2019;11:4677-4690. https://doi.org/10.2147/CMAR.S19834

26. Ortiz-Montero P, Liu-Bordes W-Y, Londono-Vallejo A, Vernot J-P. CD24 expression and stem-associated features define tumor cell heterogeneity and tumorigenic capacities in a model of carcinogenesis. Cancer Manag Res. 2018;10:5767-5784. https://doi.org/10.2147/CMAR.S176654

Information about authors:

Lyubov I. Belyakova h - PhD student, National Medical Research Centre for Oncology, Rostov-on-Don, Russian Federation. ORCID: https://orcid.org/0000-0001-7955-3473, SPIN: 3382-8559, AuthorID: 1080471, ResearcherID: AAH-7729-2020

Alexey N. Shevchenko - Dr. Sci. (Med.), Professor, Head of the Oncourology Department, National Medical Research Centre for Oncology, Rostov-on-Don, Russian Federation. ORCID: https://orcid.org/0000-0002-9468-134X, SPIN: 2748-2638, AuthorID: 735424, ResearcherID: Y-5387-2018, Scopus Author ID: 57192283096

Aleksandr B. Sagakyants - Cand. Sci. (Biol.), associate Professor, Head of the Laboratory of Tumor Immunophenotyping National Medical Research Centre for Oncology, Rostov-on-Don, Russian Federation. ORCID: https://orcid.org/0000-0003-0874-5261, SPIN: 7272-1408, AuthorID: 426904, ResearcherID: M-8378-2019, Scopus Author ID: 24329773900

Elena S. Bondarenko - junior research fellow at the Laboratory of Tumor Immunophenotyping, National Medical Research Centre for Oncology, Rostov-on-Don, Russian Federation. ORCID: https://orcid.org/0000-0002-8522-1026, SPIN: 3117-4040, AuthorID: 865798, Scopus Author ID: 57200132337

Oksana G. Shulgina - junior research fellow at the Laboratory of Tumor Immunophenotyping, National Medical Research Centre for Oncology,

Rostov-on-Don, Russian Federation. ORCID: https://orcid.org/0000-0001-6828-145X, SPIN: 9668-3042, AuthorID: 886334

Elena P. Ulyanova - junior research fellow at the Laboratory of Tumor Immunophenotyping, National Medical Research Centre for Oncology, Rostov-

on-Don, Russian Federation. ORCID: https://orcid.org/0000-0001-5226-0152, SPIN: 1243-9475, AuthorID: 759154, Scopus Author ID: 57203357998

Elena V. Filatova - Cand. Sci. (Med.), MD, oncologist, research fellow, National Medical Research Centre for Oncology, Rostov-on-Don, Russian

Federation. ORCID: https://orcid.org/0000-0002-7904-4414, SPIN: 7517-1549, AuthorID: 794870, Scopus Author ID: 5719228349

Irina A. Khomutenko - Cand. Sci. (Med.), senior research fellow, National Medical Research Centre for Oncology, Rostov-on-Don, Russian Federation.

ORCID: https://orcid.org/0000-0003-0003-8044, SPIN: 5401-5810, AuthorID: 735408

Contribution of the authors:

Belyakova L. I. - developing the research design, reviewing of publications of the article's theme, article writing;

Shevchenko A. N. - analysis of the obtained data, scientific advice, article editing;

Sagakyants A. B. - case analysis, statistical data processing, article editing;

Bondarenko E. S. - work on a flow cytometer, analysis of the results;

Filatova E. V. - article editing, data interpretation;

Shulgina O. G. - obtaining a cell suspension, preanalytical stage of the study; Ulyanova E. P. - obtaining a cell suspension, preanalytical stage of the study; Khomutenko I. A. - editing of the text of the manuscript, interpretation of data.

i Надоели баннеры? Вы всегда можете отключить рекламу.