Научная статья на тему 'THE METHOD OF CALCULATION FOR THE PERIOD OF CHECKING UTILITY SYSTEMS'

THE METHOD OF CALCULATION FOR THE PERIOD OF CHECKING UTILITY SYSTEMS Текст научной статьи по специальности «Компьютерные и информационные науки»

CC BY
25
6
i Надоели баннеры? Вы всегда можете отключить рекламу.
Журнал
Magazine of Civil Engineering
Scopus
ВАК
RSCI
ESCI
Ключевые слова
EQUIPMENT ENGINEERING AND TECHNICAL SYSTEMS / OPTIMAL CONTROL PERIOD / TECHNICAL CONDITION / FAILURE

Аннотация научной статьи по компьютерным и информационным наукам, автор научной работы — Soldatenko V.S., Smagin V.A., Gusenitsa Y.N., Gera V.I., Soldatenko T.N.

The model and the procedure of optimization of the periods of control and scheduled maintenance in relation to the equipment of technical systems are considered. This approach is implemented on the basis of performance of a condition of a minimum of average losses of target use of the equipment. The specified losses are possible because of non-optimal frequency of control and prophylaxis of objects of technical networks. In article the approach used in the theory of information for minimization of decrease in informative value because of breaks by its transfer is considered. Feature of the offered approach is use of integer quantization of intercontrol intervals and the accounting of casual duration of operation of the equipment. Theoretical conclusions are illustrated by settlement examples.

i Надоели баннеры? Вы всегда можете отключить рекламу.
iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.
i Надоели баннеры? Вы всегда можете отключить рекламу.

МЕТОД РАСЧЕТА ПЕРИОДА КОНТРОЛЯ ОБОРУДОВАНИЯ ИНЖЕНЕРНО-ТЕХНИЧЕСКИХ СИСТЕМ

Рассматривается модель и процедура оптимизации периодов контроля и профилактических мероприятий применительно к оборудованию инженерно-технических систем. Данный подход реализуется на основе выполнения условия минимума средних потерь целевого использования оборудования. Указанные потери возможны из-за неоптимальной периодичности контроля и профилактики элементов инженерно-технических систем. В статье рассматривается подход, используемый в теории информации для минимизации снижения ценности информации по причине перерывов при ее передаче. Особенностью предложенной подхода является использование целочисленного квантования межконтрольных интервалов и учет случайной продолжительности периодов эксплуатации оборудования. Теоретические выводы иллюстрируются расчетными примерами.

Текст научной работы на тему «THE METHOD OF CALCULATION FOR THE PERIOD OF CHECKING UTILITY SYSTEMS»

doi: 10.18720/MCE.70.7

The method of calculation for the period of checking utility systems

Метод расчета периода контроля оборудования инженерно-технических систем

V.S. Soldatenko, V.A. Smagin, Y.N. Gusenitsa, V.I. Gera,

Military Space Academy named after A.F. Mozhaysky, St. Petersburg, Russia T.N. Soldatenko,

Peter the Great St. Petersburg Polytechnic University, St. Petersburg, Russia

Канд. техн. наук, доцент В.С. Солдатенко,

д-р техн. наук, профессор В.А. Смагин, канд. техн. наук, преподаватель кафедры Я.Н. Гусеница, канд. техн. наук, начальник факультета В.И. Гера,

Военно-космическая академия имени А.Ф. Можайского, г. Санкт-Петербург, Россия

старший преподаватель Т.Н. Солдатенко,

Санкт-Петербургский политехнический университет Петра Великого, г. Санкт-Петербург, Россия

Key words: equipment engineering and technical systems; optimal control period; technical condition; failure

Ключевые слова: инженерно-технические системы, оптимальная периодичность контроля; техническое состояние; отказ

Abstract. The model and the procedure of optimization of the periods of control and scheduled maintenance in relation to the equipment of technical systems are considered. This approach is implemented on the basis of performance of a condition of a minimum of average losses of target use of the equipment. The specified losses are possible because of non-optimal frequency of control and prophylaxis of objects of technical networks. In article the approach used in the theory of information for minimization of decrease in informative value because of breaks by its transfer is considered. Feature of the offered approach is use of integer quantization of intercontrol intervals and the accounting of casual duration of operation of the equipment. Theoretical conclusions are illustrated by settlement examples.

Аннотация. Рассматривается модель и процедура оптимизации периодов контроля и профилактических мероприятий применительно к оборудованию инженерно-технических систем. Данный подход реализуется на основе выполнения условия минимума средних потерь целевого использования оборудования. Указанные потери возможны из-за неоптимальной периодичности контроля и профилактики элементов инженерно-технических систем. В статье рассматривается подход, используемый в теории информации для минимизации снижения ценности информации по причине перерывов при ее передаче. Особенностью предложенной подхода является использование целочисленного квантования межконтрольных интервалов и учет случайной продолжительности периодов эксплуатации оборудования. Теоретические выводы иллюстрируются расчетными примерами.

Introduction

Utility systems have a sufficient weight considering the efficient application of technological equipment as well as the use of buildings and constructions [1-3]. Therefore the necessity to provide their faultless operation takes a lot of attention. The requirements to operational systems are implemented at the early stages of designing buildings and constructions [4-8]. One of the most efficient means to provide the necessary level of reliability of the utility systems is the prevention of failures based

on periodical check of their engineering status and carrying out the appropriate preventive maintenance during the operational period [9-11]. Hence the important part of operational security belongs to the matters considering the reasoning and construction of systems for checking the engineering status of utility systems [12-15]. At the same time the applied approaches are used in the most innovative fields of science and engineering [16-23].

A separate and rather complicated matter of introducing the monitoring of utility systems for buildings and constructions is the reasoning for the period of checking their elements and the following preventive maintenance. There are a number of approaches to solve the matter in question [24-35]. However, in the specified works reasoning of the required criteria for checks and preventive maintenance does not fully take account of the following peculiarities of utility systems: their ambiguous operational condition between the checks; discontinuity of the periods of checks and preventive maintenance, random periods of their operation between the prearranged repairs. In the present article these important assumptions are considered. It allows receiving results, more adequate for practice. Let us consider the physical representation of the given problem.

Methods

Physical interpretation of the model

Some considerably prolonged period of operation is considered. Such a period may be a regulatory period before the prearranged overhaul maintenance. Some divergence between the real and prescriptive periods of operation is expected to be possible. That happens due to a number of random factors and is consistent with the actual operation of facilities.

Let us suppose that during the operation of utility systems their operational condition can be determined only by means of checks. In a disabled state the facility cannot fulfill its main function. After receiving the relevant information about its condition, appropriate preventive maintenance is carried out. It includes the reconstruction of operational capability of the facility, if necessary. It is for that reason that regular checking of operational condition of the utility systems is introduced and put in practice. It is supposed that the facility has a limited reliability and can fail between two consecutive check measures. Therefore, two cases are possible. Firstly, the checking period may be determined too large, and the facility stays in a disabled condition for some time before it would be found out during the check. In this case there is a loss due to the utility system not performing its functions. Secondly, the checks may be carried out too often; therefore the facility would be operational before the checks. The operational loss stems from time loss for the excessive maintenance, as during this period the facility is also disabled. Hence it is essential to calculate such a value for the check and maintenance period, which would provide minimal average losses for the operational maintenance of utility systems in the given period of using the building (construction).

It is practical to consider the inter-check period as an integer value, divisible by some unit of time. Such a unit may be a workday or a work shift. This is more consistent with the reality of workload management for the staff of utility system's operational system, than the speculation about the continuity of this period. Let us now examine the mathematical interpretation of the given problem and the means to solve it.

Mathematical model 1 (basic model)

Suppose T is the operational time of a facility with a utility system. At the same time T is a random value and follows the distribution law F(t). During the usage the operational condition of the facility is being checked. The period between consecutive check measures equals x. According to the abovementioned hypothesis x is an integer value of time units. The duration of checks and the following preventive maintenance equals c given units of time. Let us set p as the probability of faultless

performance of the facility in a given time unit. Hence the random period of operation T has at the average K checks (and preventive maintenance). The chart in figure 1 shows the operational process in the graphical form.

T

f \ c r I 1 (1 J7] ... (7) V 7V J V J s \ c r 2 00 - £ - / \ c s ■> 00K- 0

P P P P P P P P P

Figure 1. Graphical representation of operational process of a facility with a utility system

Let us use a well-known in information theory [36, 37] ratio for average losses x) of information in value x, determined by quantization of random period of time T . Under quantization we mean the choice of an integer value forx. For x) the expression takes the following form:

X (

x) = (x + c) J

0 V

A

+1

dF(z),

(1)

where z - an integration variable, characterizes operation interval size; record [Aj is Antje of number A .

However, the equation (1) does not take into account the possible failure of a facility during any time unit, as well as during the whole inter-check period (quantum). Let us introduce this clause in the following way. As the value p as the probability of faultless performance of a facility in a given time unit

is known, then the probability P(x) of its faultless performance in the period x is determined by the equation:

P( x) = n p = p

i=1

(2)

Clearly, considering equation (2), the mathematical expectancy x of duration of the period, when the facility works without fault in scope of the inter-check period x, is determined by the equation

x = x • p

(3)

Now let us insert equation (3) into formula (1). Besides, the value of average losses during the application of the check system is denoted as M(x,p) . As a result, the formula is written as following:

J

M (x, p) = (xpx + c) J

xp

\

+1

dF (z).

(4)

Now it is necessary to find such a value of x , which allows the minimal overall loss M(x, p) at

the checks and maintenance of the facility with the utility system in the operational period T . At the same time one should take into consideration that x is a discrete value. The problem in question is solved comparatively easily via the method of computational analysis by means of the contemporary mathematical packages.

Mathematical model 2 (model for two check systems)

The base model, determined by the equation (4), does not account for a reliability index of checking the operational condition of utility systems. In practice, different ways of checking are applied with different probability of accurate determination of the operational condition of the facility. To take this peculiarity into consideration, let us analyze the following example.

x

0

Two independent check systems simultaneously determine the operational condition of a facility in a time period x. The reliability pk of checks for each of the given systems will be determined via the probability of finding a failure. Therefore the reliability ps2 of estimating the operational condition of the

2

facility by both check systems is defined as pk . Time, spent on checking the operational capacity of the facility, is constant and equals c . Time for reconstructing a disabled facility is constant and equals .

It is required to find the value of check period x , which allows the minimal mathematical expectancy of time losses during the operation, provided that the value of probability p of faultless performance of the checked facility is not less than the given one.

The formula for the value M(x, p, p2) of the average losses in the operational period T considering the condition in question is written as following:

M ( x, p, ps 2) = (

xp + cps2

\ X

+ cB 0 - ps2) )j

f \

z +1

x

V xp

dF ( z)

(5)

where

ps 2 = pk

Minimal value for M ^ p, problem.

from the formula (4) is calculated by solving the given nonlinear

Mathematical model 3 (model for three check systems)

Let us now introduce the following condition. The check of operational condition of a utility system is performed by three independent check systems. In addition, the results provided by these systems are combined in a majoritary way. Thus the reliability px3 of the right estimation of the operational condition of the facility is determined by concurrence either of all three check systems or of two out of three. In such a case the probability ps3 to accurately estimate the performance of the equipment can be calculated with the following formula:

pS3 = 3pk 2 - 2pk3

(6)

The equation for the value M(x, p, p ) of average losses in operational period T considering the given condition is written as following:

M ( x ^ pS3) = ( xPx+cPS3+cB (1 - pS3) ) J

f \

z +1

x

V xp У

dF ( z).

(7)

The minimal value for M (x, p, prac) from the formula (7) can be calculated.

Results and Discussion

Let us explain the proposed approach to the optimization of the period of checking the utility systems with a theoretical examples.

Theoretical example 1 for mathematical model 1.

Given data.

Time c , necessary for performing the checks and preventive maintenance at the facility with the utility system, is 5 time units. Random period T of the anticipated time of facility operation is determined by the normal probability law with the expectancy m =100 time units and the average squared displacement а = 20 time units.

Required:

*

iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.

Find the value of check period x , which achieves the minimal value of average overall losses M(x) at the check of the utility system in operational period T for the following values of probability p of faultless performance of the facility in a time unit: 0.999; 0.95 and 0.90.

Solution:

To solve the problem let us use the equation (4). For this purpose for each value of P probability it is necessary to calculate M(x) for an allowed value area of x

The results of calculations, carried out by means of MathCad package, are shown in the graphs in Figure 2. In this case the graph M0(x) is corresponding to the calculated dependence of M(x) at

p = 0.999; and the graphs Ml(x) and M2(x) at p , that equals 0.95 u 0.90 accordingly.

Figure 2. Graphs of functions M0(x) , Mx(x) and M2(x)

*

Optimal values x of the time period x between consecutive checks and preventive maintenance of the utility system for the functions Mo(x), Mx(x) and M2(x) are 34, 20 and 9 time units accordingly. The corresponding minimal values of M(x) expectancy for the probability p , which equals 0.999; 0.95 and 0.90 (functions M0(x), Mx(x) u M2(x)) are therefore equal to 134, 176 and 248 time units.

Graph analysis in picture 2 allows the following conclusions:

1) The more reliable is the facility of a utility system (higher probability p of faultless performance), the longer should be the period of checking its operation;

2) Improving the reliability of equipment significantly lowers the overall losses at its operation.

The abovementioned conclusions comply with the intuitive properties of the correlations in question. That also allows the inference that the model represented is conforming to the processes under examination.

Figures 3-6 present the calculated results of auxiliary parameters of the given mathematical model. On the abscissa axis of the first three pictures is plotted the value of the mathematical model.

Figure 3 shows the graphs of variations for minimal M(x,p) and optimal periods x* of checking the operational condition of the utility system. Figure 4 describes the dependence of the second initial moment of check period a(p) on the probability p . Figure 5 presents the graphs of standard deviation of S(p), variability index r/(p) (magnified by 200 for descriptive purposes) and optimal value K(p) of checks in operational period T depending on the value of p . Figure 6 shows the probability density

gi(u) for random values u of operational period of a utility system, i = 0, 1, 2 for the base values of probability p of faultless performance of the facility in a time unit.

Figure 3. Graphs of variations for M(x p) and x of the facility p

Figure 4. Dependence of the second initial moment of check period for operational condition of the facility p

Figure 5. Graphs of standard deviation, variability index, and optimal value of checks

Figure 6. Probability density for random values of operational period of a utility system

Theoretical example 2 for mathematical model 2. Given data:

Minimal value of M(x, p, ps2) can be found at x0. The duration c of checking the operational condition of the utility system equals 5 time units. The duration of the maintenance equals 100 time

units. Random interval T of the estimated time of facility operation is determined by the normal probability law with the mathematical expectancy m =100 time units and the average squared displacement a =20 time units. The probability p of the faultless performance of the facility in a time unit equals 0.75.

Required:

Find the value of check period duration x , which achieves the minimal value of average overall losses M(x, p, ps2) at the check of the utility system in operational period T for the following values of

probability pk of finding a failure at the facility in a time unit: 0.999; 0.75 and 0.50. Solution:

To solve the problem let us use equation (5). Thus for each value of pk probability it is necessary to calculate M (x, p, ps2) for an allowed area of x.

The results of calculations, carried out by means of MathCad package, are shown in the graphs in figure 7. In this case the graphs of Mt0(x), M7[(x), MT2(x) functions are corresponding to the

calculated dependence of M(x, p, p ) at p = 0.75 and p = 0.999; 0.75; 0.5 accordingly.

Figure 7. Graphs of MTg(x), MTy(x), MT2(x) functions

Table 1 shows the calculations of M(x0) - minimal value of average costs for checks and maintenance of the facility in operational period T and Xo - optimal value of check period for the facility. Table 1. Results of calculations

Number of model Parameters

M(xo) xo

Mt o( x) 513 2

MTX( x) 3 803 3

MT2( x) 6 163 4

Theoretical example 3 for mathematical model 3. Given data:

The data is the same as in example 2. However, three check systems are used. Required:

Find the value of check period duration x , which achieves the minimal value of average overall losses M(x, p, p3) at the check of the utility system in operational period T for the following values of

probability p^ of finding a failure at the facility: 0.999; 0.75 and 0.50. Solution:

To solve the problem let us use the equation (7). Thus for each value of probability p^ it is necessary to calculate M (x, p, ps 3) for an allowed area of x.

The results of calculations, carried out by means of MathCad package, are shown in the graphs in figure 8. The graphs of Mto(x), MTy(x), MTj(x) functions are corresponding to the calculated

dependence of M(x,p,ps3) at p = 0.75 and p^ = 0.999; 0.75; 0.5 accordingly.

Figure 8 shows the graphs of MT0(x), MTx(x), MT2(x) functions at p = 0.75 and pk =0.999; 0.75; 0.5.

MT0(x)

iflj'w

MT2(x)

_i_i_

0 10 20 30

x

Figure 8. Graphs of MT0(x), MTX(x), MT2(x) functions

Table 2, similar to table 1, presents the results of calculations.

Table 2. Results of calculations

Number of model Parameters

M(xo) xo

MTo( x) 498 2

MTl(x) 1 678 3

MT2( x) 4 275 4

Examination of the calculations shows that the majoritary approach is quite efficient for improving the reliability of checking the operational condition of utility systems.

Conclusion

The present work is solving the problem of developing an approach to reasoning an optimal period of checking utility systems. Conducted studies of the results, offered in article allow to receive following conclusions.

1. Optimization of the periods of control on a set of discrete numbers is more adequate to real practice of planning of prevention of utility systems in comparison with the known models.

2. The offered models are based on an assumption about accident of size of an interval of operation of utility systems. It allows to take influence of various factors on work of systems of operation of buildings and constructions into account, which lead to change of the planning between-repairs periods (fig. 2, 7, 8), and also to estimate the accuracy of the received results (Figs. 3-6).

3. In the offered models indicators of non-failure operation of objects of utility systems are entered into consideration (Figs. 2, 7, 8). In the known information models these indicators aren't considered.

4. The offered models consider veracity of operation of control systems of various configuration (Figs. 7, 8, Tables 1, 2). It allows to prove the choice of the corresponding control system and to correct prevention intervals.

The obtained results may be used in the reasoning of advanced utility systems of buildings and constructions, as well as in rationalization of the present utility systems.

References

1. Polovnikov V.YU., Glazyrin E.S. CHislennyj analiz 1. vliyaniya inzhenernyh sooruzhenij na teplovye poteri beskanal'nyh teploprovodov [Numerical analysis of the impact of engineering structures on the channel-free heat loss heat conductors]. Magazine of Civil Engineering. 2

2014. No. 2(46). Pp. 5-13. (rus). .

2. Ibrahim O., Fardoun F., Younes R., Louahlia-Gualous H. Review of water-heating systems: general selection approach based on energy and environmental aspects. Building and Environment. 2014. Vol. 72. Pp. 259-286. .

3. Bovteev S.V., Kanyukova S.V. Development of methodology for time management of construction projects. Magazine of Civil Engineering. 2016. No. 2(62). 4 Pp. 102-112. .

4. Basok B.I., Bozhko I.K., Nedbajlo A.N., Lysenko O.N. Polivalentnaya sistema teploobespecheniya passivnogo doma na osnove vozobnovlyaemyh istochnikov ehnergii [Polyvalent passive house heating system based on renewable energy sources]. Magazine of Civil Engineering.

2015. No. 6(58). Pp. 32-43. (rus).

5. Velichkin V.Z. Upravlenie i nadezhnost realizacii 6 stroitel'nyh programm [Management and reliability of implementation of construction programs]. Magazine of Civil Engineering. 2014. No. 7(51). Pp. 74-79. (rus).

6. Soldatenko T.N. Model upravleniya rabotami ehkspluatiruyushchej organizacii po soderzhaniyu

Литература

Половников В.Ю., Глазырин Е.С. Численный анализ влияния инженерных сооружений на тепловые потери бесканальных теплопроводов // Инженерно-строительный журнал. 2014. № 2(46). С. 5-13.

Ibrahim O., Fardoun F., Younes R., Louahlia-Gualous H. Review of water-heating systems: general selection approach based on energy and environmental aspects. // Building and Environment. 2014. Vol. 72. Pp. 259-286.

Bovteev S.V., Kanyukova S.V. Development of methodology for time management of construction projects // Инженерно-строительный журнал. 2016. № 2(62). С. 102-112. (англ.)

Басок Б.И., Божко И.К., Недбайло А.Н., Лысенко О.Н. Поливалентная система теплообеспечения пассивного дома на основе возобновляемых источников энергии // Инженерно-строительный журнал. 2015. № 6(58). С. 32-43.

Величкин В.З. Управление и надежность реализации строительных программ // Инженерно-строительный журнал. 2014. № 7(51). С. 74-79. Солдатенко Т.Н. Модель управления работами эксплуатирующей организации по содержанию инженерных систем комплекса недвижимости // Инженерно-строительный журнал. 2013. № 2(37). С. 89-103.

Soldatenko T.N. The method of calculation for the

inzhenernyh sistem kompleksa nedvizhimosti [Management model of the operating organization for the maintenance of engineering systems of the real estate complex]. Magazine of Civil Engineering. 2013. No. 2(37). Pp. 89-103. (rus).

7. Marjyasin O.YU., Kolodkina A.S., Ogarkov A.A. Komp'yuternoe modelirovanie «intellektual'nogo zdaniya» [Computer modeling of «intelligent building»]. Modeling and Analysis of Information Systems. 2016. Vol. 23. No. 4(64). Pp. 427-439. (rus).

8. Samarin O.D., Grishneva E.A. Opredelenie optimal'nyh zatrat na upravlenie klimaticheskimi sistemami intellektual'nogo zdaniya [Determination of the optimal management costs climatic systems of intelligent building]. Magazine of Civil Engineering. 2012. No. 6 (32). Pp. 6063. (rus).

9. Campisano A., Modica C., Creaco E. Application of realtime control techniques to reduce water volume discharges from quality-oriented CSO devices. Journal of Environmental Engineering, ASCE. 2016. Vol. 42. No. 1. Pp. 12-18.

10. Absalyamov D.R. Povyshenie nadezhnosti inzhenernyh sistem metodom formalizacii poiska otkazov [Improving the reliability of engineering systems by formalizing bounce search]. Magazine of Civil Engineering. 2012. No. 2(28). Pp. 39-47. (rus)

11. 11. Soldatenko T.N. Model ostatochnogo resursa inzhenernyh sistem s vysokim urovnem iznosa [Model of a residual resource of engineering systems with the high level of wear]. Magazine of Civil Engineering. 2012. No. 6. Pp. 64-72. (rus)

12. Bilalov A.B., Shilyaev D.V., Petrochenkov A.B., Bilous O.A., Habibrahmanova F.R. Vnedrenie avtomatizirovannoj sistemy upravleniya teplovym punktom [Implementation of an automated thermal point control system]. Fundamental Research. 2015. No. 8(1). Pp. 87-92. (rus).

13. Liu K.F.R. A possibilistic Petri net model for diagnosing cracks in RC structures. Computer-Aided Civil and Infrastructure Engineering. 2003. Vol. 18. Pp. 426-439.

14. Matushkin N.N., YUzhakov A.A. Opredelenie emkostno-vremennyh harakteristik avtomatizirovannoj sistemy kontrolya i dispetcherskogo upravleniya inzhenernym oborudovaniem zdaniya [Definition capacitive-time characteristics of the automated control system and supervisory control BMS]. Journal of the Kazan State Technical University after named A.N. Tupolev. 2010. No. 4. Pp. 151-154. (rus)

15. Shprekher D.M., Babokin G.I., Kolesnikov E.B. Sistema nejrosetevogo kontrolya i prognozirovaniya tekhnicheskih sostoyanij ehlektromekhanicheskih sistem [Neural network system monitoring and forecasting technical states of electromechanical systems]. Proceedings of the II International Scientific and Technical Conference South Ural State University (National Research University). 2016. Pp. 328-332. (rus)

16. Baranovsky A.M., Privalov A.E. Sistema kontrolja i diagnostirovanija bortovogo oborudovanija malogo kosmicheskogo apparata [Monitoring and diagnosis system on-board equipment of small spacecraft]. Journal of Instrument Engineering. 2009. Vol. 52. No. 4. Pp. 5156. (rus)

17. Berketov G.A., Mikryukov A.A., Fedoseev S.V. Optimizaciya parametrov kontrolya i vosstanovleniya tekhnicheskih sistem [Optimization of control parameters and restore technical systems]. Innovacii na osnove informacionnyh i kommunikacionnyh tehnologij. 2011. No. 1. Pp. 202-204. (rus)

18. Tyurin M.V. Matematicheskie modeli sostoyaniya sistem monitoringa i kontrolya tekhnicheski slozhnyh objektov nazemnoj infrastruktury [Mathematical models of condition monitoring and control systems are technically complex objects of ground infrastructure]. Sovremennye

7. Марьясин О.Ю., Колодкина А.С., Огарков А.А. Компьютерное моделирование «интеллектуального здания» // Моделирование и анализ информационных систем. 2016. Т. 23. № 4(64). С. 427-439.

8. Самарин О.Д., Гришнева Е.А. Определение оптимальных затрат на управление климатическими системами интеллектуального здания // Инженерно-строительный журнал. 2012. № 6(32). С. 60-63.

9. Campisano A., Modica C., Creaco E. Application of realtime control techniques to reduce water volume discharges from quality-oriented CSO devices/ // Journal of Environmental Engineering, ASCE. 2016. Vol. 42. № 1. Pp. 12-18.

10. Абсалямов Д.Р. Повышение надежности инженерных систем методом формализации поиска отказов // Инженерно-строительный журнал. 2012. № 2(28). С. 39-47.

11. Солдатенко Т.Н. Модель остаточного ресурса инженерных систем с высоким уровнем износа // Инженерно-строительный журнал. 2012. № 6. С. 64-72.

12. Билалов А.Б., Шиляев Д.В., Петроченков А.Б., Билоус О.А., Хабибрахманова Ф.Р. Внедрение автоматизированной системы управления тепловым пунктом // Фундаментальные исследования. 2015. № 8(1). С. 87-92.

iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.

13. Liu K.F.R. A possibilistic Petri net model for diagnosing cracks in RC structures // Computer-Aided Civil and infrastructure Engineering. 2003. Vol. 18. Pp. 426-439.

14. Матушкин Н.Н., Южаков А.А. Определение емкостно-временных характеристик автоматизированной системы контроля и диспетчерского управления инженерным оборудованием здания // Вестник казанского государственного технического университета им. А.Н. Туполева. 2010. № 4. С. 151154.

15. Шпрехер Д.М., Бабокин Г.И., Колесников Е.Б. Система нейросетевого контроля и прогнозирования технических состояний электромеханических систем // ПРОМ-ИНЖИНИРИНГ. Труды II международной научно-технической конференции. ФГБОу ВПО «Южно-Уральский государственный университет» (национальный исследовательский университет). Челябинск: Издательский центр ЮУрГУ, 2016. С. 328332.

16. Барановский А.М., Привалов А.Е. Система контроля и диагностирования бортового оборудования малого космического аппарата // Известия высших учебных заведений. Приборостроение. 2009. Т. 52. № 4. С. 5156.

17. Беркетов Г.А., Микрюков А.А., Федосеев С.В. Оптимизация параметров контроля и восстановления технических систем // Инновации на основе информационных и коммуникационных технологий. 2011. № 1. С. 202-204.

18. Тюрин М.В. Математические модели состояния систем мониторинга и контроля технически сложных объектов наземной инфраструктуры // Современные информационные технологии. 2012. № 15. С. 11-15.

19. Еременко В.Т., Тютякин А.В., Кондрашин А.А. Выбор профилей обработки данных в системах контроля и диагностики технических объектов на основе их качественного анализа // Информационные системы и технологии. 2014. № 5(85). С. 88-97.

20. Кузнецов А.Б., Осипов Н.А., Дорожко И.В. Методика диагностирования автоматизированных систем управления сложными объектами с использованием априорной информации // Известия высших учебных заведений. Приборостроение. 2013. Т. 56. № 1. С. 18.

21. Мануйлов Ю.С., Мышко В.В., Кравцов А.Н., Ткаченко В.В. Основные принципы решения задач анализа технического состояния бортовых систем

informacionnye tehnologii. 2012. No. 15. Pp. 11-15. (rus)

19. Eremenko V.T., Tyutyakin A.V., Kondrashin A.A. Vybor profilej obrabotki dannyh v sistemah kontrolya i diagnostiki tekhnicheskih objektov na osnove ih kachestvennogo analiza [Selecting data profiles in the systems of control and diagnostics of technical objects on the basis of qualitative analysis]. Information Systems and Technologies. 2014. No. 5(85). Pp. 88-97. (rus)

20. Kuznetsov A.B., Osipov, N.A., Dorozhko I.V. Metodika diagnostirovaniya avtomatizirovannyh system upravleniya slozhnymiobektami s ispolzovaniem apriornoj informacii [Methods of diagnosing of the automated control systems of complex objects using a priori information]. Journal of Instrument Engineering. 2013. Vol. 56. No. 1. Pp. 18-26. (rus)

21. Manuilov Y.S., Myshko V.V., Kravtsov A.N., Tkachenko V.V. Osnovnye principy resheniya zadach analiza tekhnicheskogo sostoyaniya bortovyh system kosmicheskogo apparata [Basic principles for solving the technical problems of analysis status onboard spacecraft systems]. Proceedings of the Military Space Academy named after A.F.Mozhaiskogo. 2011. No. 631. Pp. 63-70. (rus)

22. Prorok V.Y., Gusenitsa Y.N., Petric D.O. Postroenie sistemy kontrolya i diagnostirovaniya avtomatizirovannyh system upravleniya specialnogo naznacheniya na osnove nechetkih iskusstvennyh nejronnyh setej [Building control systems and automated diagnostics Special purpose control systems based on fuzzy artificial neural networks]. T-Comm: Telecommunications and Transport. 2013. Vol. 7. No. 6. Pp. 67-70. (rus)

23. Senchenkov V.I., Absalyamov D.R. Vybor minimalnogo mnozhestva kontroliruemyh priznakov dlya opredeleniya tekhnicheskogo sostoyaniya sistemy [Selection of the minimal set of controlled factors to determine system technical state]. Journal of Instrument Engineering. 2011. Vol. 54. No. 3. Pp. 5-10. (rus)

24. Hopfe C.J., Augenbroe G.L.M., Hensen J.L.M. Multi-criteria decision making under uncertainty in building performance assessment. Building and Environment. 2013. Vol. 69. Pp. 81-90.

25. Sotnikov A.G. Analiticheskaya metodika opredeleniya naruzhnyh raschetnyh parametrov v sistemah 31 mikroklimata zdanij [Analytical method of determining the exterior design parameters in buildings Climate systems]. Magazine of Civil Engineering. 2013. No. 2(37). Pp. 3-12. (rus)

26. Dmitriev A.K., Kopkin E.V. Optimization of network structures for diagnostics of technical objects on the basis 32 of the Pontryagin maximum principle. Automatic Control and Computer Sciences. 2005. Vol. 38. No. 5. Pp. 1-15.

27. Kim Y.W., Kim S.C. Cost analysis of information technology-assisted quality inspection using activity-based 33 costing. Construction Management & Economics. 2011.

Vol. 29. No. 2. Pp. 163-172.

28. Krack M., Panning-von Scheidt L., Wallaschek J. On the computation of the slow dynamics of nonlinear modes of 34 mechanical systems. Mechanical Systems and Signal Processing. 2014. Vol. 42. No. 1-2. Pp. 71-87.

29. Rohani M., Afshar M.H. GA-GHCA model for the optimal design of pumped sewer networks. Canadian Journal of 35 Civil Engineering. 2016. Vol. 42. No. 1. Pp. 1-12.

30. Schmidt M., Steinbach M.C., Willert B.M. High detail stationary optimization models for gas networks. Optimization and Engineering. 2015. Vol. 16. No. 1. 36 Pp. 131-164.

31. Shprekher D.M., Matveev Yu.N., Bogatikov V.N. Model of recognition of technical condition of electromechanical systems based on parallel classification schemes with 37 excessive number of computing elements. International Journal of Engineering Research. 2015. Vol. 9. No. 24.

Soldatenko V.S., Smagin V.A., Gusenitsa Y.N., Gera V.I., period of checking utility systems. Magazine of doi: 10.18720/MCE.70.7

космического аппарата // Труды Военно-космической академии имени А.Ф. Можайского. 2011. № 631. С. 6370.

22. Пророк В.Я., Гусеница Я.Н., Петрич Д.О. Построение системы контроля и диагностирования автоматизированных систем управления специального назначения на основе нечетких искусственных нейронных систем // T-Comm: Телекоммуникации и транспорт. 2013. Т. 7. № 6. С. 67-70.

23. Сеньченков В.И., Абсалямов Д.Р. Выбор минимального множества контролируемых признаков для определения технического состояния системы // Известия высших учебных заведений. Приборостроение. 2011. Т. 54. № 3. С. 5-10.

24. Hopfe C.J., Augenbroe G.L.M., Hensen J.L.M. Multi-criteria decision making under uncertainty in building performance assessment. // Building and Environment.

2013. Vol. 69. Pp. 81-90.

25. Сотников А.Г. Аналитическая методика определения наружных расчетных параметров в системах микроклимата зданий // Инженерно-строительный журнал. 2013. № 2(37). С. 3-12.

26. Dmitriev A.K., Kopkin E.V. Optimization of network structures for diagnostics of technical objects on the basis of the Pontryagin maximum principle // Automatic Control and Computer Sciences. 2005. Vol. 38. № 5. Pp. 1-15.

27. Kim Y.W., Kim S.C. Cost analysis of information technology-assisted quality inspection using activity-based costing // Construction Management & Economics. 2011. Vol. 29. № 2. Pp. 163-172.

28. Krack M., Panning-von Scheidt L., Wallaschek J. On the computation of the slow dynamics of nonlinear modes of mechanical systems // Mechanical Systems and Signal Processing. 2014. Vol. 42. № 1-2. Pp. 71-87.

29. Rohani M., Afshar M.H. GA-GHCA model for the optimal design of pumped sewer networks // Canadian Journal of Civil Engineering. 2016. Vol. 42. № 1. Pp. 1-12.

30. Schmidt M., Steinbach M.C., Willert B.M. High detail stationary optimization models for gas networks // Optimization and Engineering. 2015. Vol. 16. № 1. Pp. 131-164.

Shprekher D.M., Matveev Yu.N., Bogatikov V.N. Model of recognition of technical condition of electromechanical systems based on parallel classification schemes with excessive number of computing elements // International Journal of Engineering Research. 2015. Vol. 9. № 24. Pp. 45703-45716.

Simao M., Ramos H.M., Mora-Rodriguez J. Computational dynamic models and experiments in the fluid-structure interaction of pipe systems. // Canadian Journal of Civil Engineering. 2016. Vol. 43. № 1. Pp. 60-72.

Арутюнян А.Р., Арутюнян Р.А. Коррозионный рост трещин и усталостная прочность сложных технических систем // Инженерно-строительный журнал. 2013. № 9(44). С. 42-48.

Марков А.С., Рауткин Ю.В. К вопросу об анализе стратегий периодического контроля технических систем // Труды Научно-исследовательского института радио. 2012. № 1. С. 85-90.

Шибанов Г.П. Оптимизация процесса контроля бортовых комплексов оборудования летательных аппаратов // Мехатроника, автоматизация, управление.

2014. № 6. С. 56-61.

Smagin V.A. Optimum likelihood quantization of the information in space with restriction of zones of influence of quanta // Forum B.V. Gnedenko. RT&A. 2014. Vol.9. № 01(31). Pp. 92-97.

Smagin V.A., Novikov A.N., Smagin S.Yu. A probabilistic model of the control of technical systems // Automatic Control and Computer Sciences. 2010. Vol. 44. № 6. Soldatenko T.N. The method of calculation for the

Pp. 45703-45716. Pp. 324-329.

32. Simao M., Ramos H.M., Mora-Rodriguez J. Computational dynamic models and experiments in the fluid-structure interaction of pipe systems. Canadian Journal of Civil Engineering. 2016. Vol. 43. No. 1. Pp. 60-72.

33. Arutyunyan A.R., Arutyunyan R.A. Korrozionnyj rost treshchin i ustalostnaya prochnost' slozhnyh tekhnicheskih sistem [The corrosion crack growth and fatigue strength of complex technical systems]. Magazine of Civil Engineering. 2013. No. 9(44). Pp. 42-48. (rus)

34. Markov A.S., Rautkin YU.V. K voprosu ob analize strategij periodicheskogo kontrolya tekhnicheskih sistem [On the question of analyzing the strategies for periodic monitoring of technical systems]. Proceedings of the Scientific-Research Institute of Radio. 2012. No. 1. Pp. 85-90. (rus)

35. Shibanov G.P. Optimizatsiya protsessa kontrolya bortovyih kompleksov oborudovaniya letatelnyih apparatov [Optimization of process of control of onboard complexes of the equipment of aircraft]. Mechatronics, Automation, Control. 2014. No. 6. Pp. 56-61. (rus)

36. Smagin V.A. Optimum likelihood quantization of the information in space with restriction of zones of influence of quanta. Forum B.V. Gnedenko, RTSA. 2014. No. 01(31). Pp. 92-97.

37. Smagin V.A., Novikov A.N., Smagin S.Yu. A probabilistic model of the control of technical systems. Automatic Control and Computer Sciences. 2010. Vol. 44. No. 6. Pp. 324-329.

Vladimir Soldatenko,

+7(911)9256841; soldatenko_vs@mail.ru Vladimir Smagin,

+7(812)2352778; va_smagin@mail.ru

Yaroslav Gusenitsa, +7(981)8315029; Yaromir226@mail.ru

Vasiliy Gera,

+7(911)8334113; geratv33@mail.ru

Tamara Soldatenko, +7(911)9545688; soldatenko-tn@bk.ru

Владимир Стальевич Солдатенко, +7(911)9256841;

эл. почта: soldatenko_vs@mail.ru

Владимир Александрович Смагин, +7(812)2352778; эл. почта: va_smagin@mail.ru

Ярослав Николаевич Гусеница, +7(981)8315029; эл. почта: Yaromir226@mail.ru

Василий Иосифович Гера, +7(911)8334113; эл. почта: geratv33@mail.ru

Тамара Николаевна Солдатенко, +7(911)9545688; эл. почта: soldatenko-tn@bk.ru

© Soldatenko V.S.,Smagin V.A.,Gusenitsa Y.N.,Gera V.I.,Soldatenko T.N., 2017

i Надоели баннеры? Вы всегда можете отключить рекламу.