ТЕХНИЧЕСКИЕ НА УКИ / TECHNICAL SCIENCE
UDC 62-611
THE LOOP WITH HEAT RECOVERY OF DIESEL GENERATOR
LUBRICATION SYSTEM
©Shi Y. Y., Ogarev Mordovia State University, Saransk, Russia, [email protected]
©Levtsev A., SPIN-code: 7896-7312, Dr. habil., Ogarev Mordovia State University, Saransk, Russia, [email protected]
©Povorov S., ORCID: 0000-0002-8384-8941, Ogarev Mordovia State University, Saransk, Russia, [email protected]
ЦИКЛ С РЕКУПЕРАЦИЕЙ ТЕПЛА СИСТЕМЫ СМАЗКИ ДИЗЕЛЬНЫХ
ГЕНЕРАТОРОВ
©Ши Ю. Ю., Национальный исследовательский Мордовский государственный университет им. Н. П. Огарева, г. Саранск, Россия, [email protected]
©Левцев А. П., SPIN-код: 7896-7312, д-р техн. наук, Национальный исследовательский Мордовский государственный университет им. Н. П. Огарева, г. Саранск, Россия, [email protected] ©Поворов С. В., ORCID: 0000-0002-8384-8941, Национальный исследовательский Мордовский государственный университет им. Н. П. Огарева, г. Саранск, Россия, [email protected]
Abstract. In recent years, with the increasing severity of energy problems, more and more energy-saving technologies and enhanced heat transfer methods have been valued. Pulsating flow enhanced heat transfer technology as a branch of enhanced heat transfer, has a wider application background in industrial production and living areas. In the research process of this paper, an experimental platform is built according to the requirements of pulsating enhanced heat exchange and dual-circuit cooling. Through the experimental research on the double-loop air cooling of the fluid in the tube with pulsation, the influence of various parameters and pulsating characteristics of the pulsating fluid on the enhanced heat transfer is analyzed; the temperature of the inlet and outlet of the device under normal conditions and the flow of the fluid under the condition of pulse are measured through a temperature sensor. The outlet temperature was compared with the analysis, and the measurement data was calculated and analyzed. Experimental results show that the pulsation of the fluid has a significant effect on the heat transfer effect, and the effect of the flow rate on the pulsation enhanced heat transfer is significant. When the flow rate is small, the phenomenon that the fluid does not generate pulsation or pulsation is relatively weak, which cannot cause strong disturbance of the fluid in the heat exchange section, so that the heat exchange cannot be enhanced, and even the heat exchange is weakened; as the flow rate gradually increases, the heat transfer coefficient is enhanced.
Аннотация. В последние годы с ростом серьезности энергетических проблем было оценено много энергосберегающих технологий и усовершенствованных методов теплопередачи. Технология теплопередачи с пульсирующим потоком как отрасль повышенной теплопередачи имеет более широкое применение в промышленном производстве и жилых помещениях. В процессе исследования в работе построена экспериментальная платформа в соответствии с требованиями пульсирующего расширенного теплообмена и двухконтурного охлаждения. Проанализировано влияние различных
параметров и пульсирующих характеристик пульсирующем жидкости на усиленным теплообмен путем экспериментального исследования охлаждения воздуха в трубе с пульсированием двойного контура; температура входа и выхода устройства в нормальных условиях и поток жидкости в условиях импульса измеряются через температурный датчик. Температура на выходе сравнивалась с анализом, и данные измерений были рассчитаны и проанализированы. Экспериментальные результаты показывают, что пульсация жидкости оказывает значительное влияние на эффект теплопередачи, и влияние скорости потока на улучшенную теплопередачу при пульсации является значительным. Когда скорость потока мала, жидкость не генерирует пульсации или пульсации относительно слабые, что не может вызвать сильное возмущение жидкости в секции теплообмена, так что теплообмен не может быть усилен, и даже теплообмен ослаблен; по мере увеличения скорости потока коэффициент теплопередачи постепенно увеличивается.
Keywords: diesel generators, pulsation, double-loop, enhanced heat transfer.
Ключевые слова: дизель-генераторы, пульсация, двойной цикл, повышенная теплопередача.
Introduction
During the operation of an automobile engine, due to changes in the ambient temperature, the combined effects of the use of a maintenance kit, operation, and load, as well as the limitations of the cooling water pump that can only operate with the operation of the engine, it is easy to cause the engine to warm up slowly, Blue smoke, overheating, etc. In the transportation process, automobile engines frequently mutate from heavy load to idling. At this time, the cooling system of the traditional engine is limited by the crankshaft drive, the speed is low, and it does not dissipate heat, which can easily lead to overheating of the engine [1-4].
In order to solve the above problems, in view of the widespread preheating of domestic truck engines, the serious environmental pollution caused by exhaust emissions, and the overheating problems that occur during low-speed and high-load conditions, the article changes the traditional single-circuit cooling system of the engine to a double-loop cooling system for cylinder heads and cylinders. The temperature was separately controlled, and the cooling system's drive and control methods were improved and explored [5].
Material and research methods
Through the experimental research on the double-loop air cooling of the fluid in the tube with pulsation, the influence of various parameters and pulsating characteristics of the pulsating fluid on the enhanced heat transfer is analyzed; the temperature of the inlet and outlet of the device under normal conditions and the flow of the fluid under the condition of pulse are measured through a temperature sensor [6-8]. The outlet temperature was compared with the analysis, and the measurement data was calculated and analyzed. The following Figure 1 shows the structure of the entire device [9-12].
Figure 1. Structure of Double-loop air cooling of diesel electric-power generator with the pulse regimen.
Results and discussion
Figure 2 is the comparison curve of the outlet temperature of the engine water jacket under normal operating conditions and with a pulse mechanism.
90,000
85,000
80,000
75,000
и о
T/ 70,000
e r 1—i
uat 65,000
er Op
m e 60,000
T
55,000
50,000
20
— Normal Pulse
1
25
30
45
50
55
35 40
Time t/s
Figure 2. The outlet tmeperature of engine water jacket.
Figure 3 is the comparison curve of the inlet temperature of the engine water jacket under normal operating conditions and with a pulse mechanism.
95,000
90,000
85,000
О о 80,000
/T
75,000
urt
at r e 70,000
p
m e 65,000
eT
60,000
55,000
20
25
30
45
--- Normal Pulse
1
50
55
35 40
Time t/s
Figure 3. The outlet temperature of exhaust gas heat exchanger.
Figure 4 is the comparison curve of the outlet temperature of the exhaust gas heat exchanger under normal operating conditions and with a pulse mechanism.
70,000
65,000
60,000
о о 55,000
/T
sa u 50,000
uatr
e p 45,000
pm e
eT 40,000
35,000
20
25
30
35
Time t/s
40
45
Normal Pulse
50
55
Figure 4. The inlet temperature of exhaust gas heat exchanger.
Figure 5 is the comparison curve of the inlet temperature of the exhaust gas heat exchanger under normal operating conditions and with a pulse mechanism.
70,000
65,000
60,000
О о 55,000
/T
e r urt 50,000
at r
e p tí 45,000
m e
T 40,000
35,000
20
Normal Pulse
25
30
35
Time t/s
40
45
50
55
Figure 5. The inlet temperature of exhaust gas heat exchanger.
Conclusions
1. When the flow rate is small, the phenomenon that the fluid does not generate pulsation or pulsation is relatively weak, which can not cause strong disturbance of the fluid in the heat exchange section, so that the heat exchange cannot be enhanced, and even the heat exchange is weakened;
2. As the flow rate increases, the heat transfer coefficient increases and the heat exchange effect becomes more pronounced. The pulsation of the fluid has a significant effect on the heat transfer effect, and the effect of the flow rate on the pulsation enhanced heat transfer is significant.
References:
1. Suzuki, M. (2003). Cooling System and Method for an Internal Combustion Engine. USA: 6571752, 2003(06).
2. Fu, Sh.-Yu, & Guo, X. (2010). Design and test of twin-circuit cooling system of diesel engine. Journal of internal combustion engine, (3), 265-267.
3. Pedrozo, V. B., & Zhao H. (2018). Improvement in high load ethanol-diesel dual-fuel combustion by Miller cycle and charge air cooling. Applied Energy, (210), 138-151.
4. Zhong, Y., Yang, Z., & Yang, Z. (2013). Field synergy theory and its application in pulsating heat technology. 435-438.
5. Yu, C., & Li, Z. (2015). Numerical analysis of the laminar flow pulse of circular inner rib tube reinforced convection heat transfer. Journal of Tsinghua University (Natural Science Edition), 45(8), 1091-1094.
6. Li, H. (2010). Experimental study on water Cavitation and scale control. Engineering Thermophysics, 31(9), 1531-1534.
7. Havemann, H. A., & Narayan Rao, N. N. (1954). Heat transfer in pulsating flow. Nature, 7(4418), 41.
8. Lemlich, R. (1961). Vibration and pulsation boost heat transfer. Chem. Eng, 68(10), 171176.
9. Lemlich, A., Armour, J. C. (1965). Enhancement of Heat Transfer by Flow Pulsations. Chem. Eng. Prop. Symp. Ser, 61. 83.
10. Lemlich, R., Hwu, C. (1961). The effect of acoustic vibration on forced connective heat transfer. A.I. Ch. E J., (21), 197-199.
11. Tatev, L. A. H. A. (2010). Pulse heating systems in public buildings. Internal information.
12. Zohir A. E. (2012). Heat Transfer characteristics in a heat exchanger for turbulent pulsating water flow with different amplitudes. Journal of American Science, 8(2), 241-250.
Список литературы:
1. Suzuki M. Cooling System and Method for an Internal Combustion Engine. USA: 6571752, 2003(06).
2. Fu Sh.-Yu, Guo X. Design and test of twin-circuit cooling system of diesel engine // Journal of internal combustion engine. 2010. №3. P. 265-267.
3. Pedrozo V. B., Zhao H. (2018). Improvement in high load ethanol-diesel dual-fuel combustion by Miller cycle and charge air cooling // Applied Energy. 2018. V. 210. №C. P. 138151.
4. Zhong Y., Yang Z., Yang Z. Field synergy theory and its application in pulsating heat technology. 2013. P. 435-438.
5. Yu C., Li Z. (2015). Numerical analysis of the laminar flow pulse of circular inner rib tube reinforced convection heat transfer // Journal of Tsinghua University (Natural Science Edition). V. 45. №8. P. 1091-1094.
6. Li H. Experimental study on water Cavitation and scale control // Engineering Thermophysics. 2010. V. 31. №9. P. 1531-1534.
7. Havemann H. A., Narayan Rao N. N. Heat transfer in pulsating flow // Nature. 1954. V. 7. №4418. P. 41.
8. Lemlich R. Vibration and pulsation boost heat transfer // Chem. Eng. 1961. V. 68. №10. P. 171 -176.
9. Lemlich A., Armour J. C. Enhancement of Heat Transfer by Flow Pulsations // Chem. Eng. Prop. Symp. Ser. 1965. V. 61. P. 83.
10. Lemlich R., Hwu C. The effect of acoustic vibration on forced connective heat transfer // A. I. Ch. E J. 1961. V. 21. P. 197-199.
11. Tatev L. A. H. A. Pulse heating systems in public buildings. Internal information. 2010.
12. Zohir A. E. Heat Transfer characteristics in a heat exchanger for turbulent pulsating water flow with different amplitudes // Journal of American Science. 2012. V. 8. №2. P. 241-250.
Работа поступила Принята к публикации
в редакцию 09.07.2018 г. 13.07.2018 г.
Cite as (APA):
Shi, Y. Y., Levtsev, A., & Povorov, S. (2018). The loop with heat recovery of diesel generator lubrication system. Bulletin of Science and Practice, 4(8), 130-135.
Ссылка для цитирования:
Shi Y. Y., Levtsev A., Povorov S. The loop with heat recovery of diesel generator lubrication system // Бюллетень науки и практики. 2018. Т. 4. №8. С. 130-135. Режим доступа: http://www.bulletennauki.com/shi (дата обращения 15.08.2018).