The genus Chaetoceros (Bacillariophyta) in Arctic and Antarctic R. M. Gogorev, N. I. Samsonov
Komarov Botanical Institute of the Russian Academy of Sciences, Professor Popov Sir., 2, St. Petersburg, 197376, Russia; [email protected]
Abstract. A floristic review of the genus Chaetoceros from Arctic and Antarctic waters is undertaken. Taxonomic composition of the Chaetoceros from the Russian Arctic seas, as well as from some regions of the Antarctic was investigated in both water column and sea ice. The genus is rather diverse in both polar regions: 55 species in Arctic and 34 ones in Antarctic. The regions differ in total number of species, number of species belonging to the subgenera Chaetoceros and Hyalochaete and to different sections. Species of the genus are often dominant and the most abundant in Arctic phytoplankton. However, the genus is not prevailing in number of the dominant species as well as in share of the total cell abundance of Antarctic phytoplankton. The importance of the species in sea ice assemblages of the Antarctic is more significant as compared with the Arctic. The Arctic is characterized by cosmopolitan species and those widely distributed in the Northern Hemisphere, more than half of the Chaeto-ceros taxa are common to all Arctic seas. The Antarctic has a high percentage of endemic Chaetoceros species. Both polar regions are similar in terms of Chaetoceros species composition mainly due to cosmopolitan species.
Keywords: diatoms, Chaetoceros, species composition, distribution, abundance, dominant species, biogeography, phytoplankton, sea ice algae, Arctic, Antarctic.
Род Chaetoceros (Bacillariophyta) в водах Арктики и Антарктики Р. М. Гогорев, Н. И. Самсонов
Ботанический институт им. В. Л. Комарова РАН, ул. Профессора Попова, д. 2, Санкт-Петербург, 197376, Россия; [email protected]
Резюме. В работе представлен флористический обзор рода Chaetoceros в Арктике и Антарктике. Обобщены имеющиеся сведения о таксономическом составе рода в водной толще и морском льду морей Антарктики и российской Арктики, проведена инвентаризация и таксономическая ревизия рода, показаны основные комплексы доминирующих видов. Более половины видов Chaetoceros являются общими для всех арктических морей. Между собой обе полярные области сильно различаются по общему числу видов (55 видов отмечены в Арктике и 34 в Антарктике), числу видов подродов Chaetoceros и Hyalochaete, составу видов-доминантов, срокам их развития и обилию, а также роли в планктонном и ледовом сообществах. В антарктическом планктоне род Chaetoceros не является ведущим по числу видов-доминантов, а его виды играют меньшую роль в развитии и обилии планктона, чем в Арктике. Напротив, значение рода в ледовых сообществах Антарктики гораздо весомее в сравнении с Арктикой. Большинство изученных видов Chaetoceros широко распространены в морях Арктики и Антарктики. В Арктике преобладают виды космополитные и распространенные в Северном полушарии. Для Антарктики характерна высокая доля видов-эндеми-
ков. Сходство видового состава в двух полярных регионах определяется в основном видами-космополитами.
Ключевые слова: диатомовые, Chaetoceros, видовой состав, распространение, доминантные виды, биогеография, фитопланктон, ледовые водоросли, Арктика, Антарктика.
Introduction
The genus Chaetoceros Ehrenb. was described by C. Ehrenberg (1844: 198) based on the Antarctic material containing the type species C. dichaeta1 from the Ross Sea. Species of the genus were commonly studied as a part of phytoplankton.
There are fairly many papers on morphology and taxonomy of the genus Chaetoceros, including those using the electron microscopy data. Geographically, however, these investigations were mainly carried out in tropical and temperate regions of the World Ocean. Accordingly, many Arctic species remain unstudied with methods of electron microscopy. Moreover, some aspects of morphology, systematics and ecology of Chaetoceros species are uncertain. Available data are often odd, incomplete and almost unsystematized. Our knowledge on the genus Chaetoceros does not correspond to its great significance in nature.
The genus Chaetoceros comprises more species in comparison with the most marine planktonic diatoms. The representatives of the genus are as widely distributed as the genera Thalassiosira Cl. and Coscinodiscus Ehrenb., and occur in the plankton of all seas and oceans. A characteristic feature of the genus in the Arctic seas is that its species often make the major part in groups of dominant species, determining the composition and abundance of phytoplankton.
Additional information may be obtained from the comparison of ecological characteristics of the species, such as seasonal dynamics of the Chaetoceros species and their occurrence in certain seasons, available data on abundance, groups of common and dominant species, difference in spatial distribution of the species.
The goal of our study was a floristic review of the genus Chaetoceros in Arctic waters and a comparison with the data available for the Southern Ocean. An analysis has been undertaken in order to generalize available information on taxonomic composition of the genus in each of the seas studied, to make a revision of the genus on the original and published data and to study seasonal dynamics and groups of dominant Chaetoceros species.
1 The authors of the names of the Chaetoceros taxa mentioned in this article are cited in Tables 1 and 4.
Material and Methods
The phytoplankton and sea ice samples were collected in various regions of the Arctic (Fig. 1; a total of 1023 samples studied) and the Antarctic (Fig. 2; a total of 628 samples studied). In the White Sea the samples were obtained during field trips to St. Petersburg University Biological Station in 1989-1990, Biological Station of Northern Branch of Polar Research of Marine Fisheries and Oceanography (SevPINRO) in 1992-1994, 1997 and 2000, and St. Petersburg Zoological Institute Biological Station «Kartesh» in 1994. In the Barents, the Laptev and the Chukchi seas, the samples were collected during oceanographic cruises of the Research Vessel (RV) «Geolog Fersman» in 1992, RV «Ivan Kireev» in 1993 and RV «Georgiy Maksimov» in 1991, respectively, as well as during a field trip near Murmansk Marine Biological Institute Biological Station «Dalnie Zelentsy» in 1996. There are the samples collected in the Central Arctic during polar expeditions PAICEX in 2007-2011 and «Severny Polyus» («The North Pole») SP-33-SP-36 and SP-38 in 2004-2008 and 2010-2011. In the vicinity of the Antarctic polar stations «Mirny», «Progress», «Molodezhnaya», «Novolazarevskaya», «Leningradskaya», «Bellingshausen», the Bunger Oasis, in the Lazarev, Riiser-Larsen, Cosmonauts, Cooperation, Davis, Ross and Bellingshausen seas, the samples were collected during cruise of RV «Akademik Fedorov» in 1987-1988, 2006-2007 and RV «Akademik Tryoshnikov» in 2013. The samples in the Weddell Sea were obtained during cruise of the RV «Polarstern» in 1989 and during the US-Russian Ice Station Weddell-1 polar expedition in 1992.
Phytoplankton samples were collected with a 1.0-1.5 litre water bottle and plankton nets with mouth opening 18-37 cm in diameter and mesh size 40-70 ^m. Small pieces of drifting ice were retrieved from the open water cleared by the ship. Sea ice cores were drilled using an ice-coring auger with an inner ring diameter 18 cm and cut to some uneven parts (sections of 5-30 cm each depending on a size of dishes to melt). The samples were preserved with a 37 % formaldehyde solution neutralized with a saturated solution of calcium carbonate which was added to the samples until the appearance of a weak odour (2-4 ml of fixative per 100 ml of sample) (Kiselev, 1969), or with Lugol's-iodine and sodium acetate solution (0.51.0 ml of fixative per 100 ml of the sample) (Fedorov, 1979).
Cleaning the diatom frustules from the organic matter was carried out by heating of the material cleaned from fixative and salts in the hydrogene peroxyde (Hustedt, 1958; Buinitsky et al., 1974) and/or multiple washing in the alcohol (Nikolaev, 1987; Samsonov, 1997, 1999). Then,
L/1
Fig. 1. Location of sampling stations in the Arctic in 1989-2011.
20__0__20
140 160 ISO 160 140
Fig. 2. Location of sampling stations in the Antarctic in 1987-2013.
the samples were rinsed several times (3-5) with distilled water. The permanent slides of diatoms were prepared according to the method proposed in Diatomovye... (1974).
The identification, microphotography and calculation of the relative abundance of species in the samples were fulfilled using the NU-2 and MBI-3 light microscopes and the scanning electron microscope (SEM) JSM-35C with an accelerate voltage 10-35 kV.
The relative abundance of the species in the studied samples was calculated in 10-25 horizontal rows in each slide at x 400-1000 mag-
nification. We used the following scale for estimation of the relative abundance: single cells — <1 %; rare — 1-2 %; often — 3-5 %; abundant — 5-10 %; very abundant — >10 % of the total diatom cell abundance.
Degree of similarity of Chaetoceros species composition in the Russian Arctic seas was estimated by Jaccard index of affinity.
N
K — A+B
J n + N - N
A ^ B JVA+B
NA+B — a number of mutual species in comparising descriptions; NA and NB — a number of species in each description (Mirkin et al, 1989).
Since the genus Chaetoceros is one of the most important parts of the plankton community, a comparison of the Chaetoceros species composition in the Russian Arctic seas and neighbouring regions is an essential stage for revealing similarities and differences between the floras in these areas. On the basis of generalization and analysis of the original and published data from more than 200 papers, the revision of the species composition of the genus Chaetoceros in the Russian Arctic seas was fulfilled. For the comparison, we used the published data on the Greenland, Norwegian and Beaufort seas, Central Arctic Basin (CAB), on the Canadian Arctic seas (among them, we consider the Baffin Sea, Hudson Bay and Hudson Strait separately), and also on the Bering Sea belonging to the North Pacific.
Species distrubution patterns have been defined on the basis of literature and original data.
Brief historical review
Arctic
First investigations of Arctic phytoplankton date back to the middle of 19th century: Ehrenberg (1841, 1853) described Arctic diatoms in the Barents Sea plankton. The first information on the genus Chaetoceros from the Arctic seas has a descriptive character. The species of this genus were described as a part of phytoplankton by P. Cleve (1873, 1883, 1899), Cleve and A. Grunow (1880), Grunow (1884), H. Gran (1897, 1904a, b).
Data on the Chaetoceros species composition in the Barents Sea plankton are most completely presented in the following papers: I. Pali-bin (1903a-d, 1904, 1906a, b), A. Linko (1907, 1912, 1915), I. Kise-lev (1928, 1930), M. Virketis and Kiselev (1933), P. Usachev (1935), M. Roukhiyainen (1956, 1960, 1961, 1962, 1963, 1965, 1966), M. Kam-
shilov et al. (1958), S. Sokolova (1972), A. Solovyeva and I. Churbano-va (1980), V. Ryzhov (1988), N. Vasjutina (1991), P. Makarevich et al. (1991b, 1993), N. Druzhkov and Makarevich (1992), Makarevich and V. Larionov (1992), J. Wiktor and Y. Okolodkov (1995) and Makarevich (1997).
An extensive information on the Chaetoceros species and excellent illustrations of them are given by A. Meunier (1910), who considered both the Barents and Kara seas phytoplankton.
The most significant studies on the Kara Sea phytoplankton were published by A. Genkel (1925, 1926), M. Zabelina (1931, 1946), Kise-lev (1935), Usachev (1968), L. Ilyash and T. Koltsova (1981), Koltsova and Ilyash (1982), L. Bondarchuk et al. (1985), Makarevich and Koltsova (1989).
Usachev (1946а, 1949) reviewed sea ice flora in the Barents, Kara and Laptev seas, and gave some information on the genus Chaetoceros. The results of investigation of phytoplankton in the transitional zone of the White and Barents seas are presented by Makarevich et al. (1991a). Comparison of composition and ecological-geographical characteristics of phytoplankton in the Kara and Barents seas are given by Makarevich and Druzkov (1994), and Makarevich (2007).
Rather complete data were obtained on the White Sea phytoplankton. Species composition of the genus Chaetoceros was described in numerous papers (Levander, 1916; Kiselev, 1925, 1939, 1957; Gostilovskaya, 1948; Fedorov, 1969, 1979; Kokin et al., 1970; Kokin, Koltsova, 1971; Konoplya, 1971, 1973, 1974; Golikova et al., 1972; Fedorov et al., 1972, 1975, 1982, 1988, 1991; Fedorov, Koltsova, 1973; Khlebovich, 1974; Barabasheva et al., 1979; Zhytina, 1981a, b, 1982; Semina, Sergeeva, 1983; Galkina et al., 1988; Zhytina et al., 1988; Mikhailovskiy, Zhytina, 1989; Smirnov et al., 1989; Veiko, 1990; Zhytina, Mikhailovskiy, 1990; Likhacheva, 1991; Sarukhan-Beck et al., 1991; Sergeeva, 1991; Gogorev, 1995, 2003b, 2004, 2005a, b; Ilyash et al., 1996, 2003; Radchenko et al., 1997; Makarova, Gogorev, 1998; Gogorev, Makarova, 1999a).
Planktonic flora in the Laptev Sea is described in several publications (Kiselev, 1932; Gogorev, 1994; Cremer, 1998; Gogorev, Makarova, 1999b; Tuschling et al., 2000). Sediments from the Laptev Sea are studied by H. Bauch and Y. Polyakova (2000).
P. Shirshov (1937) studied fruitfully the Chukchi, East Siberian and Laptev seas. The data on plankton and sediments from the East Siberian and Chukchi seas are given by Polyakova (1982). In addition, investigations in the East Siberian Sea were carried out by V. Galkina et al. (1994).
Data on the genus Chaetoceros in the Chukchi Sea plankton are given in the papers of Kiselev (1937), A. Bursa (1963), Okolodkov (1986a, b), R. Gogorev and Okolodkov (1996). Some subsequent Okolodkov's papers (1987, 1988, 1992, 1993, 1996; Wiktor et al., 1998) comprise diverse information and check-lists of species, including the genus Chaetoceros, from various Arctic seas.
There are some papers on CAB (Shirshov, 1938; Usachev, 1946b; Melnikov, 1989). Morphology and taxonomy of four Chaetoceros species from the White, Barents, Kara, Laptev and Chukchi seas are studied by I. Makarova and Gogorev (2000). A generalized information on Chaeto-ceros of Russian Arctic seas was given by Gogorev (2002).
Data on the species composition and distribution of the genus Chae-toceros in the Canadian Arctic seas are taken from papers of Hsiao. In his cumulative paper (Hsiao, 1983), the annotated list of marine phytoplank-ton and sea ice algae, including 37 species of the genus Chaetoceros, is given. Data on this genus in the Norwegian and Greenland seas are presented in numerous publications not mentioned in our paper.
Thus, the genus Chaetoceros as a part of phytoplankton in the Arctic seas has been investigated during more than 150 years. The investigations of plankton included the studies in many aspects; hydrobiological approach prevailed. The most investigated regions in the Russian Arctic are the White and Barents seas; phytoplankton in the Laptev and East Siberian seas is scarcely investigated.
Antarctic
The species of the genus Chaetoceros from the Southern Ocean were described in phytoplankton samples collected during several polar expeditions beginning from the second half of 19th century (Castracane, 1886; Karsten, 1905; Mangin, 1915; Heiden, Kolbe, 1928; Hustedt, 1958; Man-guin, 1960).
From the early 1960s, a new stage of investigations of Antarctic diatoms started. The studies of distribution and seasonal succession of diatoms in sea ice and water column, productivity and abundance of diatoms in sea ice and plankton assemblages, the mechanisms for establishing algal populations in sea ice, etc. were carried out (Hoshiai, Kato, 1962; Me-guro, 1962; Bunt, 1963, 1964a, b, 1968; Bunt, Wood, 1963; Fukushima, Meguro, 1966; Bunt, Lee, 1970; Buinitskyi et al., 1974, 1977; Ackley, 1982; Sullivan et al., 1982; Watanabe, 1982, 1988; Garrison et al., 1983, 1987, 1989; Garrison, Buck, 1985; Grossi, Sullivan, 1985, Horner, 1985; Ackley et al., 1987; Garrison, 1991; Pakhomov et al., 2001; Gogorev, 2009, 2012; Cefarelli et al., 2011; Ligowski et al., 2012). We can note
a handbook and monographic reviews (Priddle, Fryxell, 1985; Ligowski, 1993; Zernova, 2005) in numerous investigations in recent years. Much less attention was paid to the study of the most important planktonic diatom genera Chaetoceros, Coscinodiscus, Thalassiosira and, especially, to the comparison of distribution of their species in both polar regions.
Results and Discussion
Arctic
In the phytoplankton samples collected in the Barents, White, Kara, Laptev and Chukchi seas, 39 Chaetoceros species were found (Table 1). The study of these species was carried out using both light and scanning electron microscopy. The morphology of frustule and resting spores of 28 species was examined in detail. Moreover, the data on the morphology of C. ingolfianus, C. karianus, C. subtilis, C. vanheurckii were obtained for the first time. The morphology of C. mitra, C. teres and C. similis was essentially supplemented by new information. The new species C. invisivilis was described from the White and Kara seas (Gogorev, 2003a).
The study of the complexes of related species C. borealis — C. con-cavicornis — C. convolutus has shown that only the investigation in SEM permitted to ascertain that the latter clearly differs in morphology of valve and setae from the former two, which are similar in morphology even in SEM and have transitional forms (Gogorev, 2003b). A detailed study of the species allowed us to restore C. concavicornis f. volans (Schutt) Hust. in a specific rank and to place C. borealis f. varians Gran in the synonymy of the former (Gogorev, 2004).
In spite of the detailed investigations, C. cinctus, C. coronatus, C. fra-gilis, C. perpusillus remain scarcely studied. The taxonomy of C. bacu-lites, C. calcitrans, C. difficilis, C. filiformis is uncertain. The findings of C. dichaeta, C. paulsenii, C. pelagicus in the Arctic should be checked. Further investigations are necessary to elucidate these problems.
The number of Chaetoceros species known from the Russian Arctic seas is 49 (54 together with intraspecific taxa) (Table 1). Among them, only 25 species (51 %) are common for all the seas investigated (hereafter with the exception of the East Siberian Sea, almost unstudied).
Most of Chaetoceros species belong to the subgenus Hyalochaete Gran, with two sections, Brevicatenati Gran and Simplices Gran, both having the highest number of species. Neritic species (35) prevail (71 %); oceanic species (6) and panthalassic ones (5) constitute 22 % in total. It is typical for all the Arctic seas and appears to be related with the vast shelf areas of the seas.
The comparative analysis of the species composition of the genus Chaetoceros in the Russian Arctic seas showed that the degree of similarity of species composition by Jaccard index of affinity was within a range of 0.7-0.8 (Table 2).
The comparison of seas in pairs using the Jaccard index showed the following numbers of common species (the values are given in brackets) in the series: Barents - Chukchi seas — 35 species (Ks = 0.81), Kara -Chukchi seas — 35 species (0.78), Barents - White and White - Kara seas — 34 species (0.76), White - Chukchi seas — 34 species (0.72), Barents - Kara seas — 33 species (0.73), Barents - Laptev seas — 32 species (0.78), Laptev - Chukchi seas — 32 species (0.74). The least value of the index was in the pairs Kara - Laptev seas — 30 species (0.70) and White - Laptev seas — 30 species (0.68) (Table 2).
Noteworthy, comparison of neighbouring seas does not demonstrate, as it could be expected, a sharp regularity in the increase of similarity of species composition. For instance, the Chukchi and Barents seas, the most distant from each other, demonstrate the most similarity in the species composition (35 species, Kj = 0.81) in comparison with the neighbouring Barents and Kara seas (33 species, K} = 0.73).
Since the studied seas are located in the same geographic zone, it would be logical to expect that the similarity of Chaetoceros species composition in these seas would be high. The above mentioned statistics supports our assumption. According to our data, the share of algal species (including both phytoplankton and microphytobenthos) common for all the Arctic seas amounts to 32 %, and the share of planktonic diatoms — 38 %. We suppose that some differences observed in the species composition in these seas are caused by various reasons.
The differences in Chaetoceros species composition in the Laptev Sea can partly be explained by a less available information on its flora in comparison with the other seas. The Kara and Laptev seas are characterized by severe climatic conditions, which seems to significantly decrease the share of warm-water species in these seas, comparing with the three others.
In the White Sea, a relative isolation of the flora is caused by its semi-closed basin and a restricted water mass exchange with the neighbouring Barents Sea. As for the Barents and Chukchi seas, with the floras studied in detail by many investigators during many decades, a significant influence of water mass exchange with the neighbouring oceans is typical. This is one of the most important factors in the formation of the environmental conditions as well as the planktonic floras of these seas.
On On
Taxonomic composition of the genus Chaetoceros in the Arctic
Таксономический состав рода Chaetoceros в Арктике
Table 1
£
о
Taxon
Section1
сл :z¡
ta
сл м et ы
О
ш
о
з.
в
(га
Ш
о 3
Ш в
в
и
о в Ш
С. affinis Laud. var. affinis*
Stenocincti
+?
С. affinis var. willei (Gran) Hust.'
C. atlanticus CI. var. atlanticus* C. atlanticus var. neopolitanus (Schröd.) Hust.
Chaetoceros (= Atlántico)
С. baculites Meunier
+?
С. borealis Bail. f. borealis* С. borealis f. solitaria Cl.*
Boreales
С. brevis Schutt*
Laciniosi
С. ceratospoms Ostf.*
Simplices
С. cinctus Gran
Furcellati
С. compivssus Laud.*
Compressi
9
10 11
С. concm'icomis Mangin*
Peniviani
С. constrictus Gran*
Constricti
C. convolutus Castr. f. com'olutus* C. convolutus f. trisetosa2 Brunei
Convoluti (= Peniviani)
+ +?
+ +?
12
C. coronatus Gran
Diademae
+?
1 The inflections of section names are corrected according to the International Code of Nomenclature... (McNeill et al., 2012).
2 The designation is invalidly published, without diagnosis or description.
su
a .g
IS
o
-o
Canadian Arctic + + + + + + + + + +
Hudson Strait + + + + + + + + + +
Hudson Bay + + + + + + + + + +
Baffin Sea + + + + + + + + + + + +
Beafort Sea + + + + + + + +
Bering Sea + + + + + + + + + + +
Chukchi Sea + + + + + + + + + + + + + +
East Siberian Sea + +
Laptev Sea + + + + + + + + + + + + +
Kara Sea + + + + + + + + + + +
White Sea + + + + + + + + + + + + + +
Barents Sea + + + + + + + + + + + + + + +
Greenland Sea + + + + + + + + + +
Norwegian Sea + + + + + + + + + +
CAB + + + + + + + + + + + +
Section \Btevicatenaii \ ¡Peruviani Curviseti Boreales Curviseti Oceanici (= Dicladia) Boreales \Diackmae Chaetoceros (= Atlantica) Protuberantes \Diackmae Boreales \Btevicatenaii \ \Bnwicatemiii \ \Fuccellaii \Diackmae Brevicatenati
Taxon C. crinitus Schütt* * * st a O s JS & ri c O * o s tu iset rvi u c o * O us ic "1 O \C. debilis Cl.* C. decipiens Cl. f. decipiens* C. decipiens f. macroporica Gogorev* .* Cl s u s ens de O C. diadema (Ehrenb.) Gran* C. dichaeta Ehrenb.** C. didymus Ehrenb. var. didymus* C. didymus var. protuberans (Laud.) Gran et Yendo* C. difficilis Cl. C. eibenii Grun. C. filiformis Meunier* C. fragilis Meunier* C. furcillatus Bail.* C. holsaticus Schütt* * s O s u anfiuol o ingo O
№ of species m »n \o r- CO CK o <N <N <N <N m <N <N »n <N \o <N r- <N 00 <N CK <N
ад
а .g
IS
о
-о
Canadian Arctic + + + + + +
Hudson Strait + + + + + +
Hudson Bay + + + + +
Baffin Sea + + + + + + + + +
Beafort Sea + + + + +
Bering Sea + + + + + + + + + + + + +
Chukchi Sea + + + + + + + + +
East Siberian Sea + + + + +
Laptev Sea + + + + + +
Kara Sea + + + + + + + + + + + + Ï
White Sea + + + + + + + + + + +
Barents Sea + + + + + + + +
Greenland Sea + + + + + + + +
Norwegian Sea + + + + + + + + +
CAB + + + + + +
Section Simplices \Bievvicatemiti \ \Laciniosi Cylindrici Oceanici (= Dicladia) \Diversi Oceanici (= Dicladia) Simplices Simplices \Bivvicatenati \ \Laciniosi \Bnvvicatemiti \ \Pemviani \Bivvicatenati \ \Furcellati \Diademae Similes
Taxon C. invisibilis Gogorev et Makar.* C. karianus Grun.* C. laciniosus Schütt* * s 13 der laud О C. lorenzianus Grun.** C. messanensis Castr. * Ü ai В (itra S о \C. muelleri Lemm.* C. neogracilis (Schütt) Van Lan.* C. paulsenii Ostf. * .* о s u ic lagi el о Ü s lu usil rpu e ^ о C. peruvianus Brightw. C. pseudocrinitus Ostf. C. radicans Schütt* C. seiracanthus Gran C. similis Cl. f. similis* C. similis f. solitaria Pr.-Lavr.*
№ of species о m m <N m m m m m \o m t--m CO m сл m о ■f <N m »n \o •t
"с
о
<u
Table 1 (continued)
№ of species Taxon Section CAB Norwegian Sea Greenland Sea Barents Sea White Sea Kara Sea Laptev Sea East Siberian Sea Chukchi Sea Bering Sea Beafort Sea Baffin Sea Hudson Bay Hudson Strait Canadian Arctic
47 C. simplex Ostf.* Simplices - + + + + + + - + + + - - - -
48 C. socialis Laud. f. socialis* C. socialis f. radians (Schiitt) Pr.-Lavr.* Sociales + + + + + + + + + + + + + + + + + + + + + + +
49 C. subti/is Cl. f. stibtilis* C. subti/is f. knipowitschii (A. Henck.) Pr.-Lavr. Brevicatenati + + - + + + +? + +? + + + - - - -
50 C. tenuissimus1 Meunier* Simplices - + + - + +
51 C. teres Cl.* Cvlindrici + + + + + + + + + + + + + + +
52 C. tortissimus Gran Furcellati - +
53 C. vanheurckii Gran* Constricti +
54 C. volons Schtitt* Pemviani + + + + + + + - + + - + - - -
55 C. wighamii Brightw.* Brevicatenati + + + + + + + + + + + + + + +
Species number 32 38 34 39 40 39 34 15 41 41 25 31 26 26 28
Note. CAB — Central Arctic Basin; * — the species found in the original samples; ** — the species findings are uncertain. Прмечание. CAB — Центральный Арктический бассейн; * — виды, найденные нами; ** — находки вида сомнительные.
I а.
îb. S
S"
а
On
1 As Chaetoceros calcitrans (Pauls.) Takano.
Table 2
Jaccard index of affinity and the number of common species between the Russian Arctic seas
Индекс сходства Жаккара и число видов, общих для арктических морей России
Barents Sea White Sea Kara Sea Laptev Sea Chukchi Sea All seas
Barents Sea 0.76 0.73 0.78 0.81 0.78
White Sea 34 0.76 0.68 0.72 0.80
Kara Sea 33 34 0.70 0.78 0.78
Laptev Sea 32 30 30 0.74 0.68
Chukchi Sea 35 34 35 32 0.82
In total 39 40 39 34 41 50
Thus, an essential similarity of the Chaetoceros composition in the Arctic seas can be seen. However, the peculiar features in the species composition of the genus, in the number of common species including rare and indicator ones, in occurrence, distribution and ecology of the species, as well as in the groups of common and dominant species were revealed in each sea.
The number of Chaetoceros species known for all the Arctic seas (including the Bering Sea) is 55 (Table 1). It should be noted that the numbers of species in the Norwegian and Bering seas are close to those known for the Russian Arctic seas. In the other Arctic regions, the number of known Chaetoceros species is lower or the same. It varies from 25 species in the Beafort Sea to 38 species in the Norwegian Sea. Thus, the number of the species common for the Arctic seas is less and does not exceed 11-20 species (20-36 %). This range is related to scarce data on the most part of the Canadian Arctic seas. If some species are not registered in the list of diatom flora in one of the seas, but occur in neighbouring areas, we can suggest that these species, nevertheless, are present there. Thus, only 20 species of Chaetoceros (36 %) are common for the Arctic.
The comparison of neighbouring seas showed a high number of common species in the following pairs: Barents - Norwegian seas — 33 species (KJ = 0.75), Barents - Greenland seas — 30 species (KJ = 0.70), Chukchi - Bering seas — 35 species (KJ = 0.74). Accordingly, the values of Jaccard index are close to those for the Russian Arctic seas. However, in the pair Chukchi - Beaufort seas the index is 0.61 (25 common species), that is considerably lower than in the above mentioned pairs, and probably points to a less available information on the Beaufort Sea.
The comparison of the genus composition in the Laptev Sea and CAB (26 common species, KJ = 0.65) and especially in the Canadian Arctic and Russian Arctic seas (22 species, K = 0.40) showed the following. The ge-
nus Chaetoceros composition in the well-studied Norwegian, Greenland and Bering seas is quite similar in the number of common species with that in the Russian Arctic seas. The comparison of the less studied Beaufort Sea, CAB and the Canadian Arctic seas shows a minimal affinity approximately equal to that of the planktonic diatom flora as a whole.
Thus, it should be noted that the comparison of the species composition of the genus Chaetoceros in the Russian Arctic seas with the adjacent Arctic regions showed less similarity between them than between the seas themselves. This fact can be assigned to less information available on the regions adjacent to the Russian Arctic and an essential addition to data on the Russian Arctic seas due to our investigations.
The biogeographical analysis of the genus Chaetoceros shows that the northern cold-water species widespread in the Northern Hemisphere (77 %) prevail in the Arctic seas. The cosmopolitan forms number 7 species (13 %), and together with 18 Arctic-boreal (33 %) and 11 Arctic-boreal-tropical ones (20 %) constitute in total 65 % of all Chaetoceros species. Among the «tropical» species, those with boreal-tropical (7 species) and boreal-tropical-Antarctic (2) range types were also found. The available statistics on the range types is incomplete, because the species ranges have mainly been compiled from literature sources, sometimes controversial. However, the biogeographical analysis has a rather high positive sense, since, on the one hand, it is based on the numerous data and helps to determine the biogeographical nature of some species more precisely, and, on the other hand, it can help to reveal misidentifications.
The comparison of the Russian Arctic seas by biogeographical characteristics of the genus Chaetoceros species showed the following. The number of cosmopolitan species is equal in all seas, except the White Sea. A cosmopolitan C. atlanticus is lacking in the White Sea. This fact confirms that it is an oceanic species, which comes to the Arctic seas with the Gulf Stream waters and it is also absent in the near-shore Barents Sea, from which it could have come to the White Sea with along-shore currents. The number of Arctic-boreal species is nearly equal in all the seas, except the Laptev Sea. This fact can be explained by scarce information on the species composition in this sea in spring, comparing with the other seas. The number of Arctic-boreal-tropical species is nearly equal in all the seas.
Moreover, the White Sea is characterized by the lack of C. mitra and C. furcillatus1, widespread in the other seas. This fact, as well as in the case with C. atlanticus, gives evidence that there is very insignificant and
1 The correct spelling of the name, as given in protologue (Bailey, 1856) but with masculine flection. From the Latinfurcilla, «little fork».
impeded water mass exchange between this sea and the others, particularly with the Barents Sea. At present, the White Sea does not seem to be influenced by Atlantic and Arctic waters.
A distinctive feature of boreal-tropical and boreal-tropical-Antarctic species of the genus Chaetoceros is that their total number is small, and they have not been registered in the Laptev Sea. The latter characterizes the Laptev Sea as the most «Arctic» among the studied seas. The highest number of «tropical» species registered in the White Sea may be due to the presence of the isolated populations of C. didymus, C. vanheurckii and, possibly, C. affinis in this sea. C. didymus found in the Barents, Kara and Chukchi seas seems to enter these seas with the Atlantic and Pacific waters. However, a high number of such records may give evidence for favourable environment conditions for C. didymus in these seas or higher adaptability of this species. On this basis, it is possible to reconsider the distribution pattern of the species. C. muelleri may enter the White and Kara seas with a river discharge from continental waters, as well as may survive a long time in the slightly brackish areas of these seas. The seldom records of a boreal-tropical-nothal-Antarctic species C. dichaeta (the Barents Sea) and C. paulsenii (the Kara Sea) seem to be casual or based on misidentifications. This does not change the overall picture.
Seasonality of Chaetoceros species was shown in detail in the better studied White Sea (Gogorev, Makarova, 1999a; Ilyash et al., 2003; Gogorev, 2005b). The original data on the other seas are scarce or lacking; for comparison we used some published data (Zabelina, 1931; Kise-lev, 1932; Shirshov, 1937; Usachev, 1946a, 1968; Ilyash, Koltsova, 1981; Koltsova, Ilyash, 1982; Okolodkov, 1988; Ryzhov, 1988; Vasjutina, 1991; Galkina et al., 1994; Makarevich, 1997).
In the White Sea, the spring-summer development of the phytoplank-ton was studied in 1989, 1990 and 1992-1994, and the spring development was investigated in 1994. A total of 30 Chaetoceros species were found. The groups of dominant Chaetoceros species were determined (Table 3). From April to May, the group of common species was represented by spring ones: Chaetoceros fragilis, C. holsaticus, C. karianus and C. socialis (Plate I, 12). Their cell abundance was found to be high, but their share did not exceed 10 % of the total diatom number in phy-toplankton (Gogorev, Makarova, 1999a). It should be noted that among the Chaetoceros species only C. holsaticus produced resting spores, and almost all the cells of this species contained ones.
In summer, the dominant group comprised eight Chaetoceros species. C. diadema (June — July), C. compressus (June — August) and C. decip-iens (June — July, September) were the main constituents of the plank-
ton community. Later, C. curvisetus (July — September), C. wighamii and C. socialis (July — August) and sometimes C. laciniosus (August) expanded the dominant group and partly replaced the earlier dominated species. The summer group of species remained in plankton till mid-August. In August — September, the plankton was dominated by C. curvisetus and C. simplex. In autumn, a total abundance of planktonic algae significantly decreases: Chaetoceros species, except C. decipiens, were not dominant (Gogorev, Makarova, 1999a; Gogorev, 2005b). Similar data on dominant species and their seasonal development are given by L. Ilyash et al. (2003). Additionally to aforesaid species, C. convolutus, C. cinctus, C. radicans, C. constrictus and C. teres dominated in June — July.
Table 3
Dominant species of the genus Chaetoceros in the Russian Arctic seas
Виды-доминанты рода Chaetoceros в арктических морях России
Barents Sea White Sea Kara Sea Laptev Sea Chukchi Sea
C. socialis C. socialis C. socialis C. socialis
C. furcillatus C. holsaticus C. furcillatus C. furcillatus
C. fragilis C. karianus C. karianus C. wighamii
ад с C. diadema C. fragilis
' С Си C. debilis
ся C. compressus C. decipiens C. wighamii C. simplex
C. socialis C. diadema C. socialis C. socialis C. socialis
C. debilis C. compressus C. diadema C. diadema C. diadema
C. concavicornis C. decipiens C. teres C. debilis C. debilis
C. diadema C. curvisetus C. decipiens C. compressus C. compressus
C. compressus C. wighamii C. wighamii C. holsaticus C. decipiens
C. decipiens C. socialis C. borealis C. decipiens C. teres
1- C. borealis C. laciniosus C. teres C. mitra
i C. convolutus C. radicans C. wighamii C. concavicornis
s 3 C. laciniosus C. constrictus C. concavicornis C. convolutus
и C. affinis C. borealis C. convolutus C. atlanticus
C. teres C. concavicornis C. borealis C. laciniosus
C. atlanticus C. similis C. didymus
C. wighamii C. simplex
C. constrictus C. C. C. convolutus cinctus teres
The analysis of the data allowed us to note the following. In spring, the species richness of the genus Chaetoceros was usually low and did not exceed 11 species. Although some spring species of Chaetoceros were rather abundant in 1994, none of them was dominant. The species of other genera were the major constituents of the spring phytoplankton bloom.
The highest species richness of Chaetoceros was observed in summer (up to 25 species). The seasonal dynamics of eight dominant Chaetoce-ros species, consequently succeeding or complementing one another, was shown. The highest cell abundance of Chaetoceros species was observed in late July during the peak of phytoplankton bloom. Most of Chaetoceros species were not abundant, they mostly occurred seldom and not in all parts of the White Sea.
In the Barents Sea, the seasonal development of phytoplankton, including the number of diatoms, was studied in some areas. The spring phytoplankton bloom began in March — April and continued till late May; in the eastern part of the sea, the peak of the bloom occurred in April — May, and in the western one in May (Ryzhov, 1988; Vasjutina, 1991; Makarevich, 1997, 2007; Rat'kova, Wassmann, 2002). The genus Chaetoceros was mainly represented by a complex of Arctic-boreal species. C. diadema and C. socialis were common in the most part of the sea. C. debilis, C. fragilis, C. furcillatus occurred in the northern and eastern parts of the sea, C. compressus in the northern part and Kola Bay, C. com-pressus, C. decipiens in the southern part, and C. wighamii in the near-shore areas (Table 3).
The summer phytoplankton bloom began in July, with a peak in August in the western Barents Sea and in August — September in the eastern part. The bloom was also characterized by the highest abundance of dino-flagellates and to a lesser extent by diatoms including Chaetoceros species. Among them, C. borealis, C. compressus, C. concavicornis, C. con-volutus, C. debilis (Plate I, 3), C. decipiens, C. diadema, C. laciniosus and sometimes C. affinis were dominant, as well as C. atlanticus, C. teres, C. wighamii and C. constrictus in some areas of the sea. The smooth decrease in phytoplankton abundance including Chaetoceros species was observed since September till late October. The winter from November till April was characterized by a low species richness and low concentration of planktonic algae.
There are less data on the seasonal phytoplankton development in the Kara and Laptev seas, because the studies in these regions were carried out mainly in summer when the sea disengages from ice cover. Spring bloom of the Kara Sea phytoplankton began in late April — early May and continued to late August. The bloom was characterized by high share of such species as C. furcillatus (Plate I, 5), C. karianus and C. socialis (Usachev, 1946a, b, 1968). In summer, during August — September (Zabelina, 1931; Ilyash, Koltsova, 1981; Koltsova, Ilyash, 1982), the abundant growth of C. socialis continued (up to 5 x 106 cells/l), and along with this species the main constituents of plankton community were C. de-
cipiens (Plate I, 8), C. diadema, C. teres (Plate I, 9), C. wighamii (up to 4 x 105 cells/l) and sometimes C. borealis (Table 3).
There are no data on spring development of Chaetoceros species in the Laptev Sea. The development seems to be similar with that in the Kara Sea, to begin in the April — May and continue up to August. In summer, in August — September, the most abundant are C. compressus (Plate I, 11), C. debilis (Plate I, 4), C. diadema (Plate I, 1, 2), C. holsati-cus (Plate I, 6, 7) and C. socialis, sometimes C. decipiens and C. teres. In September — October, C. concavicornis (Plate I, 10) and C. convolu-tus were also dominant (Gogorev, 1994). Moreover, in the near-shore and southeastern parts of the sea, the replacement of spring Chaetoceros species by the summer ones was observed earlier, and the summer development lasted more. In the central and especially in the northern parts of the sea, in August, both spring and summer species were observed, that seems to be characteristic of a transitory period.
For the East-Siberian Sea, there are published data on the development of phytoplankton in Chaun Bay (Galkina et al, 1994). The spring development began in late April, reached the peak in mid-July and continued up to the end of July. It was followed immediately by summer species. There are no data on abundance of Chaetoceros species. In July — August, C. borealis, C. concavicornis, C. curvisetus, C. decipiens, C. diadema and C. teres were present.
In the Chukchi Sea, the spring development of phytoplankton continuing up to early August was characterized by such dominant species (Table 3) as C. furcillatus, C. socialis and C. wighamii (Shirshov, 1937). In summer, C. socialis remained a dominant species along with C. compres-sus, C. debilis and C. diadema, sometimes with C. decipiens, C. mitra and C. teres, and in some areas with C. atlanticus, C. concavicornis, C. convo-lutus, C. didymus and C. laciniosus (Okolodkov, 1988). In the areas where the influence of the Pacific Current is high, C. affinis often dominated. The summer-autumn development continues up to late October, when C. con-cavicornis, C. danicus and C. decipiens were found in low number.
In the ice samples from the White and Chukchi seas, Chaetoce-ros borealis, C. ceratosporus, C. constrictus, C. fragilis, C. furcillatus, C. holsaticus, C. karianus, C. socialis, C. muelleri and C. simplex were observed. The latter two were listed for the ice flora for the first time (Gogorev, Okolodkov, 1996; Gogorev, 1998). The species occurred exclusively in the lowermost ice layer within the bottom assemblage of sea ice algae; their abundance was very low (single to rare).
The presence of Chaetoceros species in sea ice assemblages was noticed by many investigators (Usachev, 1946a, 1949; Hsiao, 1980, Horner,
1976, 1985; Horner, Schrader, 1982; Okolodkov, 1992, 1993; Melnikov, 1997; Quillfeldt von et al., 2003). Taking into account our data, 20 species of this genus have been known from Arctic ice. Generally, Chaeto-ceros species occur in the lowermost ice layer and on lower sea ice surface, though some species such as C. borealis, C. decipiens, C. fragilis and C. furcillatus were also found in the interior and surface ice layers (Hsiao, 1980).
The available data showed that the abundance of the Chaetoceros species in the ice is usually very low, and they play insignificant role in sea ice assemblages, with the exception of C. furcillatus, which, according to S. Hsiao (1980), dominated on the lower sea ice surface in Frobisher Bay, the Canadian Arctic, and C. socialis, which also can dominate in sea ice assemblages (Quillfeldt von, 1996). These two species were recorded as the most common taxa in the ice and sediment in the Chukchi Sea, and their relative abundances were about 0.1 % of the total number of micro-algae collected in the bottom 10 cm of ice cores (Ambrose et al., 2005).
The low abundance, rare findings and casual presence of Chaetoceros species in the ice suggest that they are not typical of sea ice assemblages and are accumulated into sea ice by passive freezing, and probably do not thrive there and, finally, die out. However, sharing the opinion of other authors (Horner, 1985; Garrison, 1991), the presence of Chaetoceros species along with many other planktonic species in sea ice, especially in its lowermost layer, plays an important role as a seed for the consequent spring phytoplankton bloom.
Summing up, the species richness of the genus Chaetoceros in the Arctic seas is rather high. There are 54 species known for the Arctic plankton and 20 species for the sea ice flora. Most of the studied Chae-toceros species are widely distributed in the Arctic seas: more than a half of the species are common for all the seas. The floristic analysis of Chaetoceros species in the Arctic seas showed a high similarity in species composition between the seas. The values of Jaccard index were 0.7-0.8. The biogeographic analysis allowed us to specify and critically revise the distribution of some species in the seas. Based on the original and published data, the study of the seasonal development of Chaetoceros species showed that the role of the genus in most of the Arctic seas is extremely high. The species of the genus are among the main constituents of the plankton community, and, hence, determine the composition and abundance of the phytoplankton in many ways. The role of Chaetoceros species in sea ice assemblages is minor; their presence is occasional. Each of the seas has its own features in terms of the taxonomic composition of the genus Chaetoceros, of the groups of dominant species, of the period of
their development and high abundance, as well as of the seasonal changes in the species composition.
Antarctic
Thirthy seven species, varieties and forms of the genus Chaetoceros were identified in the studied sea ice and phytoplankton samples from the Southern Ocean (Table 4).
In phytoplankton, 26 species, varieties and forms of the genus Chae-toceros were found (Table 4). Among them, C. dichaeta and C. criophi-lus were the most abundant (Plate II, 3-6). The former was subdominant near sea ice at the Mirny Polar Station and the Bunger Oasis. The latter dominated in near-ice phytoplankton at the Leningradskaya Polar Station, reaching up 57 % of the total diatom cell number (on average 50 %) (Samsonov, 1995). In offshore of the Ross Sea, the total share of these two species, together with the other two centric diatoms, Corethron pen-natum (Grun.) Ostf. and Rhizosolenia styliformis Bright., comprised up to 97 % of the total diatom cell number (on average 78 %). The relative abundance of Chaetoceros dichaeta ranged within 1-29 %. The share of C. criophilus was relatively constant, 8-14 % of the total diatom cell number. In near-shore waters of the Ross Sea, the relative abundance of C. criophilus increased up to 45 % (35 % on average). On the contrary, the share of C. dichaeta decreased and did not exceed 2 % (Samsonov, 1995). It may be noticed that the similar composition of diatoms in the Ross Sea plankton was revealed by S. El-Sayed and J. Turner (1977). Chaetoceros criophilus, C. dichaeta and Corethron pennatum were the major components of phytoplankton in this region.
In addition to Chaetoceros criophilus and C. dichaeta, C. atlanti-cus was common in all Antarctic regions studied (Plate II, 1, 2). However, this species did not comprise more than 10 % of the total diatom cell number. These three Chaetoceros species were included in the list of important phytoplankton species in Antarctic marine flora by R. B. Heywood and T. M. Whitaker (1984). Along with these species, the list includes C. bulbosus, C. flexuosus, C. neglectus, C. schimperianus, which were not recorded by us or were found rarely in the studied samples.
Thus, C. dichaeta and C. criophilus were the main constituents in the studied regions. The former was also found to be dominant in sea ice assemblages, and the relative abundance of the latter, as well as of C. atlan-ticus, which was usually common in water column, was low in sea ice.
In water column, young ice and ice floes of the Weddell Sea in late austral summer, D. Garrison and K. Buck (1985) revealed significant differences between the Chaetoceros species prevailing in sea ice and those
Taxonomic composition of the genus Chaetoceros in the Southern Ocean
Таксономический состав рода Chaetoceros в Южном океане
№ of species Taxon Section Ice (original data) о ft Plankton (original data) Plankton West Atlantic sector* Weddell Sea* Lazarev Sea* Riser-Larsen Sea* (Novolazarevskaya) Lutzow-Holm Bay Prydz Bay* (Davis Station) Davis Sea (Mirny)* 1 Bunger Oasis* D'Urvil Sea (Leningradskaya)* Ross Sea* Rigli Bay (Russkaya)* Amundsen Sea Bellingshausen Sea* " Admiralty Bay* Elefant and Southern Orkney Islands
1 C. adelianus Manguin Boreales - - + + - - + - - - - - - + - + + - -
2 C. aequatorialis C\. var. antarctica1 Manguin Peruviani + - + + + + - + + + +
3 C. atlanticus CI. var. atlanticus C. atlanticus var. skeleton Hust. Chaetoceros (= Atlántico) + + + + + + + - + + + + - + + + + + + + + + + +? + +
4 C. brevis Schutt Laciniosi + - - + - + - - - - - - - - - + - - -
5 С. bulbosus (Ehrenb.) Heiden Chaetoceros (= Atlántico) + + + + - + + + + + + + - + - + + + -
6 С. castracanei Karsten Boreales + - + + - + + - - + - + - + - + + - -
7 С. concavicornis Mangin** Peruviani +? + + + -
8 С. convolutus Castr. Convoluti (= Penmani) + + + + - + + + - + - - - + - + + + +
9 C. criophilus Castr. Peruviani + + + + + + + + + + + + - + - + + + +
10 C. curvatus Karsten Peruviani + + + - +?
11 С. curvisetus Cl. Curviseti + + + + - + + + + - + + + -
1 The designation is invalidly published, without diagnosis or description.
su
a .g
is
o ja
Elefant and Southern Orkney Islands + + +
Admiralty Bay* + + + + + + +
Bellingshausen Sea* + + + + + + + + +
Amundsen Sea + + + + + + + +
Rigli Bay (Russkaya)* +
Ross Sea* + + + + + + + +
D'Urvil Sea (Leningradskaya)* + +
Bunger Oasis* + +
Davis Sea (Mirny)* + + + + + + +
Prydz Bay* (Davis Station) + + + + +
Lutzow-Holm Bay + + +
Riser-Larsen Sea* (Novolazarevskaya) + + + + + + +
Lazarev Sea* + + + + + + + +
Weddell Sea* + + + + + + + + + + +
West Atlantic sector* + + + +
Plankton + + + + + + + + + +
Plankton (original data) + + + + + + + + +
Ice + + + + + + +
Ice (original data) + + + + + + + + + + +
Section 1 rvi u O Oceanici (= Dicladia) Boreales Chaetoceros (= Atlantica) Convoluti Brevicatenati \Boreales Boreales si ■S ini aci Simplices si ■S ini aci ¡Peruviani
Taxon * * o is -S e d o * * Ü iens ci e d O C. deflandrei Manguin * * Ü s sus n e d O C. dichaeta Ehrenb. var. dichaeta1 C. dichaeta var. tenuicornis (Mangin) Gogorev C. flexuosus Mangin Chaetoceros cf. fragilis Meunier** C. hendeyi Manguin C. natatus Manguin C. neglectus Karsten C. neogracilis (Schütt) Van Lan. * .* Ü us ic lagi el ^ O n te st r a W dul n e o. O
№ of species <N m in \o r- CO CK o <N <N <N <N m <N <N
o M o
(3 0? ■¡3 2
■3 o 13 <3
n n <5
■£ S3 a is
S ^
'<¥ Si
J®
¿i N
S
J3 -9
„ u
■S®
S-g
5 -¡2
-S §
-¡3 a
^ r ;
a U
U
si
m o ■ S3 £
TS
c3 <
00 о
Table 4 (continued)
Taxon
Section
a ^ о cv 8 S
2 S
§ S 2-r 8 » В и
3 CD
§ В
и СЛ TT а
в в *
в
Ш
м 1-0
з.е-
и НН
2? В
В 'С *
Ш
§ d В'З
(га с; в сл
Cl. о
и В ^
В
pö !Ч
L_ • п
£5
С CTQ и ёг:
и
?Т ш ^
в ^
>
<z> ш
2 * Bt
в
(га
Ео а
S gl,
s.^6
и о 3
25
С. pemtvianus Brightw. f. peruvimrus С. penmamis f. gracilis (Schröd.) Hust._
Pemviani
+?
26
C. radicans Schiitt
Furcellati
+?
27
C. radiculus1 Castr.
Chaetoceros (= Atlántico)
+?
28
С. schimperianus Karsten
Boreales
29
С. seychellams Karsten
Boreales
+?
+?
30
С. Simplex Ostf.4
Simplices
31
C. socialis Laud. var. socialis
Sociales
32
C. tortissimus Gran
Furcellati
33
C. vol cms Schtitt**
Pemviani
34 С. wighamii Brightw.*
Brevicatenati + + -
Species number
27 14 23 26 9 24 20 11
12 15 5
19 2 20 25 18
Note. * — study region; ** — the species findings are uncertain or doubtful. Примечание. * — район исследования авторов; ** — находки вида сомнительные.
1 As a synonym of С. biilbosiis (VanLandingham, 1968).
prevailing in water column. In phytoplankton, C. dichaeta and C. bul-bosus were found to constitute 6-16 % and 6-9 % of the total diatom cell number, respectively. In young ice and drifting ice, the relative abundance of these species greatly decreased (1 %). On the contrary, the share of C. neogracilis increased: 15-20 % in drifting ice and 4-8 % in young ice. Nevertheless, the most part of Chaetoceros species identified in the samples (C. atlanticus, C. castracanei, C. convolutus, C. criophilus, C. curvisetus, C. flexuosus, C. neglectus, C. pendulus and Chaetoceros spp.) occurred very rare both in sea ice and water column, with the relative abundance less than 0.5 % of total diatom cell number.
Table 5
Dominant species of the genus Chaetoceros in the Southern Ocean
Виды-доминанты рода Chaetoceros в Южном океане
Weddell Sea Ross Sea Davis Sea Bellingshausen Sea Pacific sector Admiralty Bay
Spring | C. socialis C. criophilus C. dichaeta C. neglectus
Summer C. dichaeta C. curvisetus C. neogracilis C. neglectus C. tortissimus C. criophilus C. atlanticus C. socialis C. criophilus C. dichaeta C. dichaeta C. neglectus C. simplex C. castracanei C. natatus C. atlanticus C. criophilus C. dichaeta C. neglectus C. tortissimus C. convolutus C. atlanticus C. dichaeta C. neglectus C. criophilus C. atlanticus
The predominance of Chaetoceros species, particularly, C. dichaeta and C. criophilus (Table 5) in Antarctic phytoplankton, was reported by other authors. R. Ligowski (1992) found in 1981-1989 in the western Atlantic sector of the Antarctic that among 12 dominant species of phy-toplankton, five species belonged to Chaetoceros: C. criophilus, C. di-chaeta, C. neglectus, C. socialis and C. tortissimus. Along with them, Corethron pennatum, «Pseudo-nitzschia delicatissima group», «Fra-gilariopsis group», Proboscia alata (Bright.) Sundstrom, Rhizosolenia antennata (Ehrenb.) N. E. Brown f. semispina Sundstrom and Thalassio-sira antarctica Comber were also the main constituents of phytoplankton.
E. Pakhomov et al. (2001) studied phytoplankton dynamics in ice-edge zone of the Lazarev Sea and reported differences between the Chaetoceros species in sea ice and in water column. During the December 1994 — January 1995 drogue study, C. neglectus, C. dichaeta and C. so-cialis (40-65 % of the total diatom cellnumber) prevailed in open-ocean water column. Only C. dichaeta was observed in sea ice samples with
very low relative abundance (0.4 %). Other Chaetoceros species (C. at-lanticus, C. neglectus, C. peruvianus and Chaetoceros spp.) were not found in sea ice, where Fragilariopsis cylindrus (Grun.) Krieg. was the absolute dominant in abundance.
In coastal waters nearly the Australian Antarctic Davis Station, C. di-chaeta, C. neglectus and C. simplex were the major constituents of diatom bloom (Marchant, 1992).
In upper 200 m layer of the water column in near-shore region of the Prydz Bay, C. dichaeta and C. neglectus were also found to be important constituents of phytoplankton (Kang, Fryxell, 1991). The former was the dominant in 10 m upper water layer, with the concentration reaching 3.0 x 105 cells/l (up to 35 % of the total diatom cells in the water column). The latter reached 8.1 x 105 cells/l in 25 m upper water layer.
In the northern Weddell Sea, in area between southern coast of the Weddell Sea and the Antarctic Peninsula, in 1984-1985 austral summer, Chaetoceros criophilus was one of the major constituents of phytoplank-ton. Along with this species, Corethron pennatum, Fragilariopsis ker-guelensis (O'Meara) Hust. and other Fragilariopsis spp. were the most abundant (Estrada, Delgado, 1990). H. Olguin and V. Alder (2011) found many Chaetoceros species to be dominant in 2002 austral summer both in the Weddell Sea and Subantarctic waters. The species found in Antarctic waters included C. tortissimus (72-85 % of diatom abundance at several stations, up to 7.8 x 105 cells/l), C. dichaeta (14-74 %, up to 2.2 x 105 cells/l), C. neglectus (12-18 %) and C. socialis (95 %, 7.6 x 104 cells/l). Dominance of C. convolutus (11 %), C. criophilus (9-38 %), C. decipiens (12-35 %) and C. rostratus (26-30 %) was noted in shallow waters of the northern Antarctic Peninsula and Argentina.
In coastal waters of Admiralty Bay (the South Shetlands), Ligowski (1990) found the concentration of diatom cells to decrease in April and increase again in November, after the austral winter. Corethron penna-tum and Thalassiotrix antarctica Karst. dominated in the phytoplankton during all the period of observation. However, when concentration of the diatoms decreased, the share of other species, including C. atlanticus and C. criophilus, increased.
Y. Tanimura et al. (1990) found that the Chaetoceros species were among the main constituents of the Lutzow-Holm Bay phytoplankton in 1982-1983 austral summer. The dominant group included 9 diatoms: Chaetoceros neglectus, C. tortissimus, Fragilaria sp., Fragilariopsis curta (V. H.) Hust., F. cylindrus, F. vanheurckii (M. Perag.) Hust., Nitzschia le-cointei V. H., Pseudo-nitzschia turgiduloides (Hasle) Hasle and Porosira pseudodenticulata (Hust.) Jouse. C. neglectus, C. tortissimus, F. cylindrus
and P. turgiduloides together comprised more than 84 % of the total diatom cell abundance. In March, the highest relative abundance of Chaetoceros species reached 80-90 % of the total diatom cell abundance.
Studying the distribution of diatoms in drifting brash ice and phyto-plankton, collected between the Elephant Island and the South Orkney Islands from late December 1988 till mid-January 1989, Ligowski et al. (1992) revealed clear differences in distribution of Chaetoceros species between sea ice and water column. Eight species of the genus were found in sea ice, with the highest relative abundance of C. neogracilis and Chaetoceros sp. reaching 48 ± 18 % and 27 ± 16 % of the total diatom cell abundance, respectively. C. atlanticus (13 ± 12 %) and C. criophilus (13 ± 12 %) also occurred, but were not the major components of sea ice assemblages. The relative abundance of Chaetoceros resting spores in ice was high (63 ± 17 %). In water column, the relative abundance of Chaetoceros sp. decreased down to 3 ± 6 %, and C. neogracilis was not found at all. The share of C. atlanticus did not change markedly. C. convolutus was found in phytoplankton with relative abundance of 13 ± 12 % and was not in sea ice. Moreover, the share of C. dichaeta highly increased (3 ± 6 % in ice and 20 ± 14 % in water column), and Chaetoceros resting spores, which were abundant in sea ice, were not found. However, the most prominent feature of plankton, in comparison with sea ice, was the high share of C. criophilus. In water column, the relative abundance of this species was more than seven times higher than in ice (97 ± 6 %). The share of two other species, C. aequatoralis and C. flexuosus, both in ice and water column was low and did not exceed 3 ± 6 %.
The biogeographical analysis of the genus Chaetoceros showed that the Antarctic, incuding Subantarctic and Convergence zone, is characterized by a high percentage (41 %) of endemic species. The cosmopolitan forms comprise 6 species (17 %), which is comparable to the Arctic. «Northern» taxa, namely 5 Arctic-boreal (15 %), 3 Arctic-boreal-tropical (9 %) and 2 boreal-tropical ones (6 %), constitute about a third of all Chaetoceros species. Among the «tropical» species, those with boreal-tropical-Antarctic (2 species) and tropical-Antarctic (1) range types were also found.
Twenty-seven Chaetoceros species were identified in sea ice samples from the Southern Ocean (Table 4).
Seven Chaetoceros species (C. atlanticus, C. convolutus, C. crio-philus, C. dichaeta, C. flexuosus, C. neglectus and C. neogracilis) were found in surface sea ice layers. The relative abundance of the majority of these species was very low, with the exception of C. dichaeta. Numerous cells of this species were found in fast-ice surface layers at Mirny and
Novolazarevskaya polar stations (Samsonov, 1995). At the Mirny Polar Station, in the austral summer (December — January), relative abundance of this species reached 35 % of the total diatom cell abundance. Observations of sea ice assemblages in the early austral winter (middle — late April) have shown that in fast-ice surface layers, despite of a pronounced decrease in the total diatom abundance, C. dichaeta, as well as Fragilari-opsis cylindrus and F. curta, were dominant. In fast-ice surface layers at the Novolazarevskaya Polar Station, C. dichaeta, along with F. curta, F. ritscheri (Hust.) Hasle, F. cylindrus and Eucampia antarctica (Castr.) Mangin, were the main constituents of sea ice assemblages. However, the relative abundance of the former, in comparison with the Mirny Polar Station, was lower (on average, 5-10 %). C. dichaeta was also found in surface sea ice layers at the Bunger Oasis, Leningradskaya and Russkaya polar stations and in the Weddell Sea, but much rarer than in the Mirny and Novolazarevskaya polar stations.
Eight Chaetoceros species and varieties (C. atlanticus var. skeleton, C. bulbosus, C. convolutus, C. criophilus, C. curvisetus, C. dichaeta, C. flexuosus and C. neglectus) were identified in sea ice interior layers. With the exception of C. dichaeta, C. bulbosus and C. neglectus, the other Chaetoceros species rarely occurred in the sea ice interior layers (Samsonov, 1995). Among the species mentioned above, C. dichaeta reached the highest abundance. This species was dominant (on average, 34 % of the total diatom cell abundance) at the Mirny Polar Station in the austral summer (December — January) and in the early austral winter (middle — late April). C. bulbosus and C. neglectus (Plate II, 7) were common in sea ice interior layers at the Mirny Polar Station and the Bunger Oasis. Moreover, the latter was found common in fast-ice interior layers at the Leningradskaya Polar Station.
Eleven Chaetoceros species and varieties (C. atlanticus var. atlanticus, C. atlanticus var. skeleton, C. bulbosus, C. convolutus, C. criophilus, C. curvisetus, C. dichaeta, C. flexuosus, C. neglectus, C. neogracilis and C. pendulus) were identified in bottom sea ice layer. Among these, C. di-chaeta reached the highest abundance. At the Mirny Polar Station, this species was dominant in fast-ice bottom layer: up to 24 % of the total diatom abundance in the austral summer (December — January) and up to 30 % in the early austral winter (middle — late April). C. neglectus was common both at the Mirny and Leningradskaya polar stations. The share of other Chaetoceros species in sea ice bottom layer was insignificant (Samsonov, 1995).
Thus, among 13 Chaetoceros species identified in the sea ice samples, only C. dichaeta was found to be dominant in sea ice assemblages; two
species (C. bulbosus and C. neglectus), were sometimes common in interior and bottom sea ice layers. The share of other Chaetoceros species in sea ice assemblages was minor.
In fast ice of the Davis Sea, since April 1968 till January 1969, centric diatoms, in comparison with the pennates, occured very rarely (Buinit-sky et al., 1974). Only few centric species in some samples exceeded the concentration of 2.0 x 104 cells/l; among the Chaetoceros species, only C. bulbosus reached 2.4 x 104 cells/l. Nevertheless, centric diatoms, first of all some species of the genus Chaetoceros (C. dichaeta and C. bulbo-sus), along with Proboscia alata, Rhizosolenia hebetata Bailey f. semispina (Hensen) Gran and Dactyliosolen antarcticus Castr., determined the specificity of sea ice assemblages in austral autumn. The significant increase in abundance of these species was observed in this period; in other periods, they occurred rarely or were not found at all.
Having studied the diatoms in surface water adjacent to ice, in newly forming ice and in ice-core samples from the Weddell Sea in January — February 1980, Garrison et al. (1982) revealed that in all the samples the Chaetoceros species were minor constituents to the flora. The relative abundance of C. simplex was 1 % in young ice and 4 % in water column, and rare single cells were observed in ice-core samples. The share of C. dichaeta in young ice, water column and ice-core samples also was low: 2 %, 2 % and rare single cells, respectively. The share of C. criophi-lus was even less; this species was not found in young ice and ice-core samples and constituted only 1 % of the total diatom cell abundance.
Nevertheless, some authors reported centric diatoms, including the Chaetoceros species, as the main constituent of sea ice assemblages. In fast-ice sheet at the South Orkney Islands, Whitaker (1977) observed numerous cells of C. schimperianus in congelation layers and columnar sea ice (ice of seawater origin) in austral winter. This species, along with Navicula glaciei V. H., Fragilariopsis curta and two Nitzschia species, was the main constituent of sea ice assemblages late in the season.
Having studied the sea ice assemblages in fast ice at Syowa Station since March 1983 till January 1984, K. Watanabe et al. (1990) revealed that centric diatoms Chaetoceros spp., Eucampia antarctica and Probos-cia alata were the major components in interior layer assemblage.
D. Clarke et al. (1984) included C. dichaeta and Chaetoceros cf. neo-gracilis in the list of dominant diatom species found in Antarctic sea ice. These species were found to be abundant in sea ice assemblages in the Weddell Sea (Clarke et al., 1984). In October — November, in frazil ice core, C. dichaeta comprised 4-8 % of the total diatom cell abundance and was subdominant along with Fragilariopsis cylindrus, F. kerguelensis, Synedra
sp. and Navicula sp., while Cylindrotheca closterium (Ehrenb.) Reimann et Lewin and Manguinea rigida (M. Perag.) Paddock (= Tropidoneis glacialis Heiden) were dominant species. The abundance of C. dichaeta and C. neo-gracilis cells was 1.2 x 104 cells/l and 4.0 x 103 cells/l, respectively. In the core consisting of 16 cm of congelation ice at the bottom overlain by 43 cm of frazil ice, the share of C. dichaeta was higher and along with F. cylin-drus, Pseudo-nitzschia prolongatoides (Hasle) Hasle and Cylindrotheca closterium, it was dominant in bottom layer. The abundance of this species in bottom layer of the core was 6.2 x 105 cells/l. The abundance of Chae-toceros neogracilis was also significant (3.6 x 104 cells/l).
Comparison of the genus Chaetoceros in the Arctic and Antarctic
Based on the original data and available literature sources, 55 Chae-toceros species have been known from the Arctic seas, and 34 species from the Southern Ocean. Twenty-two species of the genus are common for both polar regions.
The information on findings of C. criophilus, C. dichaeta and C. lo-renzianus in the Arctic and on the records of C. concavicornis, C. debilis, C. decipiens, C. densus, C. simplex, C. volans and C. wighamii from the Antarctic waters, as well as of C. pelagicus in both regions, is uncertain. These reports contradict the geographical ranges of these species based on their distribution mapping. The former two are considered to be distributed in the Southern Hemisphere, with rare findings in the tropical regions of the Northern Hemisphere and sometimes in the temperate waters. C. concavicornis, C. debilis, C. densus and C. volans are considered to be distributed in the Northern Hemisphere. C. criophilus and C. concavi-cornis, C. dichaeta and C. atlanticus, C. volans and C. peruvianus are morphologically rather similar to each other and may be easily misidenti-fied. An additional information and correct identification of these species using scanning electron microscopy are required. However, as far as we could not confirm or refute ones, we used these species in our analysis.
The comparative analysis of species composition of the genus Chae-toceros in the Arctic and Antarctic seas has shown that the degree of affinity of the species composition of the genus calculated by Jaccard index did not exceed 0.31. This value is close to that calculated when comparing the species composition of the genus in the Russian and Canadian Arctic seas. This fact also reflects the similarity between the two polar regions not only in species composition of the genus Chaetoceros, but also in that of phytoplankton as a whole.
Taxonomic analysis showed that the most part of the Chaetoceros species in the Arctic belong to the subgenus Hyalochaete (80 %), in contrast
to Antarctic waters where the species of the subgenus Chaetoceros prevail (59 %). Moreover, the sections Brevicatenati and Simplices together comprise the highest number of species in the Arctic (31 %), and the two sections Boreales Ostf. and Peruviani Hern.-Bec. together (43 %) do in the Antarctic.
This fact clearly determines the differences in taxonomic composition of the genus Chaetoceros in the two polar regions.
According to the taxonomic differences between the regions, the number of species forming the resting spores is significantly different. The number of such species in the Arctic is three times higher than in the Antarctic: 33 and 11 species, respectively. The main reason for this is probably a much larger area of shallow seas in the Arctic than in the Antarctic, and accordingly more favorable conditions for spore-forming Chaetoce-ros species.
The analysis of biogeographical characteristics of Chaetoceros species showed the following. In the Arctic, the seas are similar owing to the species distributed in the Northern Hemisphere and cosmopolitans. In the Antarctic, the share of endemic species is very high. The similarity of the Arctic and the Antarctic is mostly determined by cosmopolitan species. We suppose that the genus Chaetoceros includes the only one bipolar species.
In our opinion, the role of the genus Chaetoceros in phytoplankton of Arctic and Antarctic is also significantly different. Although its composition is rather incompletely studied and there is a lack of data for many regions, the share of Chaetoceros species in the groups of dominant species in the Arctic seas is the highest of all algae. Accordingly, the role of the genus in development and seasonal succession of phytoplankton is the most important. In Antarctic waters, the importance of the genus Chae-toceros is rather high, but is not always decisive both in terms of the number of dominant species or their role in the composition and succession of phytoplankton.
The two polar regions are also distinguished by the significance of the Chaetoceros species in sea ice assemblages. The number of species found in ice is high in both regions. However, in the Arctic seas, these species are not abundant in sea ice and, therefore, are not significant in sea ice assemblages. On the contrary, in the Antarctic, some Chaetoceros species are characterized by the high abundance in ice.
Thus, there are specific features in the total number of the Chaetoceros species, the number of rare and endemic species, occurrence, dominance, distribution and ecology of species, which distinguish the Arctic and Antarctic.
Conclusions
1. The species richness of the genus Chaetoceros in the Arctic and Antarctic regions is rather high: 55 species have been known for the Arctic and 33 for the Antarctic. There are some peculiar features in taxono-mic composition of the genus in each sea of both polar regions. Less than a half of the species are common for all the Arctic seas. The seas strongly differ in the total number of species, in the number of species of the subgenera Chaetoceros and Hyalochaete and in the sections containing the highest number of species.
2. The analysis of the Russian Arctic seas shows a high degree of similarity in species composition of the genus. Jaccard index of affinity ranged from 0.7 to 0.8. The comparison between all the Arctic seas shows the index variation from 0.4 to 0.8. The similarity of Chaetoceros species between the Arctic and the Antarctic did not exceed 0.31.
3. The majority of the Chaetoceros species are widely distributed both in the Arctic seas and in the Antarctic region. The cosmopolitan and northern cold-water species prevail in the Arctic. The high share of endemic species is characteristic for the Antarctic region. The similarity of species composition in two polar regions is mostly determined by cosmopolitan species.
4. The study of seasonal succession of the Chaetoceros species in plankton of the Russian Arctic seas showed some differences in composition of the dominant species, the period of their dominance, the abundance of Chaetoceros species and in seasonal changes of species composition.
5. The significance of the genus Chaetoceros in the Arctic plankton is very high. Its species make up groups of dominant species. Therefore, they often determine a development and abundance of phytoplankton as a whole. The significance of Chaetoceros species in sea ice assemblages is much lower; their presence is casual.
6. In Antarctic waters, the significance of Chaetoceros species is rather high. However, the number of dominant species of the genus and its share in the phytoplankton are lower than in Arctic. The importance of the species in sea ice assemblages is more significant as compared with the Arctic.
Acknowledgements
The authors thank Igor A. Melnikov (Institute of Oceanology of the Russian Academy of Sciences (RAS), Moscow) and many colleagues for unconditional help with the Arctic and Antarctic field collections. We also thank Alexei V. Hvalj, Irina V. Sokolova (Komarov Botanical Institute of
RAS, St. Petersburg) and Yuri B. Okolodkov (Universidad Veracruzana, Mexico) for their generous help in translating the manuscript and corrections in English. The present study was carried out within the framework of the current institutional research project (№ 0120125605) of the Komarov Botanical Institute and the Programme of the Presidium of RAS «Wildlife: Current status and problems of development», the project «Inventory of algal diversity in waterbodies and soils of North Russia».
References
Ackley S. F. 1982. Ice scavenging and nucleation: Two mechanisms for incorporation of algae into newly forming sea-ice. EOS, Trans. Amer. Geophys. Union. 63(3): 47. Ackley S. F., Dieckmann G. S., Shen H. T. 1987. Algal and foram incorporation into
new sea ice. EOS, Trans. Amer. Geophys. Union. 68: 173-176. Ackley S. F., Buck K. R., Taguchi S. 1979. Standing crop of algae in the sea ice of the
Weddell region. Deep Sea Res. 26A: 269-281. Ambrose W. G. Jr, Quillfeldt C. von, Clough L. M., Tilney P. V. R., Tucker T. 2005. The sub-ice algal community in the Chukchi sea: large- and small-scale patterns of abundance based on images from a remotely operated vehicle. Polar Biol. 28: 784-795. doi: 10.1007/s00300-005-0002-8 Bailey J. W. 1856. Notice of microscopic forms found in the soundings of the Sea of
Kamchatka. Amer. J. Sci. Arts. Ser. 2. 22: 1-6. Barabasheva Yu. M., Polyakova T. V., Tutubalin V. N., Fedorov V. D. 1979. Structure formative species of plankton community and the model of exponentially broken pivot. Nauchnye Dokl. Vysshei Shkoly. Biol. nauki. 10: 97-107. (In Russ.). Bauch H. A., Polyakova Ye. I. 2000. Late Holocene variations in Arctic shelf hydrology and sea-ice regime: evidence from north of the Lena Delta. Int. J. Earth Sci. 89: 569-577. doi: 10.1007/s005310000122 Bondarchuk L. L., Zernova V. V., Koltsova T. I. 1985. Diatoms in some regions of the Arctic shelf. Ecologiya fauny i flory pribrezhnykh zon okeana [Ecology of fauna and flora in nearshore of ocean]. Moscow: 74-93. (In Russ.). Buinitskiy V. H., Kozyrenko T. F., Shamontyev V. A. 1974. Microscopic algae in pack
ice of the Davis Sea. ProblemyArktiki iAntarktiki. 45: 100-109. (In Russ.). Buinitskiy V. H., Nikolaev V. A., Nikolaev S. E. 1977. Microscopic algae in fast ice of
the Alasheev Bay. Problemy Arktiki i Antarktiki. 49: 67-96. (In Russ.). Bunt J. S. 1963. Diatoms of Antarctic sea ice as agents of primary production. Nature. 199: 1255-1257.
Bunt J. S. 1964a. Primary productivity under sea ice in Antarctic waters. I. Concentrations and photosynthetic activities of microalgae in the waters of McMurdo Sound, Antarctica. Antarc. Res. Ser. 1: 13-26. Bunt J. S. 1964b. Primary productivity under sea ice in Antarctic waters. II. Influence of light and other factors on photosynthetic activities of Antarctic marine microalgae. Antarc. Res. Ser. 1: 27-31. Bunt J. S. 1968. Microalgae of the Antarctic pack-ice zone. Symp. Antarc. Oceanogr. Scott Polar Research Institute, Cambridge: 198-218.
Bunt J. S., Lee C. C. 1970. Seasonal primary production in Antarctic sea ice at Mc-Murdo Sound in 1967. J. Mar. Res. 28: 304-320.
Bunt J. S., Wood E. J. F. 1963. Microalgae and Antarctic sea-ice. Nature. 199: 12541257.
Bursa A. 1963. Phytoplankton in coastal waters of the Arctic ocean at point Barrow, Alaska. Arctic. 16(4): 239-262.
Castracane F. 1886. Report on the diatomaceae collected by H. M. S. «Challenger» during the years 1873-1876. Report on the scientific results of the voyage of H. M. S. «Challenger» during the years 1873-1876. Botany. 2(4): I—III, 1-178.
Cefarelli A. O., Vernet M., Ferrario M. E. 2011. Phytoplankton composition and abundance in relation to free-floating Antarctic icebergs. Deep-Sea Res. 2. 58(11-12): 1436-1450. doi:10.1016/j.dsr2.2010.11.023
Clarke D. B., Ackley S. F., Kumai M. 1984. Morphology and ecology of diatoms in sea ice from Weddell Sea. CREEL Report. 5: 1-46.
Cleve P. T. 1873. On diatoms from the arctic Sea. Bih. Kongl. Svenska Vetensk.-Akad. Handl. 1(13): 1-28.
Cleve P. T. 1883. Diatoms, collected during the expedition of the Vega. Nordenskioelds Vega-Expeditionens Vetenskapliga Iakttagelser, Stockholm. 3: 455-517.
Cleve P. T. 1899. Plankton collected by the Swedish expedition to Spitzbergen in 1898. Kongl. Svenska Vetensk.-Akad. Handl. 32(3): 1-50.
Cleve P. T., Grunow A. 1880. Beitrage zur Kenntnis der arctischen Diatomeen. Kongl. Svenska Vetensk.-Akad. Handl. 17(2): 1-121.
Cremer H. 1998. Die Diatomeen der Laptevsee (Arktischer Ozean): Taxonomie and biogegraphische Verbreitung. Ber. Polarforsch. 260: 1-205.
Diatomovye vodorosli SSSR. Iskopaemye i sovremennye. T. 1 [The diatoms of the USSR. Fossil and recent. Vol. 1]. 1974. Leningrad: 403 p. (In Russ.).
Druzhkov N. V., Makarevich P. R. 1992. Structural characteristics of the microphy-toplankton seasonal development in the coastal ecosystem. Phytoplankton of the Barents Sea. Apatity: 83-96.
Ehrenberg C. G. 1841(1839). Über noch jetzt zahlreich lebende Thierarten der Kreidebildung und den Organismus der Polythalamien. Abh. Königl. Akad. Wiss. Berlin: 81-174.
Ehrenberg C. G. 1844. Einige vorläufige Resultate seiner Untersuchungen der ihm von der Südpolreise des Capitain Ross. Deutsche Akad. Wiss. Berlin, Berichte: 182-207.
Ehrenberg C. G. 1853. Über neue Anschauungen des kleinsten nordlichen Polarlebens. Deutsche Akad. Wiss. Berlin, Monatsber. : 1-522.
El-Sayed S. Z., Turner J. T. 1977. Productivity of the Antarctic and tropical/subtropical regions: a comparative study. Polar Oceans: 463-503.
Estrada M., Delgado M. 1990. Summer phytoplankton distributions in the Weddell Sea. Polar Biol. 10: 441-449.
Fedorov V. D. 1969. Predominatal forms of the White Sea phytoplankton. Dokl. Akad. Nauk SSSR. 188(4): 913-916. (In Russ.).
Fedorov V. D. 1979. O metodakh izucheniyafitoplanktona i ego aktivnosti [About methods of investigation of phytoplankton and its activities]. Moscow: 168 p. (In Russ.).
Fedorov V. D., Koltsova T. I. 1973. Experimental study of relative abundance of phytoplankton species. Okeanologiya. 13(1): 85-94. (In Russ.).
Fedorov V. D., Konoplya L. A., Kokin K. A. 1975. Seasonal changes of species variety of the White Sea plankton. Zhurn. Obshchei Biol. 36(3): 389-396. (In Russ.).
Fedorov V. D., Smirnov N. A., Ilyash L. V. 1991. Partial photosynthetic activities of the phytoplankton populations and method of their evaluation. Issledovaniye fitoplank-tona v sisteme monitoringa Baltiyskogo morya i drugikh morey SSSR [Phytoplankton studies in the monitoring of the seas, with reference to the Baltic Sea]. Moscow: 10-24. (In Russ. with Engl. abstract).
Fedorov V. D., Smirnov N. A., Koltsova T. I. 1982. Seasonal phytoplankton communities of White Sea and the analysis of similarity indices. Izv. Akad. Nauk SSSR. 5: 715-721. (In Russ. with Engl. abstract).
Fedorov V. D., Koltsova T. I., Kokin K. A., Khlebovich T. V. 1972. The study of necessities of mass species of the White Sea phytoplankton in mineral elements by the planning addition method. Bot. Zhurn. 57(4): 482-495. (In Russ. with Engl. abstract).
Fedorov V. D., Koltsova T. I., Smirnov N. A., Sarukhan-Bek K. K., Fedorov V. V. 1988. The White Sea plankton ecology. 1. Phytoplankton. Vestn. Moskovsk. Univ. Ser. 16. Biol. 4: 25-31. (In Russ. with Engl. abstract).
Fukushima H., Meguro H. 1966. The plankton ice as basic factor of the primary production in the Antarctic Ocean. Antarc. Rec. (Tokyo). 27: 99-101.
Galkina V. N., Buryakov V. Yu., Rura A. D. 1988. Quantitative distribution of phyto-and bacterioplankton in the Sonostrov region in the White Sea. Issledovaniya fauny morey. T. 39 [Exploration of the fauna of the seas. Vol. 30]. St. Petersburg: 40-49. (In Russ.).
Galkina V. N., Rura A. D., Gagaev S. Y. 1994. Phytoplankton and its production in the Chaun Bay of the East Siberian Sea. Issledovaniya fauny morey. T. 47(55): Ekosis-temy, flora i fauna Chaunskoy guby Vostochno-Sibirskogo morya. Chast 1 [Exploration of the fauna of the seas. Vol. 47(55): Ecosystems and the flora and fauna of the Chaun Bay of the East Siberian Sea. Part 1]. St. Petersburg: 112-120. (In Russ.).
Garrison D. L. 1991. Antarctic sea ice biota. Amer. Zool. 31: 17-33.
Garrison D. L., Buck K. R. 1985. Sea-ice algal communities in the Weddell Sea: species composition in ice and plankton assemblages. Marine biology of polar regions and effects of stress on marine organisms. New York: 103-122.
Garrison D. L., Ackley S. F., Buck K. R. 1983. A physical mechanism for establishing algal populations in frazil ice. Nature. 306: 363-365.
Garrison D. L., Buck K. R., Fryxell G. A. 1987. Algal assemblages in Antarctic pack ice and in ice-edge plankton. J. Phycol. 23(4): 564-572.
Garrison D. L., Buck K. R., Silver M. W. 1982. Ice algal communities in the Weddell Sea. Antarc. J. U. S. 18(5): 157-159.
Garrison D. L., Close A. R., Reimnitz E. 1989. Algae concentrated by frazil ice: evidence from laboratory experiments and field measurements. Antarc. Sci. 1: 313-316.
Genkel A. G. 1925. Materials for the Kara Sea phytoplankton. Izv. Biol. Nauchno-Issl. Inst. Permsk. Gosud. Univ. 3(2): 60 p. (In Russ.).
Genkel A. G. 1926. New species of the Kara Sea diatoms. Izv. Biol. Nauchno-Issl. Inst. Permsk. Gosud. Univ. 4(9): 415-418. (In Russ.).
Gogorev R. M. 1994. Some features of the horizontal distribution of phytoplankton in the Laptev Sea (August-September 1993). Nauchnye rezultaty ekspeditsii LAPEKS-93 [Scientific results of the expedition LAPEX-93]. St. Petersburg: 337-352. (In Russ.).
Gogorev R. M. 1995. Species composition of the Chupa Inlet phytoplankton of the White Sea. Novosti Sist. Nizsh. Rast. 30: 7-13. (In Russ.).
Gogorev R. M. 1998. Late-spring ice diatoms of the White Sea. Novosti Sist. Nizsh. Rast. 32: 8-13. (In Russ. with Engl. abstract).
Gogorev R. M. 2002. Vidy roda Chaetoceros Ehr. (Bacillariophyta) v arkticheskikh moryakh Rossii. Kand. Diss. [The genus Chaetoceros Ehr. species (Bacillariophyta) in the Russian Arctic seas. Cand. Diss.]. St. Petersburg: 237 p. (In Russ.).
Gogorev R. M. 2003a. A new Chaetoceros species (Bacillariophyta) from plankton of the Russian Arctic seas and its comparison with species of the section Simplicia. Bot. Zhurn. 88(4): 82-100.
Gogorev R. M. 2003b. The taxonomic review of the genus Chaetoceros (Bacillariophyta) of the White Sea. 1. Subgenus Chaetoceros, section Borealia. Bot. Zhurn. 88(8): 90-100. (In Russ.).
Gogorev R. M. 2004. The taxonomic review of the genus Chaetoceros (Bacillariophy-ta) of the White Sea. 2. Subgenus Chaetoceros, sections Peruviani and Convoluti. Bot. Zhurn. 89(2): 263-276. (In Russ.).
Gogorev R. M. 2005a. The taxonomic review of the genus Chaetoceros (Bacillariophyta) of the White Sea. 3. Subgenus Hyalochaete, sections Dicladia, Cylindrica and Compressa. Bot. Zhurn. 90(7): 1057-1072. (In Russ.).
Gogorev R. M. 2005b. Seasonal changes in phytoplankton from the Chupa inlet of the White Sea. Novosti Sist. Nizsh. Rast. 38: 38-47. (In Russ.).
Gogorev R. M. 2009. Taxonomic composition of planktonic and ice algae in Antarctic waters (2006-2007). Novosti Sist. Nizsh. Rast. 43: 36-49. (In Russ. with Engl. abstract).
Gogorev R. M. 2012. Morphology and taxonomy of the Chaetocerotales species (Bacillariophyta) from the Antarctic ocean. Novosti Sist. Nizsh. Rast. 46: 18-35. (In Russ. with Engl. abstract).
Gogorev R. M., Makarova I. V. 1999a. The genus Chaetoceros (Bacillariophyta) in the White Sea. Bot. Zhurn. 84(5): 31-40. (In Russ.).
Gogorev R. M., Makarova I. V. 1999b. The genus Chaetoceros Ehr. (Bacillariophyta) from the Laptev Sea. Algologia, Kiev. 9(2): 31-32.
Gogorev R. M., Okolodkov Yu. B. 1996. Species composition of the planktonic and sea-ice algae in the Chukchi Sea and Lavrentiya Bay, the Bering Sea, August 1991. Bot. Zhurn. 81(5): 35-41.
Golikova G. S., Krivonosova N. M., Medvedev V. S., Nagaeva G. A. 1972. Diatoms in sediment of the northern White Sea. Protsessy razvitiya i metody issledovaniya pribrezhnoy zony morya [Processes of development and methods of investigation in nearshore of sea]. Moscow: 155-172. (In Russ.).
Gostilovskaya M. I. 1948. Phytoplankton of the Gridinskaya Inlet of the White Sea. Raboty morsk. biol. stantsii Karelo-Finsk. univ. 1: 93-103. (In Russ.).
Gran H. H. 1897. Bemerkungen über das Plankton des Arktischen Meeres. Ber. Deutsch. Bot. Ges. 15(1): 132-136.
Gran H. H. 1904a. Diatomaceae from the ice-floes and plankton of the Arctic Ocean. Norwegian North Polar Expedition, 1893-1896: Sci. Results. Leipzig; Christiania. 4(11): 1-85.
Gran H. H. 1904b. Die Diatomeen der arktischen Meere. I. Die Diatomeen des Planktons. Fauna Arctica, Jena. 3(8): 509-554.
Grossi S. G., Sullivan C. W. 1985. Sea ice microbial communities. V. The vertical zona-tion of diatoms in an antarctic fast ice community. J. Phycol. 21: 401-409.
Grunow A. 1884. Die Diatomeen von Franz Josefs-Land. Denkschr. Kaiserl. Akad. Wiss, Wien. 48(2): 53-112.
Heiden H., Kolbe R. R. 1928. Die marinen Diatomeen der Deutschen Sudpolar-Expe-dition 1901-1903. Deutsch. SudpolarExped. (Bot.). 8: 447-715.
Hernandez-Becerril D. U., Flores Granados C. 1998. Species of the diatom genus Chaetoceros (Bacillariophyceae) in the plankton from the southern Gulf of Mexico. Bot. Mar. 41: 505-519.
Heywood R. B., Whitaker T. M. 1984. The Antarctic marine flora. Antarc. ecol. 2: 373-419.
Horner R. 1976. Sea ice organisms. Oceanogr. Mar. Biol. 14: 167-182.
Horner R. 1985. Ecology of sea ice algae. Sea ice biota. Boca Raton: 83-103.
Horner R., Schrader G. C. 1982. Relative contributions of ice algae, phytoplankton and benthic microalgae to primary production in near-shore regions of the Beaufort Sea. Arctic. 35: 485-503.
Hoshiai T., Kato M. 1962. Ecological notes on the diatom community of the sea ice in Antarctica. Bull. Mar. Biol. Sta. Asamushi. 10: 221-230.
Hsiao S. C. I. 1980. Quantitative composition, distribution, community structure and standing stock of sea ice microalgae in the Canadian Arctic. Arctic. 33: 768-793.
Hsiao S. C. I. 1983. A checklist of marine phytoplankton and sea ice microalgae recorded from Arctic Canada. NovaHedwigia. 37: 225-313.
Hustedt F. 1958. Diatomeen aus der Antarktis und dem Südatlantik. Deutsche antarktische Expedition 1938/39. 2: 103-191.
Ilyash L. V., Koltsova T. I. 1981. Phytoplankton of the Enisey Bay. Gidrobiol. Zhurn. 17(3): 3-8. (In Russ.).
Ilyash L. V., Fedorov V. D., Sarukhan-Bek K. K. 1996. Dynamics of biomass and functional characteristics of the White Sea diatoms Skeletonema costatum and Chaetoceros decipiens in process of accumulated cultivation. Izv. Rossiisk. Akad. Nauk. Ser. Biol. 4: 472-477. (In Russ.).
Ilyash L. V., Zhytina L. S., Fedorov V. D. 2003. Fitoplankton Belogo morya [Phytoplankton of the White Sea]. Moscow: 168 p. (In Russ.).
Kamshilov M. M., Zelikman E. A., Roukhiyainen M. I. 1958. Plankton of the East Murman coastal zone. Zakonomernosti skopleniya i migratsii promyslovykh ryb v pribrezhnoy zone Murmana i ikh svyaz s biologicheskimi i gidrokhimicheskimiprot-sessami [Patterns of aggregation and migration of commercial fishes in the Murman coastal zone and their relationship with biological, hydrological and hydro-chemical processes]. Moscow; Leningrad: 59-102. (In Russ.).
Kang S.-H., Fryxell G. A. 1991. Most abundant diatom species in water column assemblages from five LEG 119 drill sites in Prydz Bay, Antarctica: distributional patterns. Proc. ODP, Sci. Results. 119: 645-666.
Karsten G. 1905. Das Phytoplankton des Antarktischen Meeres nach dem Material der deutschen Tiefsee-Expedition 1898-1899. Deutsche Tiefsee-Expedition 18981899. 2(2): 1-136.
Khlebovich T. V. 1974. Qualitative composition and seasonal changes of phytoplankton abundance in the Chupa Inlet of the White Sea. Issledovaniya fauny morey. T. 13:
Sezonnye yavleniya v zhizni Belogo i Barentseva morey [Exploration of the fauna of the seas. Vol. 13: Seasonal phenomena in the Barents and White seas]. Leningrad: 56-64. (In Russ.).
Kiselev I. A. 1925. Phytoplankton of the White Sea. Issledovaniya russkikh morey. 2(105): 1-43. (In Russ. with Germ. abstract).
Kiselev I. A. 1928. On the distribution and composition of phytoplankton in the Barents Sea. Trudy Inst. izuch. Severa. 37: 28-42. (In Russ.).
Kiselev I. A. 1930. Phytoplankton distribution at the transect Novaya Zemlya — FranzJosef Land with respect to the hydrological conditions. Izv. Gosud. gidrolog. inst. 31: 1-140. (In Russ.).
Kiselev I. A. 1932. Materials on the south-eastern Laptev Sea microflora. Issledovaniye morey SSSR. 15: 65-103. (In Russ.).
Kiselev I. A. 1935. Some data on phytoplankton in the north-eastern Kara Sea. Trudy Taimyrsk. gidrograf. ekspeditsii 1932 g. Part 2. Leningrad: 191-202. (In Russ.).
Kiselev I. A. 1937. Phytoplankton composition and distribution in the northern Bering and southern Chukchi Sea. Issledovaniye morey SSSR. 25: 217-245. (In Russ.).
Kiselev I. A. 1939. Phytoplankton of the Malaya Pir'ju-Inlet of the White Sea as indicator of the Umba river freshening influence. Trudy Gosud. gidrolog. inst. 8(18): 201-216. (In Russ.).
Kiselev I. A. 1957. Features of phytoplankton distribution in the White Sea. Materialy po kompleksnomu izucheniju Belogo morya. T. 1 [Data on complex investigation of the White Sea. Vol. 1]. Moscow; Leningrad: 282-304. (In Russ.).
Kiselev I. A. 1969. Plankton morey i kontinentalnykh vodoemov. T. 1: Vvodnye i obsh-chie voprosy planktologii [Plankton of the seas and continental waters. Vol. 1: Introductory and general problems of the planktology]. Leningrad: 658 p. (In Russ.).
Kokin K. A., Koltsova T. I. 1971. To the problem of the White Sea phytoplankton study. Kompleksnye issledovaniya prirody okeana [Complex investigation of ocean nature]. Moscow. 3: 172-183. (In Russ.).
Kokin K. A., Koltzova T. I., Khlebovich T. V. 1970. The composition and the dynamics of the phytoplankton along the Karelian coast of the White Sea. Bot. Zhurn. 55(4): 499-509. (In Russ. with Engl. abstract).
Koltsova T. I., Ilyash L. V. 1982. Distribution of phytoplankton in the coastal waters of the Tajmyr Peninsula depending on the hydrological conditions. Vodnye Resursy. 4: 158-165. (In Russ.).
Konoplya L. A. 1971. Composition and seasonal dynamics of the Velikaya Salma strait phytoplankton (Kandalaksha Bay of the White Sea). Ekologiya morskikh organiz-mov [Ecology of marine organisms]. Moscow: 42-48. (In Russ.).
Konoplya L. A. 1973. Vertical distribution of phytoplankton from the Karelian coast of the White Sea. Okeanologiya. 13(2): 314-320. (In Russ.).
Konoplya L. A. 1974. Sezonnye izmeneniyaplanktona Belogo morya i ego vidovoe raz-noobrazie. Avtoref. Kand. Diss. [Seasonal changes of the White Sea plankton and its species diversity. Abstr. Cand. Diss.]. Moscow: 28 p. (In Russ.).
Levander K. M. 1916. Zur Kenntnis des Kustenplanktons im Weissen Meere. Med-deland. Soc. Fauna Fl. Fenn. 42: 150-159.
Ligowski R. 1990. Diatoms in various habitats in the Admiralty Bay inshore waters (South Shetlands, Antarctica). Abstr. 11th Int. Symp. on living and fossil diatoms: 72.
Ligowski R. 1992. Distribution of antarctic diatoms in different habitats and its importance as food for krill. Proc. 5th Polar Diatom Colloquium : 8-10.
Ligowski R. 1993. Morskie okrzemki (Bacillariophyceae) w ekosystemie Antarktyki i ich znaczenie jako wskaznika zrodla pokarmu kryla (Euphausia superba Dana). Lodz: 241 p.
Ligowski R., Godlewski M., Lukowski A. 1992. Sea ice diatoms and ice edge planktonic diatoms at the northern limit of the Weddell sea pack ice. Proc. NIPR Symp. on Polar Biology. 5: 9-20.
Ligowski R., Jordan R. W., Assmy P. 2012. Morphological adaptation of a planktonic diatom to growth in Antarctic sea ice. Mar. Biol. 159: 817-827. doi: 10.1007/ s00227-011-1857-6
Likhacheva N. E. 1991. Phytoplankton species composition in river Nilma estuary (Kandalaksha Bay, White Sea). Issledovaniya fitoplanktona v sisteme monitoringa Baltiy-skogo morya i drugikh morey SSSR [Phytoplankton studies in the monitoring of the seas, with reference to the Baltic Sea]. Moscow: 95-110. (In Russ. with Engl. abstract).
Linko A. K. 1907. Studies on life and composition of the Barents Sea plankton. Trudy Murmanskoy nauchno-promyslovoy ekspeditsii. St. Petersburg: 1-113. (In Russ.).
Linko A. K. 1912. Plankton of the West Murman coast with respect to the fishery state in 1903-1905. Trudy Murmanskoy nauchno-promyslovoy ekspeditsii za 1905 g. Otchyot L. L. Breitfusa. St. Petersburg: 23-70. (In Russ.).
Linko A. K. 1915. Plankton of the West Murman coast with respect to the fishery state in 1906. Trudy Murmanskoy nauchno-promyslovoy ekspeditsii za 1906 g. Otchyot L. L. Breitfusa. St. Petersburg: 49-68. (In Russ.).
Makarevich P. R. 1997. Phytoplankton of the Kara Sea. Plankton morey ZapadnoyArk-tiki [Plankton of the West Arctic seas]. Apatity: 51-65. (In Russ.).
Makarevich P. R. 2007. Planktonnye algotsenozy estuarnykh ekosistem. Barentsevo, Karskoe i Azovskoe morya [Plankton algocenoses of estuary systems. The Barents, Kara and Azov Seas]. Moscow: 223 p. (In Russ.).
Makarevich P. R., Druzhkov N. V. 1994. Comparative characteristic of the phytoplank-ton of the southeastern part of Barents Sea and the southwestern part of Kara Sea. Algologiya, Kiev. 4(1): 78-88. (In Russ.).
Makarevich P. R., Koltsova T. I. 1989. History of study and recent condition of phytoplankton. Ekologiya i bioresursy Karskogo morya [Ecology and bioresourses of the Kara Sea]. Apatity: 38-45. (In Russ.).
Makarevich P. R., Larionov V. V. 1992. Taxonomic composition of phytoplankton and history of the phytoplankton studies in the Barents Sea. Phytoplankton of the Barents Sea. Apatity: 17-51.
Makarevich P. R., Druzhkov N. V., Bobrov Yu. A. 1991a. Phytoplankton of the mixing zone between Barents and White Seas. Issledovaniya fitoplanktona v sisteme monitoringa Baltiyskogo morya i drugikh morey SSSR [Phytoplankton studies in the monitoring of the seas, with reference to the Baltic Sea]. Moscow: 121-126. (In Russ. with Engl. abstract).
Makarevich P. R., Larionov V. V., Druzhkov N. V. 1991b. Average cell weights of the mass phytoplankton species of the Barents Sea. Preprint. Apatity: 12 p.
Makarevich P. R., Larionov V. V., Druzhkov N. V. 1993. Mean weights of dominant phytoplankton species of the Barents Sea. Algologiya, Kiev. 3(1): 103-106.
Makarova I. V., Gogorev R. M. 1998. New diatom species for the White Sea (Centro-phyceae). Novosti Sist. Nizsh. Rast. 32: 16-20. (In Russ.).
Makarova I. V., Gogorev R. M. 2000. New data on morphology of four Chaetoceros species (Bacillariophyta). Novosti Sist. Nizsh. Rast. 32: 16-20. (In Russ.).
Mangin L. 1915. Phytoplancton de l'Antarctique, Expedition du «Pourquoi Pas». Deuxieme Expedition Antarctic Française (1908-1910), commandee par le Dr. Jean Charcot. Sciences naturelles. Paris: 95 p.
Manguin E. 1960. Les diatomees de la Terre Adelie Campagne du «Commandant Charcot» 1949-1950. Ann. Sci. Nat, Bot. Ser. 12, 1(2): 233-384.
Marchant H. J. 1992. Seasonal changes in the abundance and species composition of planktonic diatoms at an Antarctic coastal site. Proc. IV Polar Diatom Colloquium : 11.
McNeill J., Barrie F. R., Buck W. R., Demoulin V., Greuter W., Hawkworth D. L., Her-endeen P. S., Knapp S., Marhold K., Prado J., Prud'homme van Reine W. F., Smith G. F., Wiersema J. H., Turland N. J. 2012. International Code of Nomenclature for algae, fungi and plants (Melbourne Code) adopted by the Eighteenth International Botanical Congress Melbourne, Australia, July 2011. Regnum Veg. 154. Koenig-stein: 232 p.
Meguro H. 1962. Plankton ice in the Antarctic Ocean. Antarc. Rec. (Tokyo). 14: 11921199.
Melnikov I. A. 1989. Ekosistema arkticheskogo morskogo l'da [The Arctic sea ice ecosystem]. Moscow: 191 p. (In Russ.).
Melnikov I. A. 1997. The Arctic sea ice ecosystem. Gordon and Breach Sci. Publ.: 204 p.
Meunier A. 1910. Microplancton des mers de Barents et de Kara. Dans: Duc d'Orleans Campagne arctique de 1907. Bruxelles: 355 p.
Mikhailovsky G. E., Zhytina L. S. 1989. Ice planktonic flora of the White Sea and its seasonal dynamics revealed by correlation analysis methods. Okeanologiya. 29(5): 796-803. (In Russ. with Engl. abstract).
Mirkin B. M., Rozenberg G. S., Naumova L. G. 1989. Slovar'ponyatiy i terminov sovremennoy fitotsenologii [The dictionary of terms of modern phytocoenology]. Moscow: 223 p. (In Russ.).
Nikolaev V. A. 1987. Morfologiya, taksonomiya i sistematika diatomovykh vodoroslei klassa Centrophyceae. Dokt. Diss. [Morphology, taxonomy and systematics of centric diatoms. Dokt. Diss.]. Leningrad: 373 p. (In Russ.).
Okolodkov Yu. B. 1986a. A numeric polytomous key for identification of species in the genus Chaetoceros (Bacillariophyta) of the Chukotskoye Sea. Bot. Zhurn. 71(2): 239-243. (In Russ.).
Okolodkov Yu. B. 1986b. Planktonnye vodorosli Chukotskogo morya. Avtoref. Kand. Diss. [Planktonic algae of the Chukchi Sea. Abstr. Cand. Diss.]. Leningrad: 17 p. (In Russ.).
Okolodkov Yu. B. 1987. Planktonic algae new and rare to the Chukchi Sea. Novosti Sist. Nizsh. Rast. 24: 61-68. (In Russ.).
Okolodkov Yu. B. 1988. On the planktonic flora of the East Siberian Sea. Novosti Sist. Nizsh. Rast. 25: 53-54. (In Russ.).
Okolodkov Yu. B. 1992. Cryopelagic flora of the Chukchi, East Siberian and Laptev seas. Proc. NIPR Symp. on Polar Biology. 5: 28-43.
Okolodkov Yu. B. 1993. A checklist of algal species found in the East Siberian Sea in May 1987. Polar Biol. 13: 7-11.
Okolodkov Yu. B. 1996. Net phytoplankton from the Barents Sea and Svalbard waters (collected on the cruise of the research vessel «Geolog Fersman», in July — September 1992), with emphasis on the Ceratium species as indicators of the Atlantic waters. Bot. Zhurn. 81(10): 1-9.
Pakhomov E. A., Rat'kova T. N., Froneman P. W., Wassmann P. 2001. Phytoplankton dynamics at the ice-edge zone of the Lazarev Sea (Southern Ocean) during the austral summer 1994/1995 drogue study. Polar Biol. 24: 422-431.
Palibin I. V. 1903a. Botanical results of the icebreaker «Ermak» cruise in the Arctic Ocean during summer 1901. Izv. S.-Peterburgsk. Bot. Sada. 3(2): 29-48. (In Russ.).
Palibin I. V. 1903b. Botanical results of the icebreaker «Ermak» cruise in the Arctic Ocean during summer 1901. Izv. S.-Peterburgsk. Bot. Sada. 3(3): 73-87. (In Russ.).
Palibin I. V. 1903c. Botanical results of the icebreaker «Ermak» cruise in the Arctic Ocean during summer 1901. Izv. S.-Peterburgsk. Bot. Sada. 3(5): 135-167. (In Russ.).
Palibin I. V. 1903d. Botanical results of the icebreaker «Ermak» cruise in the Arctic Ocean during summer 1901. Izv. S.-Peterburgsk. Bot. Sada. 3(6): 171-176. (In Russ.).
Palibin I. V. 1904. Botanical results of the icebreaker «Ermak» cruise in the Arctic Ocean during summer 1901. Izv. S.-Peterburgsk. Bot. Sada. 4(4): 71-78. (In Russ.).
Palibin I. V. 1906a. Botanical results of the icebreaker «Ermak» cruise in the Arctic Ocean during summer 1901. Izv. S.-Peterburgsk. Bot. Sada. 6(3): 90-102. (In Russ.).
Palibin I. V. 1906b. Botanical results of the icebreaker «Ermak» cruise in the Arctic Ocean during summer 1901. Izv. S.-Peterburgsk. Bot. Sada. 6(5-6): 159-183. (In Russ.).
Polyakova Ye. I. 1982. The sublittoral and lagoonal diatoms of the Chuckchee and East Siberian Seas. Okeanologiya. 22(5): 809-812. (In Russ.).
Priddle J., Fryxell G. A. 1985. Handbook of the common plankton diatoms of the Southern Ocean: Centrales except the genus Thalassiosira. Cambridge: 159 p.
Quillfeldt C. H. von. 1996. Ice algae and phytoplankton in north Norwegian and arctic waters: species composition, succession and distribution. Troms0: 35 p.
Quillfeldt C. H. von, Ambrose W. G. Jr, Clough L. M. 2003. High number of diatom species in first-year ice from the Chukchi Sea. Polar Biol. 26: 806-818. doi: 10.1007/s00300-003-0549-1
Radchenko I. G., Ilyash L. V., Polyakova T. V., Fedorov V. D. 1997. Summer-autumn plankton of different areas of the White Sea. Vestn. Moskovsk. Univ. Biol. 4: 24-29. (In Russ. with Engl. abstract).
Rat'kova T. N., Wassmann P. 2002. Seasonal variation and spatial distribution of phyto-and protozooplankton in the central Barents Sea. J. Mar. Systems. 38(1): 47-75. doi:10.1016/S0924-7963(02)00169-0
Roukhiyainen M. I. 1956. Some trends in the spring development of the East Murman phytoplankton. Dokl. Akad. NaukSSSR. 109(1): 209-213. (In Russ.).
Roukhiyainen M. I. 1960. Development patterns of the phytoplankton community during May — June 1958 in the southern Barents Sea. Trudy Murmansk. morsk. biol. inst. 2(6): 59-67. (In Russ.).
Roukhiyainen M. I. 1961. Features of spring bloom of phytoplankton during 19551957. Gidrologicheskie i biologicheskie osobennosti pribrezhnykh vod Murmana [Oceanographic and biological features of the Murman coastal waters]. Murmansk: 98-108. (In Russ.).
Roukhiyainen M. I. 1962. Seasonality in the phytoplankton development in the East Murman coastal waters. Trudy Murmansk. morsk. biol. inst. 4(8): 11-18. (In Russ.).
Roukhiyainen M. I. 1963. Fitoplankton yuzhnoy chasti Barentseva morya. Avtoref. Kand. Diss. [Phytoplankton of the southern Barents Sea. Abstr. Cand. Diss.]. Leningrad: 17 p. (In Russ.).
Rouhkiyainen M. I. 1965. A contribution to on the biology of the mass species of the phytoplankton in the southern part of the Barents Sea. Bot. Zhurn. 50(7): 943-953. (In Russ.).
Rouhkiyainen M. I. 1966. Qualitative composition of the Barents Sea phytoplankton. Trudy Murmansk. morsk. biol. inst. 11(15): 3-23. (In Russ.).
Ryzhov V. M. 1988. Ekologiya i geografiya fitoplanktona Barentseva morya. Dokt. Diss. [Ecology and geography of the Barents Sea phytoplankton. Doct. Diss.]. Dal-nie Zelentsy: 197 p. (In Russ.).
Samsonov N. I. 1995. Diatomovye vodoroslimorskikh l'dov Yuzhnogo okeana. Avtoref. Kand. Diss. [Diatoms in sea-ice of the Southern Ocean. Abstr. Cand. Diss.]. St. Petersburg: 17 p. (In Russ.).
Samsonov N. I. 1997. On preservation of the frustules of sea-ice diatoms (Bacillario-phyta) after the cleaning of these in peroxide. Bot. Zhurn. 82(1): 43-46. (In Russ.).
Samsonov N. I. 1999. On the preservation of sea-ice diatom frustules during cleaning in hydrogen peroxide and alcohol. Ber. Polarforsch. 306: 149-157.
Sarukhan-Bek K. K., Radchenko I. G., Koltzova T. I. 1991. Phytoplankton of the Tchupa Bay (Kandalaksha Bay, White Sea). Issledovaniye fitoplanktona v sisteme monitoringa Baltiyskogo morya i drugikh morey SSSR [Phytoplankton studies in the monitoring of the seas, with reference to the Baltic Sea]. Moscow: 111-120. (In Russ. with Engl. abstract).
Semina G. I., Sergeyeva O. M. 1983. Planktonic flora and biogeographical characteristic of the White Sea phytoplankton. Ekologiya i fiziologiya zhivotnykh i rasteniy Belogo morya [Ecology and physiology of animals and plants of the White Sea]. Moscow: 3-17. (In Russ.).
Sergeyeva O. M. 1991. Phytoplankton distribution in the basin of the White Sea in July 1972 and in August 1973. Issledovaniye fitoplanktona v sisteme monitoringa Baltiyskogo morya i drugikh morey SSSR [Phytoplankton studies in the monitoring of the seas, with reference to the Baltic Sea]. Moscow: 82-94. (In Russ. with Engl. abstract).
Shirshov P. P. 1937. Seasonal phenomena in the phytoplankton of the polar seas in the context of the ice regime. Trudy Vsesoyuzn. Arktich. Inst. T. 82: Biologicheskie indikatory gidrologicheskogo i ledovogo rezhima polyarnykh morey SSSR [Proc. All-Union Arctic Inst. Vol. 82: Biological indicators of the hydrological and ice regimes of the Arctic seas of the USSR]. Leningrad: 47-113. (In Russ.).
Shirshov P. P. 1938. Oceanologic observations. DokladyAkad. NaukSSSR. 29(8): 569578. (In Russ.).
Smirnov N. A., Fedorov V. V., Fedorov V. D. 1989. Functional ecological description of seasonal development of the White Sea phytoplankton. Zhurn. Obshch. Biol. 50(3): 353-365. (In Russ.).
Sokolova S. A. 1972. Phytoplankton near bird's bazaars of northern Novaya Zemlya. Osobennosti biologicheskoy produktivnosti vod blizptich'ikh bazarov severa No-voy Zemli [Peculiarities of bioproductivity of waters near bird's bazaars in the north of Novaya Zemlya]. Leningrad: 63-73. (In Russ.).
Solovyeva A. A., Churbanova I. V. 1980. Diurnal dynamics of the phytoplankton community in the coastal Barents Sea. Gidrobiol. Zhurn. 16(2): 15-20. (In Russ.).
Sullivan C. W., Palmisano A. C., Kottmeier S. 1982. Development of the sea ice microbial community in McMurdo Sound. Antarc. J. U. S. 17(5): 155-157.
Tanimura Y., Fukuchi M., Watanabe K., Moriwaki K. 1990. Diatoms in water column and sea-ice in Lutzow-Holm Bay, Antarctica, and their peservation in the underlying sediments. Bull. Natl. Sci. Mus. Tokyo, Ser. C. 16(1): 15-39.
Tuschling K., Juterzenka K., Okolodkov Yu. B., Anoshkin A. 2000. Composition and distribution of the pelagic and sympagic algal assemblades in the Laptev Sea during autumnal freeze-up. J. Plankton Res. 22(5): 843-864.
Usachev P. I. 1935. Composition and distribution of phytoplankton in the Barents Sea during summer 1931. TrudyArktich. inst. 21: 1-94. (In Russ.).
Usachev P. I. 1946a. Biological indicators of the origin of ice-floes in the Kara Sea, Laptev Sea, and the straits of the Franz-Joseph Land archipelago (based on the materials of the expeditions of the Arctic Research Institute on board the ice breaker «Sadko» in 1936 and 1937). Trudy Inst. Okeanol. 1: 113-150. (In Russ.).
Usachev P. I. 1946b. Phytoplankton materials of the icebreaker «G. Sedov» cruise. Trudy Dreyfuyushchey ekspeditsii Glavsevmorputi na ledokolnom parokhode «G. Sedov», 1937-1940 gg. (Biologiya). Moscow; Leningrad. 3: 371-397. (In Russ.).
Usachev P. I. 1949. The microflora of the polar ice. Trudy Inst. Okeanol. 3: 216-259. (In Russ.).
Usachev P. I. 1968. Phytoplankton of the Kara Sea. Plankton Tikhogo okeana [Plankton of the Pacific Ocean]. Moscow: 6-28. (In Russ.).
VanLandingham S. L. 1968. Catalogue of the fossil and recent genera and species of diatoms and their synonyms. II. Bacteriastrum through Coscinodiscus. Lehre Verlag von J. Cramer: 494-1086.
Vasjutina N. P. 1991. Phytoplankton of the south-eastern Barents Sea in July — August 1977. Issledovaniye fitoplanktona v sisteme monitoringa Baltiyskogo morya i drugikh morey SSSR [Phytoplankton studies in the monitoring of the seas, with reference to the Baltic Sea]. Moscow: 127-134. (In Russ. with Engl. abstract).
Veiko E. V. 1990. A study of seasonal phytoplankton dynamics within the region of mussel farm in the Chupa Bay of the Kandalaksha Gulf of the White Sea. Bot. Zhurn. 75(1): 31-37. (In Russ.).
Virketis M. A., Kiselev I. A. 1933. About the Chesha Bay plankton. Issledovaniye morey SSSR. 18. Leningrad: 115-144. (In Russ.).
Watanabe K. 1982. Centric diatoms communities found in the Antarctic sea ice. Antarc. Rec. (Tokyo). 74: 119-126.
Watanabe K. 1988. Sub ice microalgal strands in the Antarctic costal fast ice area near Syowa Station. Jap. J. Phycol. 36(3): 221-229.
Watanabe K., Satoh H., Hoshiai T. 1990. Seasonal variation in ice algal assemblages in the fast ice near Syowa station in 1983/84. Antarctic ecosystems. Springer-Verlag: 136-142.
Whitaker T. M. 1977. Sea ice habitats of Signy Island (South Orkneys) and their primary productivity. Adaptations within antarctic ecosystems. Proc. 3rd SCAR Symp. on Antarctic Biology. Smithsonian Insitute: 75-82.
Wiktor J. M., Okolodkov Yu. B. 1995. Phytoplankton. Atlas of the marine flora of Southern Spitsbergen. Gdansk: 9-295.
Wiktor J., Weslawski J. M., Wieczorek P., Zajaczkowski M., Okolodkov Yu. B. 1998. Phytoplankton and suspensions in relation to the freshwater in Arctic coastal marine ecosystems. Polish Polar Res. 19(3-4): 219-234.
Zabelina M. M. 1931. Some new data on the Kara Sea phytoplankton. Issledovaniye morey SSSR. 13. Leningrad: 105-143. (In Russ.).
Zabelina M. M. 1946. Phytoplankton of the southwestern Kara Sea. Trudy Arktich. nauchno-issled. inst. Glavn. upravleniya Sevmorputi. 193: 45-73. (In Russ.).
Zernova V. V. 2005. Fitoplankton Yuzhnogo okeana [Phytoplankton of the South Ocean]. Moscow: 208 p. (In Russ.).
Zhytina L. S. 1981a. Prostranstvennoe raspredelenie fitoplanktona Belogo morya. Avtoref. Kand. Diss. [Spatial distribution of the White Sea phytoplankton. Abstr. Cand. Diss.]. Moscow: 22 p. (In Russ.).
Zhytina L. S. 1981b. Vertical distribution of phytoplankton in the White Sea. Nauchnye Dokl. Vysshei Shkoly. Biol. nauki. 1: 63-68. (In Russ.).
Zhytina L. S. 1982. Similarity in phytoplankton community of the White Sea. Vestn. Moskovsk. Univ. Biol. 2: 50-56. (In Russ. with Engl. abstract).
Zhytina L. S. 1986. Reproduction rate of some planktonic algae in the White Sea. Nauchnye Dokl. Vysshei Shkoly. Biol. nauki. 1: 63-65. (In Russ. with Engl. abstract).
Zhytina L. S., Mikhailovsky G. E. 1990. Ice and planktonic flora in the White Sea as an object of monitoring. Biologicheskiy monitoring pribrezhnykh vod Belogo morya [Biological monitoring in coastal waters of the White Sea]. Moscow: 41-49. (In Russ.).
Zhytina L. S., Kolosova E. G., Koltsova T. I., Polyakova T. V., Fedorov V. D. 1988. The changes in plankton of the White Sea. Issledovaniya Mirovogo okeana [Investigation of the World Ocean]. Moscow: 55-68. (In Russ.).
Литература
Ackley S. F. 1982. Ice scavenging and nucleation: Two mechanisms for incorporation of algae into newly forming sea-ice. EOS, Trans. Amer. Geophys. Union. 63(3): 47.
Ackley S. F., Dieckmann G. S., Shen H. T. 1987. Algal and foram incorporation into new sea ice. EOS, Trans. Amer. Geophys. Union. 68: 173-176.
Ackley S. F., Buck K. R., Taguchi S. 1979. Standing crop of algae in the sea ice of the Weddell region. Deep Sea Res. 26A: 269-281.
Ambrose W. G. Jr, Quillfeldt C. von, Clough L. M., Tilney P. V. R., Tucker T. 2005. The sub-ice algal community in the Chukchi sea: large- and small-scale patterns of abundance based on images from a remotely operated vehicle. Polar Biol. 28: 784-795. doi: 10.1007/s00300-005-0002-8
Bailey J. W. 1856. Notice of microscopic forms found in the soundings of the Sea of Kamchatka. Amer. J. Sci. Arts. Ser. 2. 22: 1-6.
[Barabasheva et al.] Барабашева Ю. М., Полякова Т. В., Тутубалин В. Н., Федоров В. Д. 1979. Структурообразующие виды планктонного соoбщества и модель экспоненциально разломанного стержня. Научные докл. высшей школы. Биол. науки. 10: 97-107.
Bauch H. A., Polyakova Ye. I. 2000. Late Holocene variations in Arctic shelf hydrology and sea-ice regime: evidence from north of the Lena Delta. Int. J. Earth Sci. 89: 569-577. doi: 10.1007/s005310000122
[Bondarchuk et al.] Бондарчук Л. Л., Зернова В. В., Кольцова Т. И. 1985. Диатомовые водоросли некоторых районов арктического шельфа. Экология фауны и флоры прибрежных зон океана. М.: 74-93.
[Buinitskiy et al.] Буйницкий В. Х., Козыренко Т. Ф., Шамонтьев В. А. 1974. Микроскопические водоросли в припайных льдах моря Дейвиса. Проблемы Арктики и Антарктики. 45: 100-109.
[Buinitskiy et al.] Буйницкий В. Х., Николаев В. А., Николаев С. Е. 1977. Микроскопические водоросли в припайных льдах залива Алашеева. Проблемы Арктики и Антарктики. 49: 67-96.
Bunt J. S. 1963. Diatoms of Antarctic sea ice as agents of primary production. Nature. 199: 1255-1257.
Bunt J. S. 1964a. Primary productivity under sea ice in Antarctic waters. I. Concentrations and photosynthetic activities of microalgae in the waters of McMurdo Sound, Antarctica. Antarc. Res. Ser. 1: 13-26.
Bunt J. S. 1964b. Primary productivity under sea ice in Antarctic waters. II. Influence of light and other factors on photosynthetic activities of Antarctic marine microalgae. Antarc. Res. Ser. 1: 27-31.
Bunt J. S. 1968. Microalgae of the Antarctic pack-ice zone. Symp. Antarc. Oceanogr. Scott Polar Research Institute, Cambridge: 198-218.
Bunt J. S., Lee C. C. 1970. Seasonal primary production in Antarctic sea ice at McMurdo Sound in 1967. J. Mar. Res. 28: 304-320.
Bunt J. S., Wood E. J. F. 1963. Microalgae and Antarctic sea-ice. Nature. 199: 12541257.
Bursa A. 1963. Phytoplankton in coastal waters of the Arctic ocean at point Barrow, Alaska. Arctic. 16(4): 239-262.
Castracane F. 1886. Report on the diatomaceae collected by H. M. S. «Challenger» during the years 1873-1876. Report on the scientific results of the voyage of H. M. S. «Challenger» during the years 1873-1876. Botany. 2(4): I-III, 1-178.
Cefarelli A. O., Vernet M., Ferrario M. E. 2011. Phytoplankton composition and abundance in relation to free-floating Antarctic icebergs. Deep-Sea Res. 2. 58(11-12): 1436-1450. doi:10.1016/j.dsr2.2010.11.023
Clarke D. B., Ackley S. F., Kumai M. 1984. Morphology and ecology of diatoms in sea ice from Weddell Sea. CREEL Report. 5: 1-46.
Cleve P. T. 1873. On diatoms from the arctic Sea. Bih. Kongl. Svenska Vetensk.-Akad. Handl. 1(13): 1-28.
deve P. T. 1883. Diatoms, collected during the expedition of the Vega. Nordenskioeld's Vega-Expeditionens Vetenskapliga Iakttagelser, Stockholm. 3: 455-517.
Cleve P. T. 1899. Plankton collected by the Swedish expedition to Spitzbergen in 1898. Kongl. Svenska Vetensk.-Akad. Handl. 32(3): 1-50.
Cleve P. T., Grunow A. 1880. Beitrage zur Kenntnis der arctischen Diatomeen. Kongl. Svenska Vetensk.-Akad. Handl. 17(2): 1-121.
Cremer H. 1998. Die Diatomeen der Laptevsee (Arktischer Ozean): Taxonomie and biogegraphische Verbreitung. Ber. Polarforsch. 260: 1-205.
[Diatomovye...] Диатомовые водоросли СССР. Ископаемые и современные. Т. 1. 1974. Л.: 403 с.
Druzhkov N. V., Makarevich P. R. 1992. Structural characteristics of the microphy-toplankton seasonal development in the coastal ecosystem. Phytoplankton of the Barents Sea. Аpatity: 83-96.
Ehrenberg C. G. 1841(1839). Über noch jetzt zahlreich lebende Thierarten der Kreidebildung und den Organismus der Polythalamien. Abh. Königl. Akad. Wiss. Berlin: 81-174.
Ehrenberg C. G. 1844. Einige vorläufige Resultate seiner Untersuchungen der ihm von der Südpolreise des Capitain Ross. Deutsche Akad. Wiss. Berlin, Berichte : 182-207.
Ehrenberg C. G. 1853. Über neue Anschauungen des kleinsten nordlichen Polarlebens. Deutsche Akad. Wiss. Berlin, Monatsber. : 1-522.
El-Sayed S. Z., Turner J. T. 1977. Productivity of the Antarctic and tropical/subtropical regions: a comparative study. Polar Oceans: 463-503.
Estrada M., Delgado M. 1990. Summer phytoplankton distributions in the Weddell Sea. Polar Biol. 10: 441-449.
[Fedorov] Федоров В. Д. 1969. Доминирующие формы фитопланктона Белого моря. Докл. Акад. наук СССР. 188(4): 913-916.
[Fedorov] Федоров В. Д. 1979. О методах изучения фитопланктона и его активности. М.: 168 с.
[Fedorov, Koltsova] Федоров В. Д., Кольцова Т. И. 1973. Экспериментальное исследование относительного обилия видов фитопланктона. Океанология. 13(1): 85-94.
[Fedorov et al.] Федоров В. Д., Конопля Л. А., Кокин К. А. 1975. Сезонные изменения видового разнообразия планктона Белого моря. Журн. общей биол. 36(3): 389-396.
[Fedorov et al.] Федоров В. Д., Смирнов Н. А., Ильяш Л. В. 1991. Парциальные фотосинтетические активности популяций фитопланктона и метод их оценки. Исследование фитопланктона в системе мониторинга Балтийского моря и других морей СССР. М.: 10-24.
[Fedorov et al.] Федоров В. Д., Смирнов Н. А., Кольцова Т. И. 1982. Сезонные комплексы фитопланктона Белого моря и анализ индексов сходства. Изв. Акад. наук СССР. Сер. биол. 5: 715-721.
[Fedorov et al.] Федоров В. Д., Кольцова Т. И., Кокин К. А., Хлебович Т. В. 1972. Изучение потребности массовых форм фитопланктона Белого моря в элементах минерального питания методом планируемых добавок. Бот. журн. 57(4): 482-495.
[Fedorov et al.] Федоров В. Д., Кольцова Т. И., Смирнов Н. А., Сарухан-Бек К. К., Федоров В. В. 1988. Экология планктона Белого моря. 1. Фитопланктон. Вестн. Московск. унив. Сер. 16. Биол.. 4: 25-31.
Fukushima H., Meguro H. 1966. The plankton ice as basic factor of the primary production in the Antarctic Ocean. Antarc. Rec. (Tokyo). 27: 99-101.
[Galkina et al.] Галкина В. Н., Буряков В. Ю., Рура А. Д. 1988. Количественное распределение фито- и бактериопланктона в районе Сонострова в Белом море. Исследования фауны морей. Т. 39. Л.: 40-49.
[Galkina et al.] Галкина В. Н., Рура А. Д., Гагаев С. Ю. 1994. Фитопланктон и его продукция в Чаунской губе Восточно-Сибирского моря. Исследования фауны морей. Т. 47(55): Экосистемы, флора и фауна Чаунской губы Восточно-Сибирского моря. Часть 1. СПб.: 112-120.
Garrison D. L. 1991. Antarctic sea ice biota. Amer. Zool. 31: 17-33.
Garrison D. L., Buck K. R. 1985. Sea-ice algal communities in the Weddell Sea: species composition in ice and plankton assemblages. Marine biology of polar regions and effects of stress on marine organisms. New York: 103-122.
Garrison D. L., Ackley S. F., Buck K. R. 1983. A physical mechanism for establishing algal populations in frazil ice. Nature. 306: 363-365.
Garrison D. L., Buck K. R., Fryxell G. A. 1987. Algal assemblages in Antarctic pack ice and in ice-edge plankton. J. Phycol. 23(4): 564-572.
Garrison D. L., Buck K. R., Silver M. W. 1982. Ice algal communities in the Weddell Sea. Antarc. J. U. S. 18(5): 157-159.
Garrison D. L., Close A. R., Reimnitz E. 1989. Algae concentrated by frazil ice: evidence from laboratory experiments and field measurements. Antarc. Sci. 1: 313-316.
[Genkel] Генкель А. Г. 1925. Материалы к фитопланктону Карского моря. Изв. Биол. научно-иссл. инст. Пермск. госуд. унив. 3(2): 60 с.
[Genkel] Генкель А. Г. 1926. Новые виды диатомей Карского моря. Изв. Биол. научно-иссл. инст. Пермск. госуд. унив. 4(9): 415-418.
[Gogorev] Гогорев Р. М. 1994. Некоторые особенности горизонтального распределения фитопланктона в море Лаптевых (август — сентябрь 1993 г.). Научные результаты экспедиции ЛАПЭКС-93. СПб.: 337-352.
[Gogorev] Гогорев Р. М. 1995. Видовой состав фитопланктона губы Чупа Белого моря. Новости сист. низш. раст. 30: 7-13.
[Gogorev] Гогорев Р. М. 1998. Диатомовые водоросли поздневесеннего льда Белого моря. Новости сист. низш. раст. 32: 8-13.
[Gogorev] Гогорев Р. М. 2002. Виды рода Chaetoceros Ehr. (Bacillariophyta) в арктических морях России. Дис. ... канд. биол. наук. СПб.: 237 с.
[Gogorev] Gogorev R. M. 2003a. A new Chaetoceros species (Bacillariophyta) from plankton of the Russian Arctic seas and its comparison with species of the section Simplicia. Бот. журн. 88(4): 82-100.
[Gogorev] Гогорев Р. М. 2003b. Таксономический обзор рода Chaetoceros (Bacil-lariophyta) Белого моря. 1. Подрод Chaetoceros, секция Borealia. Бот. журн. 88(8): 90-100.
[Gogorev] Гогорев Р. М. 2004. Таксономический обзор рода Chaetoceros (Bacillariophyta) Белого моря. 2. Подрод Chaetoceros, секция Peruviani и Convoluti. Бот. журн. 89(2): 263-276.
[Gogorev] Гогорев Р. М. 2005а. Таксономический обзор рода Chaetoceros (Bacillariophyta) Белого моря. 3. Подрод Chaetoceros, секции Dicladia, Cylindrica и Compressa. Бот. журн. 90(7): 1057-1072.
[Gogorev] Гогорев Р. М. 2005b. Сезонные изменения фитопланктона губы Чупа
Белого моря. Новости сист. низш. раст. 38: 38-47. [Gogorev] Гогорев Р. М. 2009. Таксономический состав планктонных и ледовых водорослей в водах Антарктики (2006-2007 гг.). Новости сист. низш. раст. 43: 36-49.
[Gogorev] Гогорев Р. М. 2012. Морфология и таксономия видов порядка Сhaetocerotales (Bacillariophyta) из Южного океана. Новости сист. низш. раст. 46: 18-35.
[Gogorev, Makarova] Гогорев Р. М., Макарова И. В. 1999а. Род Chaetoceros (Bacillariophyta) в Белом море. Бот. журн. 84(5): 31-40. Gogorev R. M., Makarova I. V. 1999b. The genus Chaetoceros Ehr. (Bacillariophyta)
from the Laptev Sea. Algologia, Kiev. 9(2): 31-32. Gogorev R. M., Okolodkov Yu. B. 1996. Species composition of the planktonic and sea-ice algae in the Chukchi Sea and Lavrentiya Bay, the Bering Sea, August 1991. Бот. журн. 81(5): 35-41. [Golikova et al.] Голикова Г. С., Кривоносова Н. М., Медведев В. С., Нагаева Г. А. 1972. Диатомовые водоросли во взвеси северной части Белого моря. Процессы развития и методы исследования прибрежной зоны моря. М.: 155172.
[Gostilovskaya] Гостиловская М. И. 1948. Фитопланктон Гридинской губы Белого
моря. Работы Морск. биол. станции Карело-Финск. унив. 1: 93-103. Gran H. H. 1897. Bemerkungen über das Plankton des Arktischen Meeres. Ber. Deutsch.
Bot. Ges. 15(1): 132-136. Gran H. H. 1904a. Diatomaceae from the ice-floes and plankton of the Arctic Ocean. Norwegian North Polar Expedition, 1893-1896: Sci. Results. Leipzig; Christiania. 4(11): 1-85.
Gran H. H. 1904b. Die Diatomeen der arktischen Meere. I. Die Diatomeen des Planktons. Fauna Arctica, Jena. 3(8): 509-554. Grossi S. G., Sullivan C. W. 1985. Sea ice microbial communities. V. The vertical zona-
tion of diatoms in an antarctic fast ice community. J. Phycol. 21: 401-409. Grunow A. 1884. Die Diatomeen von Franz Josefs-Land. Denkschr. Kaiserl. Akad.
Wiss., Wien. 48(2): 53-112. Heiden H., Kolbe R. R. 1928. Die marinen Diatomeen der Deutschen Sudpolar-Expe-
dition 1901-1903. Deutsch. SudpolarExped. (Bot.). 8: 447-715. Hernandez-Becerril D. U., Flores Granados C. 1998. Species of the diatom genus Chaetoceros (Bacillariophyceae) in the plankton from the southern Gulf of Mexico. Bot. Mar. 41: 505-519.
Heywood R. B, Whitaker T. M. 1984. The Antarctic marine flora. Antarc. ecol. 2: 373419.
Horner R. 1976. Sea ice organisms. Oceanogr. Mar. Biol. 14: 167-182. Horner R. 1985. Ecology of sea ice algae. Sea ice biota. Boca Raton: 83-103. Horner R., Schrader G. C. 1982. Relative contributions of ice algae, phytoplankton and benthic microalgae to primary production in near-shore regions of the Beaufort Sea. Arctic. 35: 485-503.
Hoshiai T., Kato M. 1962. Ecological notes on the diatom community of the sea ice in Antarctica. Bull. Mar. Biol. Sta. Asamushi. 10: 221-230.
Hsiao S. C. I. 1980. Quantitative composition, distribution, community structure and standing stock of sea ice microalgae in the Canadian Arctic. Arctic. 33: 768-793.
Hsiao S. C. I. 1983. A checklist of marine phytoplankton and sea ice microalgae recorded from Arctic Canada. NovaHedwigia. 37: 225-313.
Hustedt F. 1958. Diatomeen aus der Antarktis und dem Südatlantik. Deutsche antarktische Expedition 1938/39. 2: 103-191.
[Ilyash, Koltsova] Ильяш Л. В., Кольцова Т. И. 1981. Фитопланктон Енисейского залива. Гидробиол. журн. 17(3): 3-8.
[Ilyash et al.] Ильяш Л. В., Федоров В. Д., Сарухан-Бек К. К. 1996. Динамика биомассы и функциональных характеристик беломорских диатомовых водорослей Skeletonema costatum и Chaetoceros decipiens при накопительном культивировании. Изв. Российск. акад. наук. Сер. биол. 4: 472-477.
[Ilyash et al.] Ильяш Л. В., Житина Л. С., Федоров В. Д. 2003. Фитопланктон Белого моря. М.: 168 с.
[Kamshilov et al.] Камшилов М. М., Зеликман Э. А., Роухияйнен М. И. 1958. Планктон прибрежья Мурмана. Закономерности скопления и миграции промысловых рыб в прибрежной зоне Мурмана и их связь с биологическими, гидрологическими и гидрохимическими процессами. М.; Л.: 59-102.
Kang S.-H., Fryxell G. A. 1991. Most abundant diatom species in water column assemblages from five LEG 119 drill sites in Prydz Bay, Antarctica: distributional patterns. Proc. ODP, Sci. Results. 119: 645-666.
Karsten G. 1905. Das Phytoplankton des Antarktischen Meeres nach dem Material der deutschen Tiefsee-Expedition 1898-1899. Deutsche Tiefsee-Expedition 18981899. 2(2): 1-136.
[Khlebovich] Хлебович Т. В. 1974. Качественный состав и сезонные изменения численности фитопланктона в губе Чупа Белого моря. Исследования фауны морей. Т. 13: Сезонные явления в жизни Белого и Баренцева морей. Л.: 56-64.
[Kiselev] Киселев И. А. 1925. Фитопланктон Белого моря. Исследования русских морей. 2(105): 1-43.
[Kiselev] Киселев И. А. 1928. К вопросу о распределении и составе фитопланктона в Баренцевом море. Труды Инст. изуч. Севера. 37: 28-42.
[Kiselev] Киселев И. А. 1930. Распределение фитопланктона по разрезу Новая Земля — Земля Франца Иосифа в связи с гидрологическими условиями. Изв. Госуд. гидролог. инст. 31: 1-140.
[Kiselev] Киселев И. А. 1932. Материалы по микрофлоре юго-восточной части моря Лаптевых. Исследование морей СССР. 15: 65-103.
[Kiselev] Киселев И. А. 1935. Некоторые данные о фитопланктоне в северо-восточной части Карского моря. Труды Таймырск. гидрограф. экспедиции. Ч. 2. Л.: 191-202.
[Kiselev] Киселев И. А. 1937. Состав и распределение фитопланктона в северной части Берингова и южной части Чукотского морей. Исследование морей СССР. 25: 217-245.
[Kiselev] Киселев И. А. 1939. Фитопланктон Малой Пирью-губы Белого моря как показатель опресняющего влияния реки Умбы. Труды Госуд. гидролог. инст. 8(18): 201-216.
[Kiselev] Киселев И. А. 1957. Особенности распределения фитопланктона в Белом море. Материалы по комплексному изучению Белого моря. Т. 1. М.; Л.: 282-304.
[Kiselev] Киселев И. А. 1969. Планктон морей и континентальных водоемов. Т. 1: Вводные и общие вопросы планктологии. Л.: 658 с.
[Kokin, Koltsova] Кокин К. А., Кольцова Т. И. 1971. К вопросу об изучении фитопланктона Белого моря. Комплексные исследования природы океана. М., 3: 172-183.
[Kokin et al.] Кокин К. А., Кольцова Т. И., Хлебович Т. В. 1970. Состав и динамика фитопланктона Карельского побережья Белого моря. Бот. журн. 55(4): 499-509.
[Koltsova, Ilyash] Кольцова Т. И., Ильяш Л. В. 1982. Распределение фитопланктона в прибрежье полуострова Таймыр в зависимости от гидрологических условий. Водные ресурсы. 4: 158-165.
[Konoplya] Конопля Л. А. 1971. Состав и сезонная динамика фитопланктона пролива Великая Салма (Кандалакшский залив Белого моря). Экология морских организмов. М.: 42-43.
[Konoplya] Конопля Л. А. 1973. Вертикальное распределение фитопланктона Карельского побережья Белого моря. Океанология. 13(2): 314-320.
[Konoplya] Конопля Л. А. 1974. Сезонные изменения планктона Белого моря и его видовое разнообразие. Автореф. дис. ... канд. биол. наук. М.: 28 с.
Levander K. M. 1916. Zur Kenntnis des Kustenplanktons im Weissen Meere. Med-deland. Soc. Fauna Fl. Fenn. 42: 150-159.
Ligowski R. 1990. Diatoms in various habitats in the Admiralty Bay inshore waters (South Shetlands, Antarctica). Abstr. 11th Int. Symp. on living and fossil diatoms: 72.
Ligowski R. 1992. Distribution of antarctic diatoms in different habitats and its importance as food for krill. Proc. 5th Polar Diatom Colloquium : 8-10.
Ligowski R. 1993. Morskie okrzemki (Bacillariophyceae) w ekosystemie Antarktyki i ich znaczenie jako wskaznika zrodla pokarmu kryla (Euphausia superba Dana). Lodz: 241 p.
Ligowski R., Godlewski M., Lukowski A. 1992. Sea ice diatoms and ice edge planktonic diatoms at the northern limit of the Weddell sea pack ice. Proc. NIPR Symp. on Polar Biology. 5: 9-20.
Ligowski R., Jordan R. W., Assmy P. 2012. Morphological adaptation of a planktonic diatom to growth in Antarctic sea ice. Mar. Biol. 159: 817-827. doi: 10.1007/ s00227-011-1857-6
[Likhacheva] Лихачева Н. E. 1991. Видовой состав фитопланктона эстуария р. Нильма (Кандалакшский залив Белого моря). Исследования фитопланктона в системе мониторинга Балтийского моря и других морей СССР. М.: 95-110.
[Linko] Линко А. К. 1907. Исследования над составом и жизнью планктона Баренцева моря. Труды Мурманской научно-промысловой экспедиции. СПб.: 1-113.
[Linko] Линко А. К. 1912. Планктон близ берегов Западного Мурмана в связи с состоянием промыслов в течение 1903-1905 гг. Труды Мурманской научно-промысловой экспедиции 1905 г. Отчет Л. Л. Брейтфуса. СПб.: 23-70.
[Linko] Линко А. К. 1915. Планктон близ берегов западного Мурмана в связи с состоянием промыслов в 1906 г. Мурманской научно-промысловой экспедиции 1906 г. Отчет Л. Л. Брейтфуса. Петроград: 49-69.
[Makarevich] Макаревич П. Р. 1997. Фитопланктон Карского моря. Планктон морей Западной Арктики. Апатиты: 51-65.
[Makarevich] Макаревич П. Р. 2007. Планктонные альгоценозы эстуарных экосистем. Баренцево, Карское и Азовское моря. М.: 223 с.
[Makarevich, Druzhkov] Макаревич П. Р., Дружков Н. В. 1994. Сравнительная характеристика фитопланктона юго-восточной части Баренцева и юго-западной части Карского морей. Альгология. 4(1): 78-88.
[Makarevich, Koltsova] Макаревич П. Р., Кольцова Т. И. 1989. История изучения и современное состояние фитопланктона. Экология и биоресурсы Карского моря. Апатиты: 38-45.
Makarevich P. R., Larionov V. V. 1992. Taxonomic composition of phytoplankton and history of the phytoplankton studies in the Barents Sea. Phytoplankton of the Barents Sea. Аpatity: 17-51.
[Makarevich etal.] Макаревич П. Р., Дружков Н. В., Бобров Ю. А. 1991. Фитопланктон зоны трансформации баренцевоморских и беломорских водных масс. Исследования фитопланктона в системе мониторинга Балтийского моря и других морей СССР. М.: 121-126.
Makarevich P. R., Larionov V. V., Druzhkov N. V. 1991b. Average cell weights of the mass phytoplankton species of the Barents Sea. Preprint. Аpatity: 12 p.
Makarevich P. R., Larionov V. V., Druzhkov N. V. 1993. Mean weights of dominant phytoplankton species of the Barents Sea. Альгология. 3(1): 103-106.
[Makarova, Gogorev] Макарова И. В., Гогорев Р. М. 1998. Новые виды диатомовых водорослей для Белого моря (Centrophyceae). Новости сист. низш. раст. 32: 16-20.
[Makarova, Gogorev] Макаровa И. В., Гогорев Р. М. 2000. Новые данные о морфологии четырех видов Chaetoceros (Bacillariophyta). Бот. журн. 85(9): 8088.
Mangin L. 1915. Phytoplancton de l'Antarctique, Expedition du «Pourquoi Pas». Deuxieme Expedition Antarctic Francaise (1908-1910), commandee par le Dr. Jean Charcot. Sciences naturelles. Paris: 95 p.
Manguin E. 1960. Les diatomees de la Terre Adelie Campagne du «Commandant Charcot» 1949-1950. Ann. Sci. Nat., Bot. Ser. 12, 1(2): 233-384.
Marchant H. J. 1992. Seasonal changes in the abundance and species composition of planktonic diatoms at an Antarctic coastal site. Proc. IVPolar Diatom Colloquium: 11.
Meguro H. 1962. Plankton ice in the Antarctic Ocean. Antarc. Rec. (Tokyo). 14: 11921199.
[Melnikov] Мельников И. А. 1989. Экосистема арктического морского льда. М.: 191 с.
Melnikov I. A. 1997. The Arctic sea ice ecosystem. Gordon and Breach Sci. Publ.: 204 p.
Meunier A. 1910. Microplancton des mers de Barents et de Kara. Dans: Duc d'Orleans Campagne arctique de 1907. Bruxelles: 355 p.
[Mikhailovsky, Zhytina] Михайловский Г. Е., Житина Л. С. 1989. Криопланктонная флора Белого моря и ее сезонная динамика, выявленная методами корреляционного анализа. Океанология. 29(5): 796-803.
[Mirkin et al.] Миркин Б. М., Розенберг Г. С., Наумова Л. Г. 1989. Словарь понятий и терминов современной фитоценологии. М.: 223 с.
[Nikolaev] Николаев В. А. 1987. Морфология, таксономия и систематика диатомовых водорослей класса Centrophyceae. Дис. ... докт. биол. наук. Л.: 373 с.
[Okolodkov] Околодков Ю. Б. 1986а. Цифровой полигамический ключ для определения видов рода Chaetoceros (Bacillariophyta) Чукотского моря. Бот. журн. 71(2): 239-243.
[Okolodkov] Околодков Ю. Б. 1986b. Планктонные водоросли Чукотского моря. Дис. ... канд. биол. наук. Л.: 262 с.
[Okolodkov] Околодков Ю. Б. 1987. Планктонные водоросли, новые и редкие для Чукотского моря. Новости сист. низш. раст. 24: 61-68.
[Okolodkov] Околодков Ю. Б. 1988. К флоре планктона Восточно-Сибирского моря. Новости сист. низш. раст. 25: 53-54.
Okolodkov Yu. B. 1992. Cryopelagic flora of the Chukchi, East Siberian and Laptev seas. Proc. NIPR Symp. on Polar Biology. 5: 28-43.
Okolodkov Yu. B. 1993. A checklist of algal species found in the East Siberian Sea in May 1987. Polar Biol. 13: 7-11.
Okolodkov Y. B. 1996. Net phytoplankton from the Barents Sea and Svalbard waters (collected on the cruise of the research vessel «Geolog Fersman», in July — September 1992), with emphasis on the Ceratium species as indicators of the Atlantic waters. Бот. журн. 81(10): 1-9.
Pakhomov E. A., Rat'kova T. N., Froneman P. W., Wassmann P. 2001. Phytoplankton dynamics at the ice-edge zone of the Lazarev Sea (Southern Ocean) during the austral summer 1994/1995 drogue study. Polar Biol. 24: 422-431.
[Palibin] Палибин И. В. 1903а. Ботанические результаты плавания ледокола «Ермак» в Северном Ледовитом океане летом 1901 г. 4. Микрофлора Баренцева моря и его льдов. Изв. С.-Петербургск. Бот. сада. 3(2): 29-48.
[Palibin] Палибин И. В. 1903b. Ботанические результаты плавания ледокола «Ермак» в Северном Ледовитом океане летом 1901 г. 4. Микрофлора Баренцева моря и его льдов. Изв. С.-Петербургск. Бот. сада. 3(3): 73-87.
[Palibin] Палибин И. В. 1903c. Ботанические результаты плавания ледокола «Ермак» в Северном Ледовитом океане летом 1901 г. 4. Микрофлора Баренцева моря и его льдов. Изв. С.-Петербургск. Бот. сада. 3(5): 135-167.
[Palibin] Палибин И. В. 1903d (1904). Ботанические результаты плавания ледокола «Ермак» в Северном Ледовитом океане летом 1901 г. 4. Микрофлора Баренцева моря и его льдов. Изв. С.-Петербургск. Бот. сада. 3(6): 171-176.
[Palibin] Палибин И. В. 1904. Ботанические результаты плавания ледокола «Ермак» в Северном Ледовитом океане летом 1901 г. 4. Микрофлора Баренцева моря и его льдов. Изв. С.-Петербургск. Бот. сада. 4(4): 71-78.
[Palibin] Палибин И. В. 1906а. Ботанические результаты плавания ледокола «Ермак» в Северном Ледовитом океане летом 1901 г. 4. Микрофлора Баренцева моря и его льдов. Изв. С.-Петербургск. Бот. сада. 6(3): 90-102.
[Palibin] Палибин И. В. 1906b. Ботанические результаты плавания ледокола «Ермак» в Северном Ледовитом океане летом 1901 г. 4. Микрофлора Баренцева моря и его льдов. Изв. С.-Петербургск. Бот. сада. 6(5-6): 159-183.
[Polyakova] Полякова Е. И. 1982. Диатомеи сублиторали и лагун Чукотского и Восточно-Сибирского морей. Океанология. 22(5): 809-812.
Priddle J., Fryxell G. A. 1985. Handbook of the common plankton diatoms of the Southern Ocean: Centrales except the genus Thalassiosira. Cambridge: 159 p.
Quillfeldt C. H. von. 1996. Ice algae and phytoplankton in north Norwegian and arctic waters: species composition, succession and distribution. Troms0: 35 p.
Quillfeldt C. H. von, Ambrose W. G. Jr, Clough L. M. 2003. High number of diatom species in first-year ice from the Chukchi Sea. Polar Biol. 26: 806-818. doi: 10.1007/s00300-003-0549-1
[Radchenko] Радченко И. Г., Ильяш Л. В., Полякова Т. В., Федоров В. Д. 1997. Летне-осенний планктон разных районов Белого моря. Вестн. Московск. унив. Сер. 16. Биол. 4: 24-29.
Rat'kova T. N., Wassmann P. 2002. Seasonal variation and spatial distribution of phyto-and protozooplankton in the central Barents Sea. J. Mar. Systems. 38(1): 47-75. doi:10.1016/S0924-7963(02)00169-0
[Rouhkiyainen] Роухияйнен М. И. 1956. Некоторые закономерности весеннего развития фитопланктона Восточного Мурмана. Докл. Акад. наук СССР. 109(1): 209-213.
[Rouhkiyainen] Роухияйнен М. И. 1960. Характер развития фитопланктона в мае-июне 1958 г. в южной части Баренцева моря. Труды Мурманск. морск. биол. инст. 2(6): 59-67.
[Rouhkiyainen] Роухияйнен М. И. 1961. Особенности весеннего развития фитопланктона в 1955-1957 гг. Гидрологические и биологические особенности прибрежных вод Мурмана. Мурманск: 98-108.
[Rouhkiyainen] Роухияйнен М. И. 1962. Сезонность в развитии фитопланктона в прибрежных водах Восточного Мурмана. Труды Мурманск. морск. биол. инст. 4(8): 11-18.
[Rouhkiyainen] Роухияйнен М. И. 1963. Фитопланктон южной части Баренцева моря. Автореф. дис. ... канд. биол. наук. Л.: 17 с.
[Rouhkiyainen] Роухияйнен М. И. 1965. Материалы к биологии массовых видов фитопланктона южной части Баренцева моря. Бот. журн. 50(7): 943953.
[Rouhkiyainen] Роухияйнен М. И. 1966. Качественный состав фитопланктона Баренцева моря. Труды Мурманск. морск. биол. инст. 11(15): 3-23.
[Ryzhov] Рыжов В. М. 1988. Экология и география фитопланктона Баренцева моря. Дис. ... канд. биол. наук. Дальние Зеленцы: 197 с.
[Samsonov] Самсонов Н. И. 1995. Диатомовые водоросли морских льдов Южного океана. Автореф. дис. ... канд. биол. наук. СПб. 24 с.
[Samsonov] Самсонов Н. И. 1997. О сохранности панцирей диатомовых водорослей (Bacillariophyta) морского льда при обработке их перекисью. Бот. журн. 82(1): 43-46.
Samsonov N. I. 1999. On the preservation of sea-ice diatom frustules during cleaning in hydrogen peroxide and alcohol. Ber. Polarforsch. 306: 149-157.
[Sarukhan-Bek] Сарухан-Бек К. К., Радченко И. Г., Кольцова Т. И. 1991. Фитопланктон губы Чупа (Кандалакшский залив Белого моря). Исследование фитопланктона в системе мониторинга Балтийского моря и других морей СССР. М.: 111-120.
[Semina, Sergeyeva] Семина Г. И., Сергеева О. М. 1983. Планктонная флора и биогеографическая характеристика фитопланктона Белого моря. Экология и физиология животных и растений Белого моря. М.: 3-17.
[Sergeyeva] Сергеева О. М. 1991. Распределение фитопланктона в бассейне Белого моря в июле 1972 г. и в августе 1973 г. Исследование фитопланктона в системе мониторинга Балтийского моря и других морей СССР. М.: 82-94.
[Shirshov] Ширшов П. П. 1937. Сезонные явления в жизни фитопланктона полярных морей в связи с ледовым режимом. Труды Всесоюзн. Арктич. и^т. Т. 82: Биологические индикаторы гидрологического и ледового режима полярных морей СССР. Л.: 47-113.
[Shirshov] Ширшов П. П. 1938. Океанологические наблюдения. Докл. Акад. наук СССР. 29(8): 569-580.
[Smirnov et al.] Смирнов Н. А., Федоров В. Д., Федоров В. В. 1989. Функциональное экологическое описание сезонного развития фитопланктона Белого моря. Журн. oбщ. биол. 50(3): 353-365.
[Sokolova] Соколова С. А. 1972. Фитопланктон в районе птичьих базаров севера Новой Земли. Особенности биологической продуктивности вод близ птичьих базаров севера Новой Земли. Л.: 63-73.
[Solovyeva, Churbanova] Соловьева А. А., Чурбанова И. В. 1980. Суточная динамика фитопланктонного сообщества в прибрежье Баренцева моря. Гидробиол. журн. 16(2): 15-20.
Sullivan C. W., Palmisano A. C., Kottmeier S. 1982. Development of the sea ice microbial community in McMurdo Sound. Antarc. J. U. S. 17(5): 155-157.
Tanimura Y., Fukuchi M., Watanabe K., Moriwaki K. 1990. Diatoms in water column and sea-ice in Lutzow-Holm Bay, Antarctica, and their peservation in the underlying sediments. Bull. Natl. Sci. Mus. Tokyo, Ser. C. 16(1): 15-39.
Tuschling K., Juterzenka K., Okolodkov Yu. B., Anoshkin A. 2000. Composition and distribution of the pelagic and sympagic algal assemblades in the Laptev Sea during autumnal freeze-up. J. Plankton Res. 22(5): 843-864.
[Usachev] Усачев П. И. 1935. Состав и распределение фитопланктона Баренцева моря летом 1931 г. Труды Арктич. инст. 21: 1-94.
[Usachev] Усачев П. И. 1946а. Биологические показатели происхождения льдов в Карском море, море Лаптевых и в проливах архипелага Земли Франца-Иосифа (По материалам экспедиций Арктического научно-исследовательского института на л/п «Садко» в 1936 и 1937 гг.). Труды Инст. океанол. АН СССР. М.; Л., 1: 113-150.
[Usachev] Усачев П. И. 1946b. Фитопланктон по сборам дрейфующей экспедиции на л/п «Г. Седов» 1937-1939 гг. Труды Дрейфующей экспедиции Главсевмор-пути на ледокольном пароходе «Г. Седов» 19S7-1940 гг. Т. S. Биология. М.; Л.: 371-397.
[Usachev] Усачев П. И. 1949. Микрофлора полярных льдов. Труды Инст. океанол. АН СССР. 3: 216-259.
[Usachev] Усачев П. И. 1968. Фитопланктон Карского моря. Планктон Тихого океана. М.: 6-28.
VanLandingham S. L. 1968. Catalogue of the fossil and recent genera and species of diatoms and their synonyms. II. Bacteriastrum through Coscinodiscus. Lehre Verlag von J. Cramer: 494-1086.
[Vasjutina] Васютина Н. П. 1991. Фитопланктон юго-восточной части Баренцева моря в июле — августе 1977 г. Исследование фитопланктона в системе мониторинга Балтийского моря и других морей СССР. М.: 127-134.
[Veiko] Вейко Е. В. 1990. Изучение сезонной динамики фитопланктона в районе мидиевого хозяйства. Бот. журн. 75(1): 31-37.
[Virketis, Kiselev] Виркетис М. А., Киселев И. А. 1933. О планктоне Чешской губы. Исследование морей СССР. Т. 18. Л.: 115-144.
Watanabe K. 1982. Centric diatoms communities found in the Antarctic sea ice. Antarc. Rec. (Tokyo). 74: 119-126.
Watanabe K. 1988. Sub ice microalgal strands in the Antarctic costal fast ice area near Syowa Station. Jap. J. Phycol. 36(3): 221-229.
Watanabe K., Satoh H., Hoshiai T. 1990. Seasonal variation in ice algal assemblages in the fast ice near Syowa station in 1983/84. Antarctic ecosystems. Springer-Verlag: 136-142.
Whitaker T. M. 1977. Sea ice habitats of Signy Island (South Orkneys) and their primary productivity. Adaptations within antarctic ecosystems. Proc. 3rd SCAR Symp. on Antarctic Biology. Smithsonian Insitute: 75-82.
Wiktor J. M., Okolodkov Yu. B. 1995. Phytoplankton. Atlas of the marine flora of Southern Spitsbergen. Gdansk: 9-295.
Wiktor J., Weslawski J. M., Wieczorek P., Zajaczkowski M., Okolodkov Yu. B. 1998. Phytoplankton and suspensions in relation to the freshwater in Arctic coastal marine ecosystems. Polish Polar Res. 19(3-4): 219-234.
[Zabelina] Забелина М. М. 1931. Некоторые новые данные по фитопланктону Карского моря. Исследование морей СССР. Т. 13. Л.: 105-143.
[Zabelina] Забелина М. М. 1946. Фитопланктон юго-западной части Карского моря. Труды Арктич. научно-исслед. инст. Главн.управления Севморпути. 193: 45-73.
[Zernova] Зернова В. В. 2005. Фитопланктон Южного океана. М.: 208 с.
[Zhytina] Житина Л. С. 1981а. Пространственное распределение фитопланктона Белого моря. Автореф. дис. ... канд. биол. наук. М.: 22 с.
[Zhytina] Житина Л. С. 1981b. Вертикальное распределение фитопланктона в Белом море. Науч. докл. высшей школы. Биол. науки. 1: 63-68.
[Zhytina] Житина Л. С. 1982. Сходные группы видов фитопланктона Белого моря. Вестн. Московск. унив. Сер. биол. 2: 50-56.
[Zhytina] Житина Л. С. 1986. Скорость воспроизводства некоторых планктонных водорослей Белого моря. Научн. докл высшей школы. Биол. науки. 1: 63-65.
[Zhytina, Mikhailovsky] Житина Л. С., Михайловский Г. Е. 1990. Ледовая и планктонная флора Белого моря как объект мониторинга. Биологический мониторинг прибрежных вод Белого моря. М.: 41-49.
[Zhytina etal.] Житина Л. С., Колосова Е. Г., Кольцова Т. И., Полякова Т. В., Федоров В. Д. 1988. Изменения в планктоне Белого моря. Исследования Мирового океана. М.: 55-68.
Plate I. Dominant Chaetoceros species in the Arctic seas. 1, 2 — C. diadema: 1 — chain, formation of resting spores in cells, 2 — resting spore; 3, 4 — C. debilis: 3 — chain, 4 — part of chain, resting spores in cells; 5 — C. furcilla-tus: resting spore; 6, 7 — C. holsaticus: 6 — part of chain, 7 — chain, resting spores in cells; 8 — C. decipiens: chain; 9 — C. teres: chain, resting spores in cells; 10 — C. con-cavicornis: sibling valves in girdle view; 11 — C. compressus: chain; 12 — C. socialis: sibling valves in valve view. 1-8, 10-12 — SEM; 9 — LM. 1, 2, 4, 6, 7, 9-11 — the Laptev Sea; 3 — the Barents Sea; 5, 8 — the Kara Sea; 12 — the White Sea. Scale bar: 1, 3-7, 9-11 — 10 ^m; 8 — 100 ^m; 2, 12 — 1 ^m.
Plate II. Dominant Chaetoceros species in the Antarctic. 1, 2 — C. atlanticus: two-cell chain; 3, 4 — C. criophilus. 3 — terminal valve, 4 — sibling intermediate valves; 5 — C. dichaeta var. tenuicornis. part of chain; 6 — C. di-chaeta var. dichaeta: sibling valves with long central processes; 7 — C. neglectus. chain. 1, 4-7 — SEM; 2, 3 — LM. Scale bar: 1-5, 7 — 10 ^m; 6 — 1 ^m.