2. Губанов ДА., Новиков ДА., Чхартишвили А.Г. Социальные сети: модели информационного влияния, управления и противоборства. М.: Физматлит, 2016. 227 с.
3. Губанов Д.А., Новиков Д.А., Чхартишвили А.Г. Модели влияния в социальных сетях // Управление большими системами. Выпуск 27. М.: ИПУ РАН, 2014. С. 205-281.
4. Jackson M. Social and Economic Networks // Princeton: Princeton University Press, 2008. 520 p.
5. Meinzen-Dick R., di Gregorio M. Collective action and property rights for sustainable development. // International Food Policy Research Institute (IFPRI), 2004. 36 p.
6. Newman M. Coauthorship networks and patterns of scientific collaboration // Proceedings of the National Academy of Sciences, 2004. № 101. Р. 5200-5205.
7. Исследование методов и реализация алгоритма моделирования распространения информации в социальных сетях, 2002-2015. [Электронный ресурс]. Режим доступа: https://www.scienceforum.ru/2016/1376/16808/ (дата обращения: 18.03.2016).
THE EFFECTS OF RESIDUAL FUEL IN AN ASH CONTENT ON STRUCTURAL AND MECHANICAL PROPERTIES OF ASH CLAY COMPOSITIONS Kaliyeva Zh-Е.1, Dyussenov D-Т.2, Yesbolganov G.D.3 Email: [email protected]
'Kaliyeva Zhanar Eralinovna — PhD in Technical Sciences, Associate Professor; 2Dyussenov Daniyar Talgatovich - Undergraduate; 3Yesbolganov Galymzhan Dunenbaevich — Undergraduate, TECHNOLOGY OF INDUSTRIAL AND CIVIL ENGINEERING DEPARTMENT, L.N. GUMILYOV EURASIAN NATIONAL UNIVERSITY, ASTANA, REPUBLIC OF KAZAKHSTAN
Abstract: the results of experimental research of study of structural and mechanical properties of ashes with different content of residual fuel in increments of 7-8% by weight of high and medium plastic local clays and there mixtures. The possibility of regulation of structural and rheological properties of the system "clay-ash-residual fuel ash" with residual fuel ash content to ensure defect-free plastic molding of air-dried brick. Basically, in the test system limits the quality and amount of components related to the third structural-mechanical type with the greatest development of elastic deformation or the fourth and fifth predominance ofplastic. Keywords: properties of ash clay compositions, residual ash fuel, carbon, clay.
ВЛИЯНИЕ СОДЕРЖАНИЯ ОСТАТОЧНОГО ТОПЛИВА В ЗОЛЕ НА СТРУКТУРНО-МЕХАНИЧЕСКИЕ СВОЙСТВА ЗОЛОГЛИНЯНЫХ
КОМПОЗИЦИЙ Калиева Ж.Е.1, Дюсенов Д.Т.2, Есболганов Г.Д.3
'КалиеваЖанар Ералиновна — кандитат технических наук, доцент;
2Дюсенов Данияр Талгатович — магистрант;
3Есболганов Галымжан Дуненбаевич — магистрант, кафедра технологии промышленного и гражданского строительства, Евразийский национальный университет им. Л.Н. Гумилева, г. Астана, Республика Казахстан
Аннотация: приводятся результаты экспериментальных исследований по изучению структурно-механических свойств зол с различным содержанием остаточного топлива с шагом 7-8% по массе высоко- и среднепластичных местных глин и их смесей. Установлена возможность регулирования структурно-реологических свойств системы «глина-зола-остаточное топливо золы» с содержанием остаточного топлива золы для обеспечения бездефектного пластического формования кирпича-сырца. В основном, система в исследуемых пределах по качеству и количеству составляющих относится к третьему структурно-механическому типу с наибольшим развитием упругих деформаций или четвертому и пятому -преобладанием пластических.
Ключевые слова: свойства зологлиняных композиций, остаточное зольное топливо, углерод, глина.
УДК 662.613.112 DOI: 10.20861/2304-2338-2017-102-001
To investigate the nature of changes of structural and mechanical properties of dispersions based on ash, depending on the residual content of the fuel ash taken from a different content of unburnt coal particles with a pitch of 7-8% by weight: residual fuel containing 12.36% 19, 94% and 27.64% (table 1). These ashes are not randomly selected, and taking into account a very important factor - you might say the lack of the absence of discrete quantified carbon content (12, 19, 27), that in the course of the experiments will make it easier to establish patterns of changes in the properties of the ash clay dispersions of carbon content in them.The choice of this kind of composition of the charge is justified as follows: known that ashes with a low content of residual fuel (8%) which is a non-rigid plastic material structure resembling emery powder.Increasing the carbon content in the ash, (used as a lubricant in metal rubbing parts) naturally imparts plastic properties of the ash.Therefore, the study of the influence of this factor not previously studied on rheological properties of ash clay dispersions is relevant and has a considerable interest.
The additives used as binders superplastic Akmola's kaolinitic clay in the range (10-30%) and medium plastic standart beidallite clay (20-40%).
The study based on ceramic brick technology, along with the definition of the basic technological properties of the feedstock, is the study of the features of its behavior under load, which are essential in the processes of machining and molding mass, which in turn affects the final properties of the product [1].
In order to study coagulation structure formation studied ash clay dispersions and evaluate the impact of this process is the residual fuel curve 5 = f (т) at constant loading and optimum moisture content were removed by determining the shear deformation in the area are not destroyed structures on rheometer with tangentially the shifting plate.
To study the composition of charges taken in Table 1.
The results of experimental studies on the structural and mechanical properties of the fly ash with different content of residual fuel, high and medium plastic clays (kaolinite and beidyllite), and their mixtures are given in Table 2.
Table 1. The composition of the ash clay masseswith different content of residual fuel ash
Number of charge Residual fuel Charge content
Ash Clay
high-plastic medium - plastic
1 27,64 100
2 19,94 100
3 12,36 100
4 100
5 100
6 27,64 90 10
7 80 20
8 70 30
9 80 20
10 70 30
11 60 40
12 19,94 90 10
13 80 20
14 70 30
15 80 20
16 70 30
17 60 40
18 12,36 90 10
19 80 20
20 70 30
21 80 20
22 70 30
23 60 40
№ cha r ge % The basic structural and mechanical properties N Mna, Deformation Structural Mechanical type
% c-1 9 Ei E2 Em
1 20,4 0,47 0,51 415 204,5 37,2 31,3 31,5 0
2 19,5 0,32 0,78 303 185,5 44,5 30,5 25,0 0
3 19,1 0,27 0,28 541 166,4 60,6 21,3 18,1 0
4 25,3 0,23 0,27 634 132,5 18,5 23,3 58,2 V
5 24,4 0,18 0,33 756 114,2 31,6 21,3 47,1 IV
6 21,8 0,46 0,42 380,5 148,4 35,4 30,4 34,2 III
7 22,3 0,41 0,36 716,4 197,5 35,5 26,8 37,7 IV
8 22,7 0,39 0,38 689,5 214,3 23,2 30,7 46,1 V
9 19,1 0,42 0,35 721,5 153,5 21,4 43,4 35,2 III
10 19,7 0,41 0,36 714,3 154,8 21,5 37,2 41,3 IV
11 20,1 0,37 0,39 674,8 166,4 26,7 26,8 46,5 IV
12 22,5 0,26 0,28 519,4 224,5 39,3 30,4 30,3 III
13 22,8 0,38 0,38 674,5 234,5 35,8 28,1 36,1 IV
14 23,1 0,36 0,37 668,4 298,3 37,5 15,0 47,5 IV
15 19,2 0,40 0,36 685,3 209,5 38,4 25,1 36,5 0,III
16 19,5 0,40 0,35 656,8 214,8 25,9 31,8 42,3 IV
17 19,8 0,41 0,36 705,4 219,5 21,2 36,3 42,5 IV
18 20,5 0,34 0,40 1010 133,8 49,3 23,2 22,5 0
19 21,2 0,37 0,41 674 226,2 45,7 16,1 38,2 III
20 21,5 0,35 0,37 672 230,5 39,3 15,2 45,5 IV
21 21,2 0,39 0,39 658 149,5 37,9 21,5 20,6 0
22 21,8 0,37 0,38 654 152,5 56,1 11,4 32,5 III
23 22,5 0,36 0,37 651,5 155,5 35,1 12,5 52,4 IV
Analysis of the experimental data of structural and mechanical properties in Table 2 of investigated ash, clay and ash-clay compositionsshowed that with the increase of the residual ash content of the fuel is slowly increased elastic (21 to 31.5) and plastic (18 to 31.5) strain, and the elastic deformation is significantly reduced (61 to 37). In investigated ash-clay compositions, regardless of the volume of the residual fuel in the ash, there is a natural increase of plastic deformation with the increase of the content of clay in the mixture and slowly elastic and elastic deformation changed selectively by significantly changing types of contacts between the disperse phase particles in the coagulation structures (Table 2) [2].
The addition of 10% kaolinite clay, high ductility in the ashes with the highest content of residual fuel (27.64%) translates variance from zero in the third structural-mechanical type, and there is an increase of plastic deformation from 31.5 to 34.2 and a decrease of elastic deformation - 37 2 to 35.4%.
Increased content of highly plastic clay from 20 to 30% transfers studied dispersion of III, IV and V of the structural-mechanical type, while increasing the amount of plastic deformation to 46.1. A similar effect of structural and mechanical properties of dispersions reached with input 20, 30 and 40% of medium plastic clay with beidellite composition (Table 2).
Transfer of ash containing 19.94% of residual fuel in the fourth structural-mechanical type occurs with input of 20% high plastic and 30% medium plastic clay, i.e. reduction of residual fuel ash from 27.64 to 19.94% gives approximately the same change of structural and mechanical properties of clay, increasing clay content to 10%. The same result is reached using ash which contains 12.36% of residual fuel with the additives to 30% of high plastic or 40% medium plastic clay [3].
Thus, the input of small amounts of clay 10 - 20% to ash with high content (19.94; 27.64%) of residual fuel, improved formability of ash-clay compositions. Thus, the elasticity and plasticity system with ashes containing more than 20% of residual fuel, during input clays increases slightly compared with the ash dispersions including 12.36%, and less of residual fuel, and period of relaxation of these masses reduced. Conventional strain capacity increases, which indicates the great mass connectivity. A plastic clay adding redistributes deformation characteristics slow upward to elastic and plastic diformations due to decrease fast elastic. It should also be noted that the improvement of molding properties of ash-clay massachieved using ash with a high content of residual fuel with adding clays with smaller quantity as compared with low content of unburned coal particles.
The experimental data in Table 2 show that reduction content of residual fuel ash to 7-8% produces the same effects of changes of basic structural and mechanical characteristics, such as increasing quantity of clay adding to 10%, i.e. the effect of residual fuel as plasticizer.
However, regulation of the system containing residual fuel in an ash and plasticity, amount of clay input didn't reach the transfer of ash-clay compositions on the first or second structural-mechanical type, providing defect-free plastic molding ceramic materials. Basically, in the test system limits the quality and amount of components related to the third structural-mechanical type with the greatest development of elastic deformation or the fourth and fifth predominance of plastic.
References / Список литературы
1. Zolotarskij A.Z., Jaskevich T.G. Ob osobennostjah himiko-tehnologicheskiih i strukturno-mehanicheskiih svojstv syr'ja dlja proizvodstva zologlinjannogo kirpicha // Sb. nauch. trudov VNIIStroma Moskva, 1989. S. 105-115.
2. Burlakov G.S. «Osnovy tehnologii keramiki I iskusstvennyh poristyh zapolnitelej» // Moskva, 1982. 424 s.
3. Kashkaev I.S. Shejman E.Sh. Proizvodstvo keramicheskogo kirpicha // M.: Vysshaja shkola, 1974. 287 s.
PROPERTIES OF CONCRETE WITH USE THE ASHES SLAG OF WASTE Kaliyeva Zh.E.1, Smagulova R.K.2 Email: [email protected]
'Kaliyeva Zhanar Eralinovna — PhD in Technical Sciences, Associate Professor;
2Smagulova Raya Kapanovna — Teacher, TECHNOLOGY OF INDUSTRIAL AND CIVIL ENGINEERING DEPARTMENT, L.N. GUMILYOV EURASIAN NATIONAL UNIVERSITY, ASTANA, REPUBLIC OF KAZAKHSTAN
Abstract: analysis of the data indicates that when added an ash as fine aggregate set to concrete mixtures, it contributes strength to the heat treatment conditions at 900 C. Thus, with increasing fly ash instead of sand '0 to 40% (50-200 kg) increases the strength of concrete samples by 0.9 - 2.5 times. Compositions of heavy concrete of brands '00 and 200, light concrete of brands 50 and '00 with use of ashes of hydroremoval of Zhezkazgansky combined heat and power plant are developed and their construction and operational properties are investigated.
Keywords: ashes slag waste, ashes of hydroremoval of combined heat and power plant, compositions of heavy concrete, compositions of light concrete, optimum structure.
СВОЙСТВА БЕТОНОВ С ИСПОЛЬЗОВАНИЕМ ЗОЛОШЛАКОВЫХ
ОТХОДОВ Калиева Ж.Е.1, Смагулова Р.К.2
'КалиеваЖанар Ералиновна — кандидат технических наук, доцент; 2Смагулова Рая Капановна — преподаватель, кафедра технологии промышленного и гражданского строительства, Евразийский национальный университет им. Л.Н. Гумилева, г. Астана, Республика Казахстан
Аннотация: анализ полученных данных свидетельствует, что добавление в бетонные смеси золы в качестве мелкого заполнителя способствует набору прочности в условиях тепловой обработки при 90 0С. Так, при увеличении количества золы взамен песка от 10 до 40% (50-200 кг) прочность бетонных образцов увеличивается в 0,9 - 2,5 раза. Разработаны составы тяжелых бетонов марок 100 и 200, легких бетонов марок 50 и 100 с использованием золы гидроудаления Жезказганской ТЭЦ и исследованы их строительно -эксплуатационные свойства.
Ключевые слова: золошлаковые отходы, золы гидроудаления ТЭЦ, составы тяжелых бетонов, составы легких бетонов, оптимальный состав.