МИКРОНУТРИЕНТЫ В ПИТАНИИ
Для корреспонденции
Untea Arabela Elena - scientific researcher of National Research and Development Institute for Biology and Animal Nutrition Адрес: Calea Bucuresti, 1, 077015 Balotesti, Ilfov, Romania Телефон: 004-0726279268 E-mail: [email protected]
А.Е. Унтеа, И. Варзару, М. Ропота, Т.Д. Панаите, Г.М. Цорнеску
Влияние органического хрома на жировой компонент тела в экспериментальной модели на свиньях
The effects of organic chromium on adipose anatomical parts, using pig as experimental model
A.E. Untea, I. Varzaru, M. Ropota, T.D. Panaite, G.M. Cornescu
The aim of this study was to evaluate the influence of chromium supplements on the quality of protein and lipids of adipose anatomical parts using pig as experimental model for humans. An experiment was conducted on 18 fattening castrated TOPIGS male pigs, for 4 weeks, under experimental farm conditions. The source of Cr(III) was chromium picolinate, a food supplement used in human nutrition, 200 ^g-Cr per kg diet (E1) and 400 ^g-Crper kg diet (E2). The analytic data showed an improvement of the amino acids profile in belly and in ham samples. A significant decrease of fatty acids concentrations in belly samples was noticed. In conclusion, we observed a positive effect associated with the essential amino acids deposition and decreasing of fatty acids concentrations in tissues with high content of fat, thus in human nutrition, chromium is used as a nutritional supplement most recommended in impaired carbohydrate metabolism. Keywords: chromium, adipose tissues, experimental model, pig
Национальный исследовательский институт биологии и питания животных, Илфов, Румыния
National Research and Development Institute for Biology and Animal Nutrition, Ilfov, Romania
Цель данного исследования - оценить влияние введения хрома на качество белка и липидов жировой ткани с использованием свиньи как экспериментальной модели для человека. Эксперимент был проведен в течение 4 нед на 18 кастрированных самцах свиней ТОРЮ5 в экспериментальных условиях фермы. Источником хрома (III) служил пико-линат хрома, который применяется в качестве биологически активной добавки в питании человека, в дозе 200 и 400 мкг хрома на 1 кг корма. Аналитические данные показали улучшение профиля аминокислот в образцах брюшины и окорока. Обнаружено значительное снижение концентрации жирных кислот в образцах брюшины. Таким образом, выявлен положительный эффект, связанный с депонированием незаменимых аминокислот и уменьшением концентрации жирных кислот в тканях с высоким содержанием жира, что является основанием для рекомендаций по применению в питании человека хрома в качестве биологически активной добавки, особенно при нарушениях углеводного обмена.
Ключевые слова: хром, жировая ткань, экспериментальная модель, свинья
Several metabolic diseases can be prevented and/or controlled by dietary measures and supplements with hypolipidemic action. Trivalent chromium [Cr(III)], the form of Cr found in foods and food supplements, is considered to be a nutritional element [1]. Chromium is recommended as nutritional supplement due to its involvement in impaired carbohydrate metabolism and weight reduction strategies [2].
The pig model is more appreciated compared to other non primate animals, due to similarities between human and pig, regarding the digestion physiology and the fact that it is an omnivorous animal with nutritional requirements similar to humans [3, 4].
MMKPOHyTPMEHTbl B nMTAHMM
Several authors [5-7] reported improvements in the carcass composition of pigs fed diets supplemented with chromium picolinate.
The aim of this study was to evaluate the influence of chromium supplements on the quality of protein and lipids of the adipose anatomical parts using pig as experimental model for humans.
Material and methods
The experiment was performed comply with Directive 2010/63/EU on the protection of animals used for scientific purposes and all procedures described, were approved by Ethical Commission of National Research and Development Institute for Biology and Animal Nutrition.
The experiment was conducted on 18 fattening castrated TOPIGS male pigs, for 4 weeks, under experimental farm conditions. The pigs were divided into 3 groups (6 pigs/cage) and had an initial average weight of 73.55±2.67 kg. The pigs received a commercial diet designed for this category of animals and differed between groups by the inclusion of Cr(III) supplement. The source of Cr(III) was Chromium pico-linate (CrPic) ("Vitaking", Hungary), a food supplement used in human nutrition and it brought the chromium level to 200 ^g-per kg diet in E1 diet and 400 ^g per kg diet in E2 diet. All pigs were sacrificed after 28 experimental days and the meat samples (belly and ham) were collected. The pigs were weighed just before euthanasia.
Gas chromatograph "Perkin-Elmer Clarus 500" ("Per-kin-Elmer", USA), fitted with Flame Ionization Detector
(FID) and capillary separation column was used in order to determine the fatty acids composition of meat samples. Each sample was prepared as described previously [8]. HPLC "Surveyor Plus" ("Thermo Electron", USA) was used in order to determine the amino acids profile of meat samples. Each sample was prepared as described previously [9].
The analytical data were compared performing analysis of variance (ANOVA), using STATVIEW for Windows (SAS, version 6.0). The differences between mean values in the groups were considered significant at p<0.05.
Results
Pigs in the finishing phase were used in the present experiment. This phase has a decreasing rate of protein deposition and an increasing rate of fat in animal body mass. In order to determine the effects of chromium supplementation on some adipose anatomical parts, belly and ham samples were characterized. For assessing the protein quality of the collected samples, the amino acid profile was determined and the results are presented in Table 1.
Lysine, cystine, methionine and arginine are the essential amino acids for pigs [8, 10] which concentrations increased significantly (p<0.05) in the belly under the influence of 200 ^g-kg-1 Cr, and ham after treatment with 400 ^g-kg-1. Some authors suggest that the stimulation of amino acids transport and protein synthesis in muscle cells, are due to the increased insulin activity by CrPic supplementation [11]. Chromium supplemen-
Table 1. Concentrations of amino acids in samples of belly and ham [g% dry matter (DM), mean ± SD]
Amino acid Belly Ham
C E1 E2 C E1 E2
Dispensable amino acids
Aspartic acid 2.91±0.22 2.70±0.32c 3.13±0.32b 3.77±0.51 3.74±0.23 3.74±0.50
Glutamic acid 5.33±0.51 5.15±0.54 5.20±0.31 7.49±1.12 7.69±0.72 8.00±0.94
Serine 1.24±0.14b 1.79±0.08ac 1.40±0.14b 2.17±0.21 1.97±0.14 2.17±0.21
Glycine 1.72±0.92bc 2.44±0.31 a 2.74±0.11a 1.99±0.34 2.08±0.22 1.96±0.48
Alanine 1.97±0.19bc 2.49±0.14ac 2.2±0.18ab 2.49±0.12 2.34±0.07 2.48±0.23
Tyrosine 0.90±0.11b 1.31±0.12ac 0.94±0.09b 1.17±0.11 1.17±0.23 1.15±0.18
Leucine 2.48±0.28bc 3.26±0.20ac 3.7±0.12ab 3.18±0.38 3.17±0.20 3.22±0.37
Essential amino acids
Threonine 1.46±0.14 1.52±0.31 1.30±0.04 1.57±0.11 1.45±0.08 1.56±0.07
Arginine 2.18±0.21 bc 2.81 ±0.17a 2.75a±0.14 3.72±0.62 3.73±0.27 3.82±0.52
Valine 1.56±0.24 1.37±0.22 1.47±0.11 2.06±0.54 2.25±0.14 2.20±0.31
Phenylalanine 1. 26±0.19 1.16±0.14 1.24±0.08 1.57±0.23 1.76±0.11 1.66±0.23
Isoleucine 1.34±0.12 1.15±0.04 1.27±0.06 1.77±0.31 1.75±0.08 1.74±0.22
Lysine 2.39±0.22b 3.35±0.08a 3.01 ±0.32 3.56±0.07b 3.29±0.23ac 3.63±0.13b
Cystine 0.28±0.13b 0.40±0.03a 0.35±0.03 0.72±0.12c 0.64±0.14 0.84±0.11a
Methionine 0.61±0.14b 0.78±0.06a 0.49±0.09 0.58±0.03bc 0.68±0.12a 1.31±0.18a
Values with the different superscript in the same raw are statistically different (p<0.05).
А.Е. Унтеа, И. Варзару, М. Ропота и др.
Table 2. Distribution of fatty acids determined in belly and ham samples (g% DM, mean ± SD)
Fatty acids C E1 E2
Belly
SFA 24.14±1.80b 19.57±2.22ac 23.75±3.50b
MUFA 28.14±3.68b 22.15±1.73ac 27.87±4.37b
PUFA 8.04±0.80b 6.25±0.59ac 9.02±1.22b
Ham
SFA 18.37±1.46 18.84±2.54 17.62±1.95
MUFA 24.15±1.40 24.70±2.52 23.48±2.60
PUFA 6.23±0.52 6.71 ±0.54 6.11 ±1.20
Values with the different superscript in the same column are statistically different. SFA - saturated fatty acids; MUFA - monounsaturated fatty acids; PUFA - polyunsaturated fatty acids; UFA - total unsaturated fatty acids.
tation intensifies the amino acid uptake by skeletal muscles of rats [10]. Some researchers observed that the experimental period determines the pig's response to chromium supplementation [12].
For the interpretation of the data obtained using chromium supplements in the diets of fattening pigs, the fatty acids are presented depending on the saturation degree of chemical bonds (Table 2). Total content of fatty acids in belly samples were significantly lower for E1 group compared with the other two groups. The decreasing content of fat in belly is a result which sustains the hypothesis that Cr has beneficial effect on lipid metabolism [13]. The
results concerning the lipid metabolism response to Cr supplementation may be related to nutritional status of Cr in human/animals' organism, glucose tolerance level and the bioavailability of Cr from food and supplements.
The positive effects associated with the use of chromium as a nutritional supplement in livestock animal diets include: increased essential amino acids deposition and decreased fatty acids content in tissues with high content of fat. In addition, the pig model provides an in vivo challenge system to examine new approaches for organism responses to chromium supplementation.
Сведения об авторах
Development Institute for Biology and Animal Nutrition (Ilfov, Romania):
Untea Arabela Elena - scientific researcher
E-mail: [email protected]
Varzaru Iulia - scientific researcher
E-mail: [email protected]
Ropota Mariana - scientific researcher
E-mail: [email protected]
Panaite Tatiana Dumitra - scientific researcher
E-mail: [email protected]
Cornescu Gabriela Maria - scientific researcher
E-mail: [email protected]
References/Литература
1. Yesilbag D., Ere M. Effects of dietary organic and inorganic chromium supplementation on performance, egg shell quality and serum parameters in pharaoh quails. J Biol Env Sci 2009; Vol. 3 (8): 5. 31-5.
2. Pechova A., Pavlata L. Chromium as an essential nutrient: a review.
Vet Med (Praha). 2007; Vol. 52 (1): 1-18. 6.
3. Olsen A.K., Bladbjerg E.M., Marckmann P., Larsen L.F., et al. The Gottingen minipig as a model for postprandial hyperlipidaemia in man: experimental observations. Lab Animal. 2002; Vol. 36: 438-44.
4. Rowan A.M., Moughan P.J., Wilson M.N., Maher K., et al. Compari- 7. son of the ileal and faecal digestibility of dietary amino acids in adult
humans and evaluation of the pig as a model animal for digestion studies in man. Br J Nutr. 1994; Vol. 71: 29-42. Page T.G., Southern L.L., Ward T.L., Thompson D.L. Effect of chromium picolinate on growth and serum carcass traits of growing-finishing pigs. J Anim Sci. 1993; Vol. 71: 656-62. Lindemann M.D., Wood C.M., Harper A.F., Kornegay E.T., et al. Dietary chromium picolinate additions improve gain:feed and carcass characteristics in growing-finishing pigs and increase litter size in reproducing sows. J Anim Sci. 1995; Vol. 73: 457-65.
Wang M.Q., Xu Z.R. Effect of chromium nanoparticle on growth performance carcass characteristics pork quality and tissue chro-
MMKPOHyTPMEHTbl B nMTAHMM
mium in finishing pigs. Asian Aust J Anim Sci. 2004; Vol. 17 (8): 11. 1118-22.
8. Habeanu M., Hebean V., Taranu I., Ropota M., et al. Dietary ecologic camelina oil - a beneficial source of n-3 PUFA in muscle tissue and health status in finishing pigs. Rom Biotech Lett. 2011; Vol. 16 (5): 6564-71.
9. Varzaru I., Untea A.E., Martura T., Olteanu M., et al. Development 12. and validation of an RP-HPLC method for methionine, cystine and lysine separation and determination in corn samples. Rev Chim (Bucharest). 2013; Vol. 64 (7): 673-9. 13.
10. Evans G.W., Bowman T.D. Chromium picolinate increases membrane fluidity and rate of insulin internalization. J Inorg Biochem. 1992; Vol. 48: 243-50.
Lien T.F., Wu C.P., Wang B.J., Shiao M.S., et al. Effects of supplemental levels of chromium picolinate on the growth performance, serum traits, carcass characteristics and lipid metabolism of growing-finishing pigs. Anim Sci. 2001; Vol. 72 (2): 289-96.
Mooney K.W., Cromwell G.L. Efficacy of chromium picolinate and chromium chloride as potential carcass modifiers in swine. J Anim Sci. 1997; Vol. 75: 2661-71.
Xi G., Xu Z., Wu S., Chen S. Effect of chromium picolinate on growth performance, carcass characteristics, serum metabilites and metabolism of lipid in pigs. Asian Austr J Anim Sci. 2001; Vol. 14 (2): 258-62.