Научная статья на тему 'THE ECOLOGICAL AND COENOTIC FEATURES OF PLANT COMMUNITIES CONTAINING COLCHICUM BULBOCODIUM SUBSP. VERSICOLOR (COLCHICACEAE) IN THE LOWER VOLGA REGION'

THE ECOLOGICAL AND COENOTIC FEATURES OF PLANT COMMUNITIES CONTAINING COLCHICUM BULBOCODIUM SUBSP. VERSICOLOR (COLCHICACEAE) IN THE LOWER VOLGA REGION Текст научной статьи по специальности «Биологические науки»

CC BY
68
13
i Надоели баннеры? Вы всегда можете отключить рекламу.
Ключевые слова
LOWER VOLGA REGION / PLANT COMMUNITIES

Аннотация научной статьи по биологическим наукам, автор научной работы — Shilova Irina V., Kashin Alexandr S., Parhomenko Alena S., Bogoslov Artem V., Kritskaya Tatiana A.

The article presents a phytocoenotic description of 23 plant communities with Colchicum bulbocodium subsp. versicolor studied during the period of mass fl owering in 2014–2018. It was found that, across the Lower Volga region, the studied communities with C. bulbocodium subsp. versicolor are mostly confi ned to the slopes of south- and east-facing arroyos and more seldom to the southern and northern hill slopes, plains, arroyo and liman bases, and fl oodmeadows. During the period of mass fl owering, 207 vascular plants were detected in the studied communities. Every community description included 9 to 36 species. Biological diversity was assessed with the Shannon index and polydominance index; the degree of dominance was measured with the Simpson index. The species similarity of the communities was evaluated through pairwise comparison with the Jaccard coeffi cient. It was revealed that C. bulbocodium subsp. versicolor occurs in communities varying in diversity and species composition. The subspecies is not confi ned to specifi c phytocoenoses. It usually grows on rich and, more seldom, fairly rich and slightly saline soils. Their alluviality is more often weak rather than moderate. Watering usually corresponds to the dry steppe or semi-desert climate type, rarely to the middle steppe type, being moderately variable and in some cases highly variable. The impact of grazing is usually weak, but it is either moderate or strong in some communities. The communities with C. bulbocodium subsp. versicolor are dominated by hemicryptophytes: mostly tap-root, short-rhizome and long-rhizome herbaceous perennials. In phytocoenotic terms, most species belong to the zonal type of vegetation, namely steppe vegetation. The participation of meadow species is prominent. The share of weed species is rather high, which indicates a signifi cant anthropogenic load on the studied communities.

i Надоели баннеры? Вы всегда можете отключить рекламу.
iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.
i Надоели баннеры? Вы всегда можете отключить рекламу.

Текст научной работы на тему «THE ECOLOGICAL AND COENOTIC FEATURES OF PLANT COMMUNITIES CONTAINING COLCHICUM BULBOCODIUM SUBSP. VERSICOLOR (COLCHICACEAE) IN THE LOWER VOLGA REGION»

НАУЧНЫЙ ОТДЕЛ

ЭКОЛОГИЯ

Известия Саратовского университета. Новая серия. Серия: Химия. Биология. Экология. 2023. Т. 23, вып. 1. С. 110-123

Izvestiya of Saratov University. Chemistry. Biology. Ecology, 2023, vol. 23, iss. 1, pp. 110-123 https://ichbe.sgu.ru https://doi.org/10.18500/1816-9775-2023-23-1-110-123

EDN: FGRCHJ

Article

The ecological and coenotic features of plant communities containing Colchicum bulbocodium subsp. versicolor (Colchicaceae) in the Lower Volga region

I. V. Shilova, A. S. Kashin A. S. Parkhomenko, A. V. Bogoslov, T. A. Kritskaya, M. Yu. Kasatkin

Saratov State University, 83 Astrakhanskaya St., Saratov 410012, Russia Irina V. Shilova, schiva1952@yandex.ru, https://orcid.org/0000-0002-9828-4229 Alexandr S. Kashin, kashinas2@yandex.ru, https://orcid.org/0000-0002-2342-2172 Alena S. Parkhomenko, parkhomenko_as@mail.ru, https://orcid.org/0000-0002-9948-7298 Artem V. Bogoslov, dandelioncave@mail.ru, https://orcid.org/0000-0002-2248-1285 Tatyana A. Kritskaya, , kritckaiata@gmail.com, https://orcid.org/0000-0003-0181-3022 Michail Yu. Kasatkin, kasatkinmy@info.sgu.ru, https://orcid.org/0000-0003-1746-850X

Abstract. The article presents a phytocoenotic description of 23 plant communities with Colchicum bulbocodium subsp. versicolor studied during the period of mass flowering in 2014-2018. It was found that, across the Lower Volga region, the studied communities with C. bulbocodium subsp. versicolor are mostly confined to the slopes of south- and east-facing arroyos and more seldom to the southern and northern hill slopes, plains, arroyo and liman bases, and floodmeadows. During the period of mass flowering, 207 vascular plants were detected in the studied communities. Every community description included 9 to 36 species. Biological diversity was assessed with the Shannon index and polydominance index; the degree of dominance was measured with the Simpson index. The species similarity of the communities was evaluated through pairwise comparison with the Jaccard coefficient. It was revealed that C. bulbocodium subsp. versicolor occurs in communities varying in diversity and species composition. The subspecies is not confined to specific phytocoenoses. It usually grows on rich and, more seldom, fairly rich and slightly saline soils. Their alluviality is more often weak rather than moderate. Watering usually corresponds to the dry steppe or semi-desert climate type, rarely to the middle steppe type, being moderately variable and in some cases highly variable. The impact of grazing is usually weak, but it is either moderate or strong in some communities. The communities with C. bulbocodium subsp. versicolor are dominated by hemicryptophytes: mostly tap-root, short-rhizome and long-rhizome herbaceous perennials. In phytocoenotic terms, most species belong to the zonal type of vegetation, namely steppe vegetation. The participation of meadow species is prominent. The share of weed species is rather high, which indicates a significant anthropogenic load on the studied communities. Keywords: Colchicum bulbocodium subsp. versicolor, Lower Volga region, plant communities

For citation: Shilova I. V., Kashin A. S., Parkhomenko A. S., Bogoslov A. V., Kritskaya T. A., Kasatkin M. Yu. The ecological and coenotic features of plant communities containing Colchicum bulbocodium subsp. versicolor (Colchicaceae) in the Lower Volga region. Izvestiya of Saratov University. Chemistry. Biology. Ecology, 2023, vol. 23, iss. 1, pp. 110-123 (in Russian). https://doi. org/10.18500/1816-9775-2023-23-1-110-123, EDN: FGRCHJ

This is an open access article distributed under the terms of Creative Commons Attribution 4.0 International License (CC-BY 4.0)

© Shilova I. V., Kashin A. S., Parkhomenko A. S., Bogoslov/ A. V., Kritskaya T. A., Kasatkin M. Yu., 2023

Научная статья УДК 582.572.3+58.002+58.009

Эколого-ценотическая характеристика растительных сообществ с участием Colchicum bulbocodium subsp. versicolor (Colchicaceae) в Нижнем Поволжье

И. В. Шилова, А. С. Кашин А. С. Пархоменко, А. В. Богослов, Т. А. Крицкая, М. Ю. Касаткин

Саратовский национальный исследовательский государственный университет имени Н. Г. Чернышевского, Россия, 410012, г. Саратов, ул. Астраханская, д. 83

Шилова Ирина Васильевна, кандидат биологических наук, ведущий биолог отдела биологии и экологии растений УНЦ «Ботанический сад», schiva1952@yandex.ru, https://orcid.org/0000-0002-9828-4229

Кашин Александр Степанович, доктор биологических наук, профессор кафедры генетики биологического факультета, kashinas2@ yandex.ru, https://orcid.org/0000-0002-2342-2172

Пархоменко Алёна Сергеевна, кандидат биологических наук, заведующая отделом биологии и экологии растений УНЦ «Ботанический сад», parkhomenko_as@mail.ru, https://orcid.org/0000-0002-9948-7298

Богослов Артём Валерьевич, кандидат биологических наук, ведущий биолог отдела биологии и экологии растений УНЦ «Ботанический сад», dandelioncave@mail.ru, https://orcid.org/0000-0002-2248-1285

Крицкая Татьяна Алексеевна, кандидат биологических наук, заведующий лабораторией молекулярной биологии и цитогенетики, УНЦ «Ботанический сад», kritckaiata@gmail.com, https://orcid.org/0000-0003-0181-3022

Касаткин Михаил Юрьевич, кандидат биологических наук, доцент кафедры микробиологии и физиологии растений, kasatkinmy@info. sgu.ru, https://orcid.org/0000-0003-1746-850X

Аннотация. В период массового цветения Colchicum bulbocodium subsp. versicolor в 2014-2018 гг. сделаны фитоценотические описания 23 сообществ с его участием. Изученные сообщества с C. bulbocodium subsp. versicolor в Нижнем Поволжье произрастают чаще всего на склонах балок южной или восточной экспозиции, реже - на южных и северных склонах холмов, равнинных участках, днищах балок и лиманов, заливных пойменных лугах. Во всех сообществах с C. bulbocodium subsp. versicolor в период его массового цветения отмечено 207 видов сосудистых растений. На одно описание приходилось от 9 до 36 видов. Биологическое разнообразие оценивали с помощью индексов Шеннона и полидоминантности, а доминирование - с помощью индекса Симпсона. Разнообразие сообществ охарактеризовано с помощью индекса полидоминантности. Для выяснения видового сходства сообществ при попарном сравнении использовали коэффициент Жаккара. Выявлено, что C. bulbocodium subsp. versicolor входит в состав довольно разнообразных сообществ, отличающихся по богатству, разнообразию и видовому составу. Подвид не имеет строгой приуроченности к определенным фитоценозам. Произрастает чаще всего на богатых, реже - довольно богатых или слабосолонцеватых почвах. Аллювиальность их чаще слабая, чем умеренная. Чаще увлажнение соответствует сухостепному либо полупустынному типу, редко - среднестепному, являясь умеренно переменным, в некоторых случаях - сильно переменным. Влияние выпаса - слабое, в отдельных сообществах - умеренное и даже сильное. В сообществах c C. bulbocodium subsp. versicolor преобладают гемикриптофиты, преимущественно стержнекорневые, короткокорневищные и длиннокорневищные травянистые многолетники. В фитоценотическом отношении большинство видов принадлежит к зональному типу растительности - степному. Заметно участие луговых видов. Весьма велика доля сорных видов, что свидетельствует о большом антропогенном воздействии на сообщества.

Ключевые слова: Colchicum bulbocodium subsp. versicolor, Нижнее Поволжье, растительные сообщества

Для цитирования: Shilova I. V., Kashin A. S., Parkhomenko A. S., Bogoslov A. V., Kritskaya T. A., Kasatkin M. Yu. The ecological and coenotic features of plant communities containing Colchicum bulbocodium subsp. versicolor (Colchicaceae) in the Lower Volga region [Шилова И. В., Кашин А. С., Пархоменко А. С., Богослов А. В., Крицкая Т. А., Касаткин М. Ю. Эколого-ценотическая характеристика растительных сообществ с участием Colchicum bulbocodium subsp. versicolor (Colchicaceae) в Нижнем Поволжье // Известия Саратовского университета. Новая серия. Серия: Химия. Биология. Экология. 2023. Т. 23, вып. 1. С. 110-123. https://doi.org/10.18500/1816-9775-2023-23-1-110-123, EDN: FGRCHJ Статья опубликована на условиях лицензии Creative Commons Attribution 4.0 International (CC-BY 4.0)

Introduction

Colchicum bulbocodium subsp. versicolor (Ker Gawl.) K. Perss. is a subspecies listed under the name of Bulbocodium versicolor (Ker-Gawler) Spreng. in the Red Book of Russian Federation [1] and the Red Books of all regions where it occurs [2-8]. It is a relic of the post-glacial period of Mediterranean origin with a border of its range passing the territory under study [9, 10]. C. bulbocodium subsp. versicolor populations are currently disjunctive; some are declining. Plants usually grow in small groups, where

generative specimens prevail [11]. In some localities, populations of C. bulbocodium subsp. versicolor are already completely lost. In the Lower Volga region and the adjacent territories, the decline of the studied subspecies is prominent as well [9, 12]. Considering that insufficient knowledge about ecological and phytocoenotic features of small-size species and subspecies is often an obstacle to their protection and restoration, we propose that the study of ecological and phytocoenotic conditions of the habitat of C. bulbocodium subsp. versicolor during its flowering is of particular importance.

Material and methods

The research was carried out in the period of mass flowering of C. bulbocodium subsp. versicolor (the middle of April) in 2014-2018. In some years, additional descriptions were made during the period of fruit maturation (the middle of May). The study involved 23 plant communities with

C. bulbocodium subsp. versicolor located in the Volga Upland, the Oka-Don Lowlands, the Don Ridge, the Kalachyov Ridge and in the south of the Szyrt Plain (Fig. 1, Table 1). The studied territory comprised the eastern part of the subspecies range within the geographical Lower Volga region.

42° 43° 44° 45° 46° 47° 48°

Fig. 1. The localities of the studied plant communities containing Colchicum bulbocodium subsp. versicolor. Here and elsewhere: in Saratov Province: 1 and 2 - Balashovsky District, 3 and 4 - Tatishchevsky District, 5 - Gagarinsky District, 6 and 7 - Krasnoarmeysky District, 8, 9 and 10 - Engelsky District, 11 - Rovensky District; in Volgograd Province: 12 -Elansky District, 13 - Zhirnovsky District, 14 - Kamyshinsky District, 15 - Staropoltavsky District, 16 and 17 - Nehayevsky District, 18 - Danilovsky District, 19 - Kotovsky District, 20 - Kletsky District, 21 and 22 - Ilovlinsky District, 23 - Svetloyarsky District

The plant communities were described based on 100 m2 sample plots. The floristic composition of the communities was revealed. The abundance of species was evaluated with the Drude scale; the distance between specimens was taken into account. The total projective cover (TPC) and the projective cover (PC) of species in the studied communities were measured as well. The total number of descriptions amounted to 102. The descriptions comprised the data on the geographical location, confinement to a particular landscape element, exposition, and immediate neighbors of a community as well as on the negative factors affecting a community as a whole and a population of C. bulbocodium subsp. versicolor in particular. The assessment of habitat state and grazing load was performed based on the state of plant cover according to the ecological scales [13, 14] and the supplements

to those scales made for specific regions [15] in the EcoScaleWin software [16, 17]. The descriptions also contained the results of ecomorph spectrum analysis. The subdivision of species into ecomorphs was carried out following the scientific resources [18] and the authors' observations.

The plant nomenclature was provided according to the "Plants of the World Online. Facilitated by the Royal Botanic Gardens, Kew. Published on the Internet; http://www.plantsoftheworldonline.org/ Retrieved 07 February 2023" [19].

The species diversity of the studied communities was assessed with the diversity indices calculated in several ways [20-24]. The species similarity of the communities was evaluated through pairwise comparison with the Jaccard coefficient (Kj) [20] and displayed as Terentiev's correlation pleiades

[25]. The similarity of a pair of communities was considered significant when Kj was 50% and above, while the similarity line in the pleiad was thick. The similarity of a community pair was seen as moderate when Kj amounted to 30-49% and the line was thin. The similarity was low when Kj was below 30%, while there was no similarity line in the pleiad. For the calculation of the diversity indices, the projective cover (%) was used as an abundance measure. Biological diversity was assessed with the Shannon index [20] and the index of polydominance [26]. The dominance was evaluated with the Simpson index [27]. The calculations were performed in the GRAPHS software module [25, 28]. All described communities were evaluated with the Koch index of biological dispersion (IBD) [29, 30].

Results and discussion

Across the Lower Volga region, the studied communities with C. bulbocodium subsp. versicolor are mostly confined to the slopes of south- and east-facing arroyos and more seldom to the southern and northern hill slopes, plains, arroyo and liman bases, and floodmeadows. Detailed descriptions of the studied communities are provided in Table 1.

Our analysis of the subspecies habitats based on the plant cover showed that C. bulbocodium subsp. versicolor mostly grow on rich and, more seldom, fairly rich and slightly saline soils. Their alluviality is more often weak than moderate. Watering comes in the form of precipitation and sometimes floodwater. Watering usually corresponds to the dry steppe or middle steppe climate type and half as much to the meadow-steppe and dry meadow climate type, being moderately variable and in some cases highly variable. According to Ramensky's scales, in most plant communities, the impact of grazing is moderate and sometimes weak. Some communities were subject to steppe fires and mowing during the years of observation.

In 2014-2018, during the period of mass flowering, the communities with C. bulbocodium subsp. versicolor contained 207 vascular plants. Each description included 9 to 36 species (Table 2). In total, in all years of observation, six communities - communities Colchicum bulbocodium subsp. versicolor (no. 3), Festuca valesiaca + Stipa capillata+ + Artemisia austriaca + C. bulbocodium subsp. versicolor (no. 4), Graminosa + C. bulbocodium subsp. versicolor + mh (no. 5), F. valesiaca + Poa bulbosa + + C. bulbocodium subsp. versicolor (no. 6), P. bulbosa + +F. valesiaca + C. bulbocodium subsp. versicolor (no. 7), C. bulbocodium subsp. versicolor + graminosa + +mh (no. 11) - had 34 to 67 species per community. It was found out that trees and shrubs hardly ever

occur in the communities with C. bulbocodium subsp. versicolor. Community Graminosa + C. bulbocodium subsp. versicolor + mh (no. 5) confined to the north-facing hill slope and located in close proximity to thick shrubs and oak forest was the only one which had individual young trees of Quercus robur and Malus sp. and shrubs of Acer tataricum, Crataegus ambigua, Lonicera tatarica, Rosa canina, and Prunus spinosa. Communities F. valesiaca + P. bulbosa + +C. bulbocodium subsp. versicolor (no. 6), Poa angus-tifolia + C. bulbocodium subsp. versicolor (no. 21) and Graminosa + A. austriaca + Galatella villosa + mh (no. 22) had individual specimens of Spiraea hyperici-folia; community no. 21 also had Rosa canina. Dwarf semishrubs were represented by Astragalus palles-cens in community C. bulbocodium subsp. versicolor + P. bulbosa + A. austriaca (no. 3), by A. ucrainicus in communities Graminosa + C. bulbocodium subsp. versicolor + mh (no. 5), Graminosa + C. bulbocodium subsp. versicolor (no. 13), Stipa lessingiana + F. valesiaca + C. bulbocodium subsp. versicolor (no. 20) by A. varius in community F. valesiaca + S. capillata + + A. austriaca + C. bulbocodium subsp. versicolor (no. 4), by Bassia prostrata in communities C. bulboc-odium subsp. versicolor + P. bulbosa + A. austriaca (no. 3), F. valesiaca + P. bulbosa + C. bulbocodium subsp. versicolor (no. 6), P. bulbosa + F. valesiaca + + C. bulbocodium subsp. versicolor (no. 7), F. valesiaca + C. bulbocodium subsp. versicolor (no. 9 and 10), Graminosa + C. bulbocodium subsp. versicolor (no. 13 and 14), S. lessingiana + C. bulbocodium subsp. versicolor (no. 19), S. lessingiana + F. valesiaca + + C. bulbocodium subsp. versicolor (no. 20), P. bulbosa + C. bulbocodium subsp. versicolor + Gagea pusilla (no. 23), by Ephedra distachya in communities P. bulbosa + F. valesiaca + C. bulbocodium subsp. versicolor (no. 7), Graminosa + C. bulbocodium subsp. versicolor (no. 13 and 14), Graminosa + A. austriaca + + G. villosa + mh (no. 22), by Krascheninnikovia ceratoides in community P. bulbosa + F. valesiaca + + C. bulbocodium subsp. versicolor (no.7), and by Thymus calcareus in communities S. capillata + + F. valesiaca + A. austriaca + C. bulbocodium subsp. versicolor (no. 16) and P. angustifolia + C. bulbocodium subsp. versicolor (no. 21). The total projective cover of grass and dwarf semishrubs amounted to 45 to 90% in most communities, occasionally declining to 3045% in some years of observation due to steppe fires, mowing and intensive grazing. In different years, 7080% of the studied communities were dominated by C. bulbocodium subsp. versicolor; 50-60% by Festuca valesiaca; a slightly smaller portion of the communities were predominated by Poa bulbosa, Stipa capillata, Elymus repens, Agropyron cristatum,

I

QJ

-C

1 o-

s<

o

3

№ CP Coordinates Phytocoenosis area, ha Habitat Exposition / Slope angle, 0 Dominant species in the community TPC, %

N E

1 52°31'31" 43°05'30.9" 0.02 Floodmeadow - Alopecurus pratensis, Festuca valesiaca, Galium verum, Plantago urvillei, Poa angustifolia, Rumex acetosa 70-100

2 51°39'21.5" 43°18'25.4" 0.05 Floodmeadow - Alopecurus pratensis, Ranunculus ficaria subsp. caltifolius, Colchicum bulbocodium ssp. versicolor, Fritillaria meleagroides, R. acris,(Poa angustifolia) 100

3 51°4ril.2" 45°45'58.2" 0.25 Hill slope S / 20-25° Artemisia austríaca, Colchicum bulbocodium ssp. versicolor, (P. bulbosa, Festuca valesiaca, Galatella villosa, Potentilla humifusa, Stipa capillata, Draba verna, Gagea pusilla, Artemisia santanica) 45-75

4 51°40'5.3" 45°44'56.9" 1 Smooth hill slope S-SE / 5° Festuca valesiaca, S. capillata, A. austríaca, C. bulbocodium ssp. versicolor, (Poa bulbosa, Valeriana tuberosa, Koeleria pyramidata, D. verna) 75-90

5 51°21'37.9" 45°47'30.8" 1 Hill slope N/20-30° C. bulbocodium ssp. versicolor, (A. austríaca, Bromus riparius, Elymus repetís, Euphorbia virgata, Festuca valesiaca, Fragaria viridis, Salvia nemorosa ssp. pseudosylvestris, Verbascum chaixii, Achillea setacea, Jacobaea vulgaris ssp. vulgaris, Plantago urvillei, Poa angustifolia, Seseli libanotis, Solidago virgaurea) 90-100

6 51°09'44.8" 45°29'21.5" 0.021 Base of decrepit dyke - Festuca valesiaca, C. bulbocodium ssp. versicolor, (P. bulbosa, Artemisia austríaca, Koeleria pyramidata, Stipa capillata) 45-90

7 51°09'45.3" 45°29'27.8" 0.035 Arroyo slope S/3° C. bulbocodium ssp. versicolor, (P. bulbosa, S. capillata, Festuca valesiaca, Galatella villosa, A. austríaca, K. pyramidata) 45-90

8 510H'21.5" 46°03'48.7" 0.031 Base of wide arroyo - P. bulbosa, C bulbocodium ssp. versicolor, (Agropyron cristatum, Artemisia austríaca, Gagea pusilla, A. marschalliana) 30-90

9 51°12'33.9" 46°33'58.8" 0.042 Plain with micro-depressions - F. valesiaca, (C. bulbocodium ssp. versicolor, P. bulbosa, Elymus repens, Valeriana tuberosa, A. austríaca, A. santanica, K. pyramidata) 85-90

10 51°12'31.1" 46°37'19.2" 0.15 Plain with micro-elevations - F. valesiaca, C. bulbocodium ssp. versicolor, (Agropyron cristatum, Artemisia austríaca, K. pyramidata, Tulipa sylvestris ssp. australis, P. bulbosa, Klasea erucifolia, Potentilla humifusa, V. tuberosa) 90-95

11 50°42'59.7" 46°03'55.9" 10 Liman micro-depres-sions - C. bulbocodium ssp. versicolor, (E. lolioides, Agropyron cristatum, Poa bulbosa, Allium angulosum, G. pusilla, K. cardunculus, Limonium bungei, V. tuberosa, A. santanica) 60-85

12 50°54'26.1" 43°52'21" 0.25 Floodmeadow - C. bulbocodium ssp. versicolor, F. valesiaca, Alopecurus pratensis, G. pusilla, (P. angustifolia, Achillea setacea, Pedicularis dasystachys) 90-100

Continuation of the Table 1

№ CP Coordinates Phytocoenosis area, ha Habitat Exposition / Slope angle, 0 Dominant species in the community TPC, %

N E

13 50°39'5.4" 44°57'12.5" 0.73 Arroyo slope S / 5° C. bulbocodium ssp. versicolor, (Poa bulbosa, Stipa capillata, F. valesiaca, Artemisia austríaca, Galatella villosa) 50-90

14 50°23'1.2" 45°27'20.5" 0.04 Arroyo slope S / 5° E. repens, C. bulbocodium ssp. versicolor, P. bulbosa, (F. valesiaca, Gagea pusilla, A. austríaca, Koeleria pyramidata, Poa angustifolia) 50-90

15 50°21'27.6" 46°23'32.7" 0.36 Floodmeadow - F. valesiaca, C. bulbocodium ssp. versicolor, Eryngium planum, (G. pusilla, Valeriana tuberosa, Artemisia austríaca, A. santanica, Tanacetum achil-leifolium) 65-90

16 50°ir0.5" 41°59'0.2" 0.25 Depression in chalk hill S / 5° Stipa capillata, F. valesiaca, A. austríaca, C. bulbocodium ssp. versicolor 30

17 50°22'2.6" 41°43'47.8" 0.76 Inland plateau - S. capillata, C. bulbocodium ssp. versicolor, Centaurea jacea, Poa angustifolia, Potentilla argentea 75

18 50°13'18.7" 43°48'40.8" 1.47 Floodmeadow - Colchicum bulbocodium ssp. versicolor, F. valesiaca, Gagea pusilla, P. angustifolia, Alopecurus pratensis 95

19 50°iri4.5" 44°32'17.9" 0.02 Arroyo slope E / 5° S. lessingiana, C. bulbocodium ssp. versicolor, (P. bulbosa, F. valesiaca, G. pusilla, Galatella villosa) 75-90

20 49°10'05" 43°16'41.6" 0.72 Arroyo slope SW / 5-10° S. lessingiana, C. bulbocodium ssp. versicolor, (F. valesiaca, G. villosa) 95

21 49°11'35.6" 43°38'15.2" 0.09 Depression in chalk hill E-NE / 15-20° P. angustifolia, C. bulbocodium ssp. versicolor 70

22 49°11'18.6" 43°39'19.3" 0.04 Hill slope NE / 20° Artemisia austríaca, Stipa capillata, C. bulbocodium ssp. versicolor, F. valesiaca, Galatella villosa, Gagea pusilla 70

23 48°34'51.4" 44°20'56.2" 0.5 Arroyo slope N-NE / 5° C. bulbocodium ssp. versicolor, Poa bulbosa, G. pusilla, T. achilleifolium 90

Note. Species which were not dominant annually are in brackets.

Table 2

The biodiversity indices of the plant communities containing Colchicum bulbocodium subsp. versicolor

№ Year Number of Index

CP species, pcs. Simpson's, D Polydominance, 1/D Shannon's, H

1 201S 26 O.l3 7.69 2.21

2 2016 24 O.l4 7.21 2.10

201У 21 0.18 S.64 1.91

2014 17 0.28 3.S3 1.S0

201S 23 0.20 4.9У 1.У3

3 2016 9 0.1S 6.47 1.93

201У 11 0.20 4.88 1.75

2018 20 0.1S 6.83 2.08

2014 12 0.23 4.38 1.63

201S 23 0.2S 3.94 1.59

4 2016 15 O.l3 7.96 2.17

201У 14 0.20 S.04 1.77

2018 15 0.19 S.34 1.93

2014 25 0.37 2.67 1.23

201S 15 0.21 4.68 1.73

S 2016 36 O.lO 9.80 2.65

201У 6 0.24 4.11 1.48

iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.

2018 14 0.19 S.16 1.73

2014 17 0.49 2.O2 l.ll

201S 17 0.28 3.S3 1.40

6 2016 19 0.35 2.84 1.23

201У 20 0.18 S.66 1.90

2018 14 0.2S 4.02 1.55

2014 18 0.38 2.63 1.36

201S 19 0.33 3.0S 1.38

У 2016 25 0.22 4.SS 1.71

201У 27 O.l4 7.15 2.25

2018 23 0.19 S.28 1.96

201S 20 0.21 4.У4 1.80

8 2016 27 0.20 S.12 1.77

201У 24 0.24 4.12 1.73

2018 20 0.29 3.43 1.62

2014 11 0.49 2.O4 l.O7

9 201S 11 0.37 2.73 1.36

2016 30 0.23 4.44 1.83

201У 20 0.24 4.20 1.75

201S 18 0.33 3.06 1.27

10 2016 28 O.l4 6.91 2.12

2018 21 0.20 4.99 1.89

Continuation of the Table 2

№ CP Year Number of species, pcs. Index

Simpson's, D Polydominance, 1/D Shannon's, H

11 2014 17 0.32 3.16 1.56

2015 20 0.21 4.75 1.68

2016 17 0.17 5.83 1.89

2017 10 0.23 4.35 1.73

2018 12 0.17 6.02 1.89

12 2016 17 0.18 5.56 1.81

2017 21 0.18 5.43 1.85

13 2015 15 0.30 3.32 1.43

2016 21 0.15 6.81 2.02

2018 23 0.24 4.12 1.80

14 2016 30 0.14 6.95 2.06

2017 29 0.25 4.05 1.69

2018 12 0.24 4.11 1.54

15 2016 14 0.18 5.62 1.92

2017 8 0.22 4.63 1.69

2018 11 0.49 2.03 0.97

16 2018 24 0.24 4.21 1.78

17 2018 15 0.29 3.47 1.59

18 2018 18 0.22 4.49 1.64

19 2016 11 0.21 4.72 1.63

2017 22 0.22 4.60 1.70

2018 17 0.30 3.37 1.33

20 2016 26 0.19 5.35 1.89

2018 17 0.34 2.94 1.30

21 2017 36 0.25 4.03 1.75

2018 31 0.38 2.63 1.41

22 2016 31 0.17 6.03 1.95

23 2018 18 0.31 3.27 1.53

Note. Minimum index values are in italic: D - below 0.15, 1/D - below 3.00, H - below 1.3. Maximum index values are in bold: D - above 0.30, 1/D - above 6.00, H - above 2.00. Designations are the same as in Fig. 1 and Table 1.

Galatella villosa, Artemisia austriaca; an even smaller share of the communities by Koeleria pyramidata, Gagea pusilla; and individual communities had up to 30 more grain and herb species as dominant and co-dominant species (Table 1).

It was revealed that the following rare protected species occur alongside C. bulbocodium subsp. versicolor: Iris pumila, Adonis wolgensis, Anemone sylvestris, Leuzea altaica, Stipa pennata, Pedicularis dasystachys, Tulipa sylvestris subsp. australis, Fritil-laria meleagroides, and Ephedra distachya.

The values of the Jaccard coefficient (Kj) fluctuated from 2.44% to 51.52% (Fig. 2). In most cases, the communities had a moderate similarity in the species composition (K. = 30-49%). Communities Graminosa + mh (no. 1), Alopecurus pratensis + mh (no. 2) and Graminosa + C. bulbocodium subsp. versicolor + G. pusilla (no. 18) had a moderate similarity with one and the same community C. bulbocodium subsp. versicolor + graminosa + mh (no. 12). Notably, all the four communities grow in floodmeadows.

1 ^ 1 9

Fig. 2. The similarity of the plant communities containing Colchicum bulbocodium subsp. versicolor based on the Jaccard coefficient. The lines with a coefficient above 50 % are thick. Designations are the same as in Fig. 1 and Table 1

The following communities had no similarity with any other community - Graminosa + C. bulbocodium subsp. versicolor + mh (no. 5), P. bulbosa + + C. bulbocodium subsp. versicolor + Agropyron cristatum (no. 8), S. capillata + C. bulbocodium subsp. versicolor (no. 17) and Poa angustifolia + + C. bulbocodium subsp. versicolor (no. 21). Community no. 5 is located on the north-facing hill slope and comprises 67 species (from 6 to 36 in different years of observation). Community no. 8 grows on arenosols at the arroyo base and contains 45 species (20-27 species annually). Community no. 17 is confined to the inland plateau and has 15 species. Community no. 21 grows on the chalky northeastern arroyo slope and is comprised of 47 species (31-36 species in different years of observation).

Only three community pairs had a considerable similarity: communities F. valesiaca + C. bulbocodium subsp. versicolor + Eryngium planum (no. 15) and C. bulbocodium subsp. versicolor + graminosa + + mh (no. 11) growing on saline soils at the liman bases, occasionally submerged by melt water; communities F. valesiaca + C. bulbocodium subsp. versicolor (no. 9 and 10) located in the steppe along the bank

of the Nahoy river; and communities F. valesiaca + + P. bulbosa + C. bulbocodium subsp. versicolor (no. 6) and P. bulbosa + F. valesiaca + C. bulbocodium subsp. versicolor (no. 7) confined to the steppe slope of the same arroyo and growing in close proximity to each other.

The analysis of all communities based on the biological dispersal index IBD confirmed that the degree of similarity between the communities is low (IBD amounts to 12.41%).

According to the values of the Simpson index, all communities have a high level of dominance (Table 2). The dominance is especially articulated, although in individual years of observation, in communities F. valesiaca + P. bulbosa + C. bulbocodium subsp. versicolor (no. 6), F. valesiaca + C. bulbocodium subsp. versicolor (no. 9) and F. valesiaca + + C. bulbocodium subsp. versicolor + E. planum (no. 15); slightly lower degrees of dominance is characteristic of communities Graminosa + C. bulbocodium subsp. versicolor + mh (no. 5), P. bulbosa + F. valesiaca + + C. bulbocodium subsp. versicolor (no. 7), C. bulbocodium subsp. versicolor + graminosa + mh (no. 11), Graminosa + C. bulbocodium subsp. versicolor

(no. 13), S. lessingiana + C. bulbocodium subsp. versicolor (no. 19), S. lessingiana + F. valesiaca + + C. bulbocodium subsp. versicolor (no. 20), P. angus-tifolia + C. bulbocodium subsp. versicolor (no. 21) and P. bulbosa + C. bulbocodium subsp. versicolor + G. pu-silla (no. 23). The degree of dominance greatly varied in one and the same communities over the years of observation. The fluctuations of this parameter were particularly obvious in most communities in 2014. The highest variance of dominance was detected in communities no. 5, 6, 9 and 15. Communities Alopecurus pratensis + mh (no. 2), Poa bulbosa + C. bulbocodium subsp. versicolor +Agropyron cris-tatum (no. 8) and C. bulbocodium subsp. versicolor + graminosa + mh (no. 12) were the most stable in terms of the level of dominance which was also rather low; these communities are confined either to the arroyo base and poorly developed soil (community no. 8) or to floodmeadows (no. 2, 12). The lowest level of dominance was identified in communities Graminosa + mh (no. 1), Alopecurus pratensis + mh (no. 2), F. valesiaca + S. capillata + A. austriaca + + C. bulbocodium subsp. versicolor (no. 4), Graminosa + + C. bulbocodium subsp. versicolor + mh (no. 5), P. bulbosa + F. valesiaca + C. bulbocodium subsp. versicolor (no. 7), F. valesiaca + C. bulbocodium subsp. versicolor (no. 10) and Graminosa + C. bulbocodium subsp. versicolor (no. 14), especially in 2016 (Table 2).

Thus, the years 2014 and 2016 were remarkable in terms of the level of dominance: the maximum level of dominance was registered in the former year and the minimum level of dominance in the latter year. The communities growing on poorly developed soils or in floodmeadows were the most stable in terms of the level of dominance.

The polydominance index (1/D) ranged from 2.02 (community F. valesiaca + P. bulbosa + C. bul-bocodium subsp. versicolor - no. 6, in 2014) to 9.80 (community Graminosa + C. bulbocodium subsp. versicolor + mh - no. 5, in 2016) (Table 2). According to the values of 1/D, the highest species diversity was observed in communities Graminosa + mh (no. 1), Alopecurus pratensis + mh (no. 2), Bulbocodium versicolor +Poa bulbosa +Artemisia austriaca (no. 3), F. valesiaca + S. capillata + A. austriaca + + C. bulbocodium subsp. versicolor (no. 4), Graminosa + C. bulbocodium subsp. versicolor + mh (no. 5), P. bulbosa + F. valesiaca + C. bulbocodium subsp. versicolor (no. 7), F. valesiaca + C. bulbocodium subsp. versicolor (no. 10), C. bulbocodium subsp. versicolor + graminosa + mh (no. 11), Graminosa + C. bulbocodium subsp. versicolor (no. 13 and 14) and Graminosa + A. austriaca + G. villosa + mh

(no. 22). In most communities, species diversity was the highest in 2016. It was likely due to the warm spring of 2016 (warmest of all years of observation) which facilitated the quick regrowth of many species in the studied communities. Species diversity was the lowest in communities (no. 5), (no. 6), (no. 7), (no. 9), (no. 11), (no. 13), (no. 15), (no. 17), (no. 19), (no. 20), (no. 21) and (no. 23). In five communities (no. 5, 6, 7, 9, 11) the low values of this parameter were detected in 2014, while in other six communities (no. 15, 17, 19-21 and 23) - in 2018. In some of the latter communities, species diversity was low in 2015 and 2016 as well. In 2018, the delay of regrowth of many species was likely due to the cold spring. In other years of observation, the decline in species diversity was apparently linked to other factors. For instance, in 2014, community no. 5 exhibited a strong grassing by root grains which decreased biodiversity despite the abundance of species in the community. In communities no. 9 and 11, in 2014, flood water did not go down for a long time. In 2013, community no. 7 was subject to intensive grazing which damaged species composition both in 2014 and 2015.

Based on the Shannon index, biodiversity in the communities with B. versicolor fluctuated from 0.97 (in community no. 15 in 2018) to 2.65 (in community no. 5 in 2016). Communities no. 1-5, 7, 10, 13 and 14 had the highest biodiversity values, especially in 2016. The lowest biodiversity was detected in communities no. 5, 6, 9 and 15, mostly in 2014 (Table 2).

The above presented results indicate that C. bul-bocodium subsp. versicolor occurs in rather diverse communities which differ in diversity and species composition. Most communities have a merely moderate similarity with others based on the Jaccard index. The similarity of all studied communities is extremely low, which is confirmed by the low value of the biological dispersal index (12.41%). This suggests that the species is not restricted to particular phytocoenoses. Its dispersal is most likely due to accidental drift of seeds or long isolated existence of populations. However, the values of the biodiversity and dominance coefficients greatly vary over the years of observation, and they are clearly affected by the environmental factors, such as temperature in the period of regrowth, watering by melt water, the level of soil development and grassing by root grains, as well as by anthropogenic factors, primarily intensive grazing.

The analysis of flora showed that, based on the biomorphological composition, the communities with C. bulbocodium subsp. versicolor in the Lower Volga region are dominated by hemicryptophytes,

which is typical for moderately cold floras of the Holarctic realm (Fig. 3, a). These hemicryptophytes include polycarpic herbs, mostly tap-root (Artemisia santonica, order of astragalus, Centaurea scabiosa, Cephalaria uralensis, Cichorium intybus, Echinops ritro, Eryngium planum, Jurinea arachnoidea, Kla-sea erucifolia, Limonium bungei, Medicago falcata, Psephellus marschallianus, Salvia dumetorum, Seseli tortuosum, Trifolium pratense etc.) and long-rhizome plants (Anthoxanthum repens, Artemisia dracunculus, Elymus lolioides, Galatella sedifolia, Galium verum, Leymus racemosus, Ranunculus illyricus, Salvia ver-ticillata, Securigera varia etc.).

The number of cryptophytes is 6.5 smaller than that of hemicryptophytes. Cryptophytes are represented by the following groups: long-rhizome (Bromus inermis, Calamagrostis epigeios, Elymus repens, Carexpraecox, C. stenophylla, C. supina etc.), brush-rhizome (Pedicularis dasystachys, Ranunculus pedatus, Ranunculus polyrhizos), tuberous (Ranunculus ficaria subsp. caltifolius, Valeriana tuberosa) and bulbous polycarpic plants (Allium angulosum, A. globosum, Allium strictum, Bulbocodium versicolor, Fritillaria meleagroides, Gagea bulbifera, Gagea pusilla, Ornithogalum fischerianum, Tulipa sylvestris subsp. australis etc.). There are also chamephytes:

Ph

Cr 4.35 % 4.35 % Ch 11.11% \ I 6.76/0

0

Her

73,43%

0.48%.

Pr 14.98%

PrRu

6.76%

StPs-4.83%

5.32%

6.76% StRu 9.18%

StCa 2.9%

St 44.93%

MgTr 28.5%

HMgTr 1.45% OgTr I ,13.53%

.\P>

c

MsHgr UHgr Ms 0.97% 0.48% Ks 18.36% \/ 33.82%

d

KsMs 22.22%

MsTr '56.52%

MsKs 24.15%

ScHe HeSc 8.69% 1.45%

*

MgT 13.04%

He

iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.

89.86%

f

MsT 78.26%

Fig. 3. The ecomorph spectrum in the plant communities containing Colchicum bulbocodium subsp. versicolor. Designations: a - biomorphs: Ph - phanerophytes, Ch - chamephytes, Hcr - hemicryptophytes, Cr - cryptophytes, Th - therophytes; b - cenomorhs: Sil - sylvants, SilRu - sylvant ruderants, Pr - pratents, PrRu - pratent ruderants, St - steppants, StCa - steppant calcephytes, StPs - steppant psammophytes, StRu - steppant ruderants, Ru - ruderants, Pal - paludants, PrPs - pratant psammophytes; c - trophomorphs: OgTr - oligotrophs, MsTr - mesotrophs, MgTr - megatrophs, HMgTr - halomega-trophs; d - hygromorphs: Ks - kserophytes, MsKs - mesoxerophytes, KsMs - xeromesophytes, Ms -mesophytes, MsHgr - mesohygrophytes, UHgr - ultrahygrophytes; e - heliomorphs: He - heliophytes, ScHe - scioheliophytes, HeSc - heliosciophytes; f- thermomorphs: MgT - megatherms, MsT - meso-

therms, OgT - oligotherms

semishrubs (Krascheninnikovia ceratoides), dwarf subshrubs (Astragalus pallescens, A. ucrainicus, Astragalus varius, Bassia prostrata, Thymus cal-careus, T. pulegioides subsp. pannonicus), tap-root sucker plants (Artemisia absinthium), short-rhizome (A. marschalliana), long-rhizome (Veronica chamae-drys) and other perennial plants. There is a small number of phanerophytes: trees and shrubs (Acer tataricum, Crataegus ambigua, Lonicera tatarica, Prunus spinosa, Quercus robur, Rosa canina, Spiraea hypericifolia), subshrubs (Ephedra distachya) - as well as therophytes (Alyssum desertorum, Eragrostis minor, Erysimum marschallianum, Lepidium ruderale, Myosotis micrantha, Pulicaria vulgaris, Ranunculus falcatus, Stellaria media, Veronica verna) (Fig. 3, a).

In the cenomorph spectrum, approximately half of the species belong to steppe vegetation; together with steppe weeds, calciphytes (Cephalaria uralen-sis, Krascheninnikovia ceratoides, Linum perenne, Teucrium polium, Thymus calcareus etc.) and psam-mophytes (Dianthus polymorphus, Helichrysum arenarium, Jurinea cyanoides, Potentilla incana) this group constitutes over 60% (Fig. 3, b), which is typical of the steppe zone where the studied communities are located. The presence of meadow species is also articulated and amounts, together with meadow weeds, to 20%. Apparently, it is due to the confinement of some coenoses to liman and flood meadows. The group of forest species is small and represented by individual specimens of wood and forest grass species (Agrimonia eupatoria, Anemone sylvestris, Fragaria viridis, Peucedanum alsaticum etc.).

We detected one species of the meadow psam-mophyte group (Artemisia dracunculus) and one species of the swamp psammophyte group (Carex acuta). The groups of proper weed plants (Artemisia absinthium, Berteroa incana, Bromus squarrosus, Carduus uncinatus, Cirsium arvense etc.) and steppe (Alyssum desertorum, Artemisia austriaca, Carlina biebersteinii, Centaurea scabiosa etc.), meadow (Cichorium intybus, Elymus repens, Eryngium pla-num, Hieracium robustum, Pulicaria vulgaris etc.) and forest weed plants Anthriscus sylvestris, Galium boreale, Geum urbanum, Hieracium umbellatum etc.) comprise 26% of the floristic composition. This fact strongly supports the large anthropogenic load on the communities with C. bulbocodium subsp. versicolor.

The trophomorphic ratio analysis indicates that the communities with C. bulbocodium subsp. versicolor grow on soils ranging from poor (low-fertility) soils with a predominance of oligotrophic species to saline soils preferable for halomegatrophites (Fig. 3, c). However, an obvious predominance of

mesophytes suggests that the communities with C. bulbocodium subsp. versicolor are widely spread on fairly rich (medium-fertility) soils. A rather articulate presence of megatrophic species indicates that the communities under study are also widespread on rich (fertile) soils. Poor soils comprise a small share; saline soils make up an insignificant share as well.

The hygromorphic spectrum analysis shows that in the communities with C. bulbocodium subsp. versicolor, the soil watering regime ranges from dry to humid. The dry regime predominates, with a largest proportion of xerophytes; it is followed by the fairly dry regime, with an optimum for mesoxerophytes; fairly humid regime comes next, with an optimum for xeromesophytes; and the humid regime comes last, with an optimum for mesophytes (Fig. 3, d).

The ratio of heliomorphs indicates that helio-phytic species, for which the light type of illumination is suitable, prevail (Fig. 3, e). The semi-light and semi-shadow type of illumination are preferable for small-size groups of scioheliophytes and helio-phytes which are comprised of wood-shrubs and forest grass plants present in some communities with C. bulbocodium subsp. versicolor.

The confinement of the communities with B. versicolor to open spaces in the temperate zone explains an overwhelming prevalence of mesothermic plants (Fig. 3, f). Mere 13% of megathermic species prefer a warmer environment, whereas 9% develop better in a cooler environment.

To conclude, the communities with C. bulbocodium subsp. versicolor are dominated by hemicrypto-phytes, primarily tap-root, short-rhizome and long-rhizome grass perennials. In phytocoenotic terms, most species belong to the zonal vegetation, namely steppe vegetation. The presence of meadow species is also prominent. The proportion of weed plants is large, which indicates a strong anthropogenic load on the communities. The dry regime predominates, with a largest proportion of xerophytes; it is followed by the fairly dry regime, with an optimum for mes-oxerophytes; fairly humid regime comes next, with an optimum for xeromesophytes; and the humid regime comes last, with optimum for mesophytes. The communities are spread over medium-fertility and fertile soils. The light regime of illumination prevails. The predominance of mesothermic plants corresponds to the temperate zone.

References

1. Tsvelev N. N. Bulbocodium versicolor (Ker-Gawl.) Spreng. In: Krasnaya kniga Rossiyskoy Federatsii (rasteniya i griby) [Red Book of the Russian Federation

(plants and fungi)]. Moscow, KMK Scientific Press Ltd., 2008. 339 p. (in Russian).

2. Sokolov A. S., Sokolova L. A. Bulbocodium versicolor (Ker-Gawl.) Spreng. In: Krasnaya kniga Tambovskoy oblasti: mkhi, sosudistyye rasteniya, griby, lishayniki [The Red Book of the Tambov region: Mosses, vascular plants, fungi, lichens]. Tambov, ITs "Tambovpoligrafiz-dat" Publ., 2002, pp. 79 (in Russian).

3. Bulbocodium versicolor (Ker-Gawl.) Spreng. In: Krasnaya kniga Pridnestrovskoy Moldavskoy Respubliki [Red Book of the Pridnestrovian Moldavian Republic]. Tiraspol, MPRiEK Publ., 2009, pp. 95 (in Russian).

4. Agafonov V. A., Kuznetsov B. I. Bulbocodium versicolor (Ker-Gawl.) Spreng. In: Krasnaya kniga Voronezhskoy oblasti. T. 1: Rasteniya, lishayniki, griby [Red Data Book of the Voronezh Region. Vol. 1: Plants, lichens, mushrooms]. Voronezh, MODEK Publ., 2011, pp. 260 (in Russian).

5. Khlyzova N. Yu., Grigorievskaya A. Ya. Krasnaya kniga Lipetskoy oblasti. T. 1. Rasteniya, griby, lishayniki [Red Data Book of the Lipetsk Region, vol. 1. Plants, mushrooms, lichens]. Lipetsk, OOO "Veda sotsium" Publ., 2014, pp. 174 (in Russian).

6. Zemlyanskaya I. V., Kuvaldina A. I. Bulbocodium versicolor (Ker-Gawl.) Spreng. In: Krasnaya kniga Volgogradskoy oblasti. Chast' 2. Rasteniya i drugiye organizmy [Red Book of the Volgograd region. Part 2. Plants and other organisms]. Volgograd, OOO "Izdat-Print", 2017, pp. 157 (in Russian).

7. Zolotukhin N. I., Poluyanov A. V., Filatova T. D. Bul-bocodium versicolor (Ker-Gawl.) Spreng. In: Krasnaya kniga Kurskoy oblasti: redkiye i ischezayushchiye vidy zhivotnykh, rasteniy i gribov [Red Book of the Kursk region: rare and endangered species of animals, plants and fungi]. Kaliningrad, Kursk, ID ROST-DOAFK Publ., 2017, pp. 164 (in Russian).

8. Khudyakova L. P. Bulbocodium versicolor (Ker-Gawl.) Spreng. In: Krasnaya kniga Saratovskoy oblasti: Griby. Lishayniki. Rasteniya. Zhivotnyye [Red Book of the Saratov region: Mushrooms, Lichens, Plants, Animals]. Saratov, Papirus Publ., 2021, pp. 167-168 (in Russian).

9. Sagalayev V. A., Shantser I. A. Seven. 36. Kolchikaseae DK. Colchicaceae. In: Flora of the Lower Volga region. T. 1 [Flora of the Lower Volga region. Vol. 1]. Moscow, KMK Scientific Press Ltd., 2006, pp. 331-333 (in Russian).

10. Kuznetsov B. I., Moiseyeva Ye. V., Glazneva O. S. Seed productivity of early spring steppe ephemeroids by the example of Bulbocodium versicolor (Ker-Gavel.) Spreng. and Bellevalia sarmatica (Pall. Ex Georgi) in natural conditions and in culture. Proceedings of Voronezh State University. Series: Geography. Geoecology. 2011, no. 2, pp. 104-106 (in Russian).

11. Kashin A. S., Kulikova L. V., Petrova N. A., Shilova I. V., Parkhomenko A. S., Lavrentyev M. V. Ontogenetic structure of Bulbocodium versicolor (Melanthiaceae) ce-nopopulations in the lower Volga Region. Botanicheskii

zhurnal, 2020, vol. 105, no. 5, pp. 63-80 (in Russian). https://doi.org/10.31857/S000681362005004X

12. Petrova N. A., Shilova I. V., Kashin A. S., Berezuts-kiy M. A., Serova L. A., Reshetnikova T. B. The location of Bulbocodium versicolor in Saratov Region about. Bulletin of Botanic Garden of Saratov State University, 2015, iss. 13, pp. 25-31 (in Russian).

13. Ramenskiy L. G., Tsatsenkin I. A., Chizhikov O. N., Antipin N. A. Ekologicheskaya otsenka kormovykh ugodiypo rastitel'nomupokrovu [Ecological Assessment of Forage Lands by Vegetation Cover]. Moscow, Gos. izd-vo sel'khoz. lit-ry, 1956. 472 p. (in Russian).

14. Gorbunov V. S., Gorin V. I., Maevsky V. V., Baya-kov D. A. Ekologicheskaya otsenka yestestven-nykh kormovykh ugodiy po shkalam L. G. Ramen-skogo [Ecological assessment of natural forage lands using the scales of L. G. Ramenskiy]. Saratov, FGNU RosNIISK "Rossorgo" Publ., 2010. 82 p. (in Russian).

15. Gorin V. I., Boldyrev V. A. Rasshireniye shkaly Ra-menskogo. Dopolneniye shkal dannymi po ekologii flory Saratovskoy oblasti [Expansion of the Ramensky scales. Supplementing the scales with data on the ecology of the flora of the Saratov region]. Saarbrücken, Deutschland, LAPLAMBERT Academic Publishing, 2013. 66 p.

16. Grokhlina T. I., Khanina L. G. Automation of processing of geobotanical descriptions on ecological scales. In: Printsipy i sposoby sokhraneniya bioraznoobraziya: ma-terialy II Vserossiyskoy nauchnoy konferentsii [Principles and methods of biodiversity conservation: Proceedings of the II All-Russian Scientific Conference]. Yoshkar-Ola, Maar.gos. un-t Publ., 2006, pp. 87-89 (in Russian).

17. Zubkova Ye. V., Khanina L. G., Grokhlina T. I., Doro-gova Yu. A. Komp'iuternaia obrabotka geobotanicheskikh opisanii po ekologicheskim shkalam s pomoshch'iu programmy EcoScaleWin [Computer processing of geo-botanical descriptions on ecological scales using the EcoScaleWin program]. Yoshkar-Ola, MarGU Publ., 2008. 96 p. (in Russian).

18. Matveyev N. M. Bioekologicheskiy analiz flory i rastitel'nosti (na primere lesostepnoy i stepnoy zon) [Bioecological analysis of flora and vegetation (on the example of the forest-steppe and steppe zones)]. Samara, Izd-vo Samarskogo un-ta, 2006. 311 p. (in Russian).

19. POWO (2023). Plants of the World Online. Facilitated by the Royal Botanic Gardens, Kew. Published on the Internet. Available at: http://www.plantsoftheworldon-line.org/ (accessed 07 February 2023).

20. Magurran A. E. Measuring Biological Diversity. Oxford, Blackwell Science Ltd., 2004. 256 p.

21. Ganame M., Bayen P., Ouedraogo I., Dimobe K., Thio-mbiano A. Woody species composition, diversity and vegetation structure of two protected areas along a climatic gradient in Burkina Faso (West Africa). Folia Geobotanica, 2019, no. 54, pp. 163-175. https://doi. org/10.1007/s12224-019-09340-9

22. Filimonova E., Lukina N., Glazyrina M., Borisova G., Tripti K. A., Maleva M. A comparative study of Epi-pactis atrorubens in two different forest communities of the Middle Urals, Russia. Journal of Forestry Research, 2020, vol. 31, iss. 6, pp. 2111-2120. https://doi. org/10.1007/s11676-019-01010-y

23. Fournier T., Fe'vre J., Carcaillet F., Carcaillet C. For a few years more: reductions in plant diversity 70 years after the last fire in Mediterranean forests. Plant Ecology, 2020, vol. 221, pp. 559-576. https://doi.org/10.1007/ s11258-020-01034-z

24. Hongrui Z., Qingfan M., Yan L, Shengdong L., Shiming L., Yan C. Community diversity of ground-dwelling beetles in secondary oak Forest and its adjacent restored poplar Forest. Phytoparasitica, 2020, vol. 48, pp. 727-742. https://doi.org/10.1007/s12600-020-00838-z

25. Novakovskiy A. B. A review of the modern programs for the geobotanical analysis. Vegetation of Russia, 2006, no. 9, pp. 86-95 (in Russian).

26. Shitikov V. K., Rozenberg G. S., Zinchenko T. D. Kolichestvennaya gidroekologiya: metody sistemnoy

identifikatsii [Quantitative hydroecology: Methods of systemic identification]. Togliatti, IEVB Publ., 2003. 463 p. (in Russian).

27. Kornan M. Potential negative efects of construction of a high-mountain ski resort in the High Tatras, Slovakia, on breeding bird assemblages. Community Ecology, 2020, vol. 21, pp. 213-226. https://doi.org/10.1007/ s42974-020-00018-3

28. Novakovskiy A. B. Interaction between Excel and statistical package R for ecological data analysis. Vestnik Instituta biologii Komi NC UrO RAN, 2016, no. 3 (197), pp. 26-33 (in Russian). https://doi. org/10.31140/j .vestnikib. 2016.3(197).4

29. Koch L. F. Index of biotal dispersity. Samarskaya Luka: Problems of Regional and Global Ecology, 2013, vol. 22, no. 2, pp. 181-188 (in Russian).

30. Semkin B. I., Gorshkov M. V. On the role of A. P. Shen-nikov in the development of quantitative evaluation of differentiating diversity of plant communities. Contemporary Problems of Ecology, 2014, no. 7, pp. 501-504. https://doi.org/10.1134/S1995425514050126

Поступила в редакцию 20.01.23; одобрена после рецензирования 23.01.23; принята к публикации 27.01.23 The article was submitted 20.01.23; approved after reviewing 23.01.23; accepted for publication 27.01.23

i Надоели баннеры? Вы всегда можете отключить рекламу.