Научная статья на тему 'THE DYNAMICAL SYSTEM OF -RATIONAL FUNCTION WITH UNIQUE MULTIPLE FIXED POINT'

THE DYNAMICAL SYSTEM OF -RATIONAL FUNCTION WITH UNIQUE MULTIPLE FIXED POINT Текст научной статьи по специальности «Математика»

CC BY
0
0
i Надоели баннеры? Вы всегда можете отключить рекламу.
Журнал
Science and innovation
Область наук
Ключевые слова
p -adik son / qo'zg'almas nuqta / itaruvchi / tortuvchi / betaraf / Zigel diski / maksimal Zigel diski.

Аннотация научной статьи по математике, автор научной работы — Jurayev Shuxrat Maxamadaliyevich, Ahmadaliyev Shohruh Bahromjon Ogli

Ushbu maqolada biz ko‘rinishdagi ratsional funksiyaning diskret vaqtli -adik dinamik sistemasini o‘rgandik. O‘rganilgan ratsional funksiya yagona qo‘zg‘almas nuqtaga ega hamda uning betaraf qo‘zg‘almas nuqta ekanligini ko‘rsatdik. Bundan tashqari, parametrning turli qiymatlarida maksimal Zigel disklari topdik.

i Надоели баннеры? Вы всегда можете отключить рекламу.
iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.
i Надоели баннеры? Вы всегда можете отключить рекламу.

Текст научной работы на тему «THE DYNAMICAL SYSTEM OF -RATIONAL FUNCTION WITH UNIQUE MULTIPLE FIXED POINT»

THE DYNAMICAL SYSTEM OF (2,1) -RATIONAL FUNCTION WITH UNIQUE MULTIPLE FIXED POINT

1Jurayev Shuxrat Maxamadaliyevich, 2Ahmadaliyev Shohruh Bahromjon O'g'li

1Andijan State University, 2Namangan State University https://doi.org/10.5281/zenodo.13894665

x2 ax

Annotatsiya. Ushbu maqolada biz f (x) =- ko'rinishdagi ratsional funksiyaning

bx + a

diskret vaqtli p -adik dinamik sistemasini o'rgandik. O'rganilgan ratsional funksiya yagona x = 0 qo'zg'almas nuqtaga ega hamda uning betaraf qo'zg'almas nuqta ekanligini ko'rsatdik. Bundan tashqari, b parametrning turli qiymatlarida maksimal Zigel disklari topdik.

Kalit so'zlar: p -adik son, qo'zg'almas nuqta, itaruvchi, tortuvchi, betaraf, Zigel diski, maksimal Zigel diski.

Aннотация. В данной статье мы изучили дискретную систему динамики на p -

2

адических числах для рациональной функции вида f (x) =-. Мы показали, что

bx + a

рациональная функция имеет единственную неподвижную точку при x = 0 и доказали, что эта неподвижная точка является нейтральной. Кроме того, мы нашли максимальные диски Зигеля для различных значений параметра b .

Annotation. In this article, we studied the discrete-time p -adic dynamic system of the

x 2 + ax

rational function of the form f (x) =-. We demonstrated that the rational function has a

bx + a

unique fixed point at x = 0 and showed that this fixed point is neutral. Additionally, we found the maximal Siegel disks for different values of the parameter b .

Key words: p -adic number, fixed point, attractor, repeller , indifferent, Siegel disk, maximum Siegel disk.

1. p -adic numbers. Let □ be the field of rational numbers. The greatest common divisor of the positive integers n and m is denoted by (n, m). Every rational number x И 0 can be

n

represented in the form x = pr —, where r, n e □ , m is a positive integer, (p, n) = 1, (p, m) = 1

m

and pis a fixed prime number.

The p -adic norm of x is given by

_j p-, for x И 0, Xp =[0, for x = 0.

It has the following properties:

1. | x \p > 0 and | x \p = 0 if and only if x = 0,

2. \ xJ \p =\x \p \ y \p,

3. The strong triangle inequality: \ x + y \ < max{\x y \ }, ЗЛ) if \ x \pИу \p, then \ x + y \p = max{\x \p,\y \p},

3.2) if \ x \p =\y \p, then \ x + y \p<\ x \p ,

This is a non-Archimedean one. The completion of □ with respect to p -adic norm defines the p -adic field which is denoted by □ (see [1]). The algebraic completion of □ is denoted by □ , and it is called complex p -adic numbers.

For any a eD and r > 0 denote:

£/.(a) = {xeD p :\x-a\p<r}, Vr(a) = {xe□ p :\x-a\p<r}, Sr(a) = {x<=U p:\x-a\p = r}

A function /: Ur (a) —> □ is said to be analytic if it can be represented by:

/(*) = £/„(*-")", /„e Up,

n=0

which converges uniformly on the ball Ur (a)

2. Dynamical systems in □ p. Recall some known facts concerning dynamical systems (f,U) in □ where / :x <eU —> f(x)eU is an analytic function and U = Ur(a) or □ (see, for example, [2,3]).

Now let /: U —> U be an analytic function. Denote /"(x) = f°- ■ ■ °f {x) (n times).

• If f (x0) = x0 then x0 is called a fixed point. The set of all fixed points of f is denoted by Fix( f). A fixed point x0 is called an attractor if there exists a neighborhood U(x0) of x0 such that for all points x e U(x0), it holds lim fn (x) = x0.

• A fixed point x0 is called a repeller if there exists a neighborhood U(x0) such that | f (x) - x0 | >| x - x0 \ for x e U(x0), x ^ x0 .

Let x0 be a fixed point of a function f (x) ). Put X = f '(x0) . The point x0 is attractive if 0 <| X | < 1, indifferent if | X\ = 1, and repelling if | X\ > 1.

The ball Ur (x0) (contained in V) is said to be a Siegel disk if each sphere £ (x0), p < r is an invariant sphere of f (x), i.e., if x e £p(x0), then all iterated points fn(x) e £p(x0) for all n = 1,2,3,.... The union of all Siegel disks with the center at x0 is said to be a maximum Siegel disk and is denoted by SI (x0).

3. (2,1)-Rational p -adic dynamical systems. In this paper we consider the dynamical system associated with the (2,1) -rational function /:□—>•□ defined by

2

f (x) = x-+ax, (1)

bx + a

where x ^ —b.

a

The function (1) has unique fixed point x = 0 . Thus we study dynamical system (/, Cp) with f given by (1). For (1) we have

f'(xo) = f '(0) = 1

i.e., the point x0 is an indifferent point for (1).

We get the following main result:

Theorem. The following statement holds:

SI(0)=

U (0) if | b | < 1,

\a\p V J ' 'p

U.a. (0) if | b | > 1.

REFERENSCES:

1. F.Q. Gouvea, p — Adic Numbers. An Introduction, Springer-Verlag, Berlin Heidelberg, New York, second, 1997.

2. U.A. Rozikov, I.A. Sattarov. On a non-linear p-adic dynamical system. p —Adic Numbers, Ultrametric analysis and Applications. 2014(6), 53-64.

I.A. Sattarov. p — adic (3,2)-rational dynamical systems. p —Adic Numbers, Ultrametric analysis and Applications. 2015(7), 39-55.

<

i Надоели баннеры? Вы всегда можете отключить рекламу.