Научная статья на тему 'THE AH PROBLEM FOR A LOADED EQUATION OF A PARABOLIC-HYPERBOLIC TYPE, DEGENERATING INSIDE THE REGION'

THE AH PROBLEM FOR A LOADED EQUATION OF A PARABOLIC-HYPERBOLIC TYPE, DEGENERATING INSIDE THE REGION Текст научной статьи по специальности «Математика»

CC BY
35
9
i Надоели баннеры? Вы всегда можете отключить рекламу.
Ключевые слова
ВЫРОЖДАЮЩИЕ НАГРУЖЕННЫЕ УРАВНЕНИЯ / КРАЕВАЯ ЗАДАЧА / ЗАДАЧА ТИПА ГЕЛЛЕРСТЕДТА / СУЩЕСТВОВАНИЕ И ЕДИНСТВЕННОСТЬ РЕШЕНИЕ / УРАВНЕНИЯ СМЕШАННОГО ТИПА / A DEGENERATE LOADED EQUATION / BOUNDARY VALUE PROBLEMS / THE HELLERSTEDT PROBLEM / THE EXISTENCE AND UNIQUENESS OF A SOLUTION / EQUATIONS OF MIXED TYPES

Аннотация научной статьи по математике, автор научной работы — Juraev Furkat Muhitdinovich

The following article deals with the provision of a unique solution of a problem similar tu the Hellerstedt problem for a loaded parabolic-hyperbolic equation with a breakdown within the field. The uniqueness of the solution of the AH problem is proved using the extremum principle, and existence is proved by the method of integral equations. At present, the range of problems under consideration for nondegenerate loaded equations of hyperbolic, parabolic, hyperbolic-parabolic, and elliptic-parabolic types has expanded significantly, also considered inverse problems posed equations of mixed type. Methods for numerical solutions of these problems are given.

i Надоели баннеры? Вы всегда можете отключить рекламу.
iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.
i Надоели баннеры? Вы всегда можете отключить рекламу.

Текст научной работы на тему «THE AH PROBLEM FOR A LOADED EQUATION OF A PARABOLIC-HYPERBOLIC TYPE, DEGENERATING INSIDE THE REGION»

9. Duczmal M.L. Pawlak L. Magnetic properties of TlLnS2 compounds (Ln-Dy, Tb and Ho) // J. Alloys and Comp., 1995. V. 219. P. 189-192.

10. ЛампертМ.А. Инжекционные токи в твердых телах. М.: Мир, 1973. 200 с.

11. Гутман Ф., Лайонс Л. Органические полупроводники. М. «Мир», 1970. 698 с.

THE AH PROBLEM FOR A LOADED EQUATION OF A PARABOLIC-HYPERBOLIC TYPE, DEGENERATING INSIDE THE REGION Juraev F.M. Email: [email protected]

Juraev Furkat Muhitdinovich - Senior Lecturer, DEPARTMENT OF DIFFERENTIAL EQUATIONS, FACULTY OF PHYSICS AND MATHEMATICS, BUKHARA STATE UNIVERSITY, BUKHARA, REPUBLIC OF UZBEKISTAN

Abstract: the following article deals with the provision of a unique solution of a problem similar tu the Hellerstedt problem for a loaded parabolic-hyperbolic equation with a breakdown within the field. The uniqueness of the solution of the AH problem is proved using the extremum principle, and existence is proved by the method of integral equations. At present, the range of problems under consideration for nondegenerate loaded equations of hyperbolic, parabolic, hyperbolic-parabolic, and elliptic-parabolic types has expanded significantly, also considered inverse problems posed equations of mixed type. Methods for numerical solutions of these problems are given.

Keywords: a degenerate loaded equation, boundary value problems, the Hellerstedt problem, the existence and uniqueness of a solution, equations of mixed types.

ЗАДАЧА АГ ДЛЯ НАГРУЖЕННОГО УРАВНЕНИЯ ПАРАБОЛО-ГИПЕРБОЛИЧЕСКОГО ТИПА, ВЫРОЖДАЮЩЕГОСЯ ВНУТРИ ОБЛАСТИ Жураев Ф.М.

Жураев Фуркат Мухитдинович - старший преподаватель, кафедра дифференциальных уравнений, физико-математический факультет, Бухарский государственный университет, г. Бухара, Республика Узбекистан

Аннотация: в данной статье доказана однозначно разрешимость решения задачи Геллерстедта для нагруженного уравнения параболо-гиперболического типа, вырождающегося внутри области. Единственность решения задачи АГ доказывается с помощью принципа экстремума, а существование - методом интегральных уравнений. В настоящее время круг рассматриваемых задач для невырождающихся нагруженных уравнений гиперболического, параболического, гиперболо-параболического и эллиптико-параболического типов значительно расширился, также рассматриваются обратные задачи, поставленные уравнениям смешанного типа. Даётся метод численных решений этих задач.

Ключевые слова: вырождающие нагруженные уравнения, краевая задача, задача типа Геллерстедта, существование и единственность решение, уравнения смешанного типа.

UDC 517.956.6

Boundary value problems for nondegenerate loaded equations of mixed type of the second and third order, when the loaded part contains a trace or a derivative of the desired function, were studied in the works of [1]-[4]. A three-dimensional analogue of the Tricomi problem for a loaded parabolic-hyperbolic type equation was studied in the work of [5].

19

As far as we know, boundary problems such as the Tricomi and Hellerstedt problems for a degenerate loaded equation of mixed type of the second order have been studied relatively little. We have considered the work of [6]-[9].

Now they study inverse problems posed to equations of mixed type [14], [17]. Their numerical solution is widely used [9], [11]- [13], [15]. In some cases, by showing the equivalence of equations of mixed type to systems of hyperbolic type, one can prove the existence and uniqueness of a solution to the original problem [10], [16], [18].

Based on this, the present work is devoted to the formulation and study of a boundary value problem such as the Hellerstedt problem for a loaded equation of parabolic-hyperbolic type, degenerating inside the domain.

1. Statement of the AH problem Lets consider the equation

IP

L

y

0 =

U — \x\P U — JLIM (x,0), y > 0,

xx I I y V /

m (1) - (—yT Uyy + Lj+2U (x,0), y < 0

m

U

xx

where m, p, J, Jl-+2 - m, p, J, Jj+2 - any real numbers, moreover

m < 0, p > 0, j > 0, jj+2 < 0, (/ = 1,2; j = 1,4) (2,)

We introduce the following notation: Q01 = Qq o {(x, y): x > 0, y > 0}, Q02 = Q0 o{(x, y): x < 0, y > 0}, Q3 = Q01 ^Q02 ^ J3, J3 ={(x, y) : x = 0,0 < y < 1}

Ju =|(x,y): 0 <x <x°, y = 0J, J12 =j(x,y): ^ < x < x0, y = o},

J21 =|(x,y): x0 <x<, y = 0}, J22 =|(x,y): <X<!, J = 0}, Jq ={(x,y): 0<x< 1, y = 0}, J = {(x,y): 0<x<x0, y = 0}, J2={(x,y): x0<x< 1, y = 0}, Q = Qn ^Q^ ^Q31 ^ J0,

J 1n =|(x,y): — f < x< 0, y = 0}, J'12 =j(^ y) : — x0 < x < , y = o} ,

J121 =|(x,y): — xo2+1 <x<xo, y = 0}, J^ = j(x,y): — 1 <x<— ^, y = o},

J1o ={(x,y): —1 <x<0, y = 0}, J\ ={(x,y): — xq <x<0, y = 0},

J'2 = {(x,y): —1 <x<x0, y = 0}, Q2 = Q12 ^Q22 ^Q^ ^ J10,

Q = Q3 Q1 ^ Q2

After some designations, in the field Q for the equation, (1, ) the following problem is studied:

;

Task AH. Is required to find a function u (X, y ) that has the following properties:

1) u (X, y) e C (Q) n Cjj (Q01 uQ02) n C2 (Q1 uQ2);

2) u (X, y) is a regular solution to the equation (l/) in areas Q ^ and Q j2 (j _ 0~3);

3) uyeC(Qz)that Uy (X, y) can handle infinity less order in l - 2p |x| ^ 0, andv|x| ^ 1, is

, . Fl ^

limited;

4) ux E C(Q3) on the line of degeneration J3 bonding conditions are met

limux (x y ) = xlim0 ux ( x y ) '(0' y) E J3 (3)

5) U ( X, y ) satisfies boundary conditions

U

I A,B,

u

E Cn

= ( (y)0 ^ y ^ 1 (4, )

V, (x) ' N e J,2, (5,)

u\e2C12 =VI (x), NeJ,2; (6,)

where (( (y ), Vf ( X) , Vi ( )) ,(i = 1,2)- defined functions, moreover

Wx ( •) = W 2 ( •) > wl1 ( ) = ¥2 ()

йМеОДПС1^з), (7,)

m

Here 2fi= , that

m - 2

0 <P< 2. (9)

2. The study of the AH problem for the equation (^ )

Theorem. If the conditions are met (2i), (7.), (8г.) and (9), in the areas Q solution of the

task AG exists and entire.

The uniqueness of the solution of the AG problem is proved using the extremum principle, and existence is proved by the method of integral equations.

References / Список литературы

1. Nakhushev A.M. Nagruzhennyye uravneniya i ikh prilozheniya // Differentsial'nyye uravneniya, 1983. T. 19. № 1. S. 86-94.

2. Islomov B., Kuryazov D.M. On a boundary value problem for a loaded second-order equation // "Reports of the Academy of Sciences of the Republic of Uzbekistan", 1996. № 1-2. Р. 3.

3. Islomov B., Kuryazov D.M. Boundary value problems for a mixed loaded third-order equation of parabolic-hyperbolic type // "Uzbek Mathematical Journal", 2000. № 2. Р. 29-35.

4. Islomov B., Boltaeva U.I. A boundary value problem for a loaded third-order equation with a parabolic-hyperbolic operator // "Uzbek Mathematical Journal",2007. № 2. Р. 45-55.

5. Islomov B., Alikulov E. Estimation of the solution of an analogue of the Tricomi problem for one class of loaded equations of mixed type // Materials International Russian-Bulgarian symposium "Equations of a mixed type and related problems of analysis and computer science" -Russia. Nalchik-Khabez, 2010. P. 101-104.

6. Islomov B., Juraev F. An analogue of the Tricomi problem for a degenerate loaded parabolic-hyperbolic type equation // "Uzbek mathematical journal", 2011. № 2. P. 75-85.

7. Islomov B., Juraev F. The AT problem for a loaded equation of parabolic-hyperbolic type, degenerating inside the region// "Uzbek mathematical journal", 2011. № 2. P. 78-87.

8. Juraev F. Hellerstedt-type problem for a degenerate loaded parabolic-hyperbolic equation // Scientific reports of BukhSU, 2018. № 2. P. 33-39.

9. Merajova Sh.B. Numerical solution of the second boundary value problem for an equation of mixed-composite type // Journal of Global Research in Mathematical Archives. 6 (10), 2019.

10. Merazhova Sh.B. Ekvivalentnost' kharakteristicheskoy zadachi dlya uravneniya smeshannogo tipa zadachi Koshi dlya simmetricheskoy giperbolicheskoy sistemy // "Molodoy uchonyy". 10 (114), 2016. St. 14-16.

11. Merazhova Sh.B. Raznostnaya krayevaya zadacha dlya uravneniya smeshannogo tipa // "Molodoy uchonyy", 8(112), 2016, 21-23.

12. Merazhova Sh.B., Mamatova N.Kh. Apriornaya otsenka dlya resheniya pervoy krayevoy zadachi dlya uravneniya smeshannogo tipa // "Molodoy uchonyy". 12(116), 2016. St. 42-43.

13. Durdiyev U.D. Chislennoye opredeleniye zavisimosti dielektricheskoy pronitsayemosti sloistoy sredy ot vremennoy chastoty // Sibirskiye Elektronnyye Matematicheskiye Izvestiya, 17 (2020). Str. 179-189.

14. Durdiev U.D. A problem of identification of a special 2D memory kernel in an integro-differential hyperbolic equation // Eurasian journal of mathematical and computer applications, 7:2 (2019). Pp. 4-19.

15. Durdiev U.D. An Inverse Problem for the System of Viscoelasticity Equation in the Homogeneous Anisotropic Media // Journal of Applied and Industrial Mathematics - Springer, 13:4 (2019), Pp. 1-8.

16. Merazhova Sh.B. Teorema ob ustoychivosti raznostnoy modeli dlya pervoy krayevoy zadachi postavlennuyu v uravneniyu smeshannogo tipa // Uchenyy XXI veka. № 5-3(2018). 49-51.

17. Merazhova Sh.B., Mardonova F.Ya. Ekvivalentnost' zadachi dlya uravneniya smeshannogo tipa i zadachi Koshi dlya uravneniy simmetricheskoy sisteme // Uchonyye XXI veka. № 6-1 (53), 2019. S. 20-23.

18. Merazhova Sh.B., Mamatova N.Kh. Postanovka obratnykh zadach v matematicheskoy fizike // Uchenyy XXI veka. № 5-3 (2018). 43-45.

i Надоели баннеры? Вы всегда можете отключить рекламу.