- 3. *Роберт-Нику М.Ц.* Химия и технология химико-фармацевтических препаратов. М.: Медгиз, 1954, 442 с.
- 4. Van Leer R.A., Paulaltis M.E. // J. Chem. Eng. Data, 1980. V. 25. № 3. P. 257-259.5.
- 5. *Ильин А.П., Ахунов А.Р., Сабирзянов А.Н., Максудов Р.Н., Аляев В.А., Гумеров Ф.М.* // Вестник Казанского технол. ун-та. 1999. №1-2. С.84.
- 6. *Новицкий П.В.*, *Зограф И.А.* Оценка погрешностей результатов измерений. Л.: Энергоатомиздат, 1985. 248 с.
- © Р. Ш. Максудов канд. техн. наук, докторант каф. теоретических основ теплотехники КГТУ; А. Е. Новиков асс. той же кафедры; Е. Н. Тремасов асп. той же кафедры; Ф. М. Гумеров д-р техн. наук, проф., зав. каф. теоретических основ теплотехники КГТУ.

УДК 669.154:536.3

И. Л. Голубсва, В. В. Сагадеев, К. Б. Панфилович ТЕПЛОВОЕ ИЗЛУЧЕНИЕ ЖИДКИХ МЕТАЛЛОВ

Уточнена единая обобщенная зависимость для расчета полусферических интегральных потоков теплового излучения жидких металлов. Установлена периодичность теплового излучения жидких металлов и его взаимосвязь с характеристикой прочности химической связи - температурой Дебая.

В работе уточнена расчетная зависимость для теплового излучения жидких металлов на основе теории размерностей [1], согласно которой

$$U = \varphi(S/R), \tag{1}$$

где U- относительный поток теплового излучения, S - энтропия металла, R- газовая постоянная.

Тепловое излучение расплавов относится к 1 м² поверхности. При изменении температуры изменяется число частиц металла, участвующих в формировании потока теплового излучения. Отношение плотности металла к массе частицы ρ/m есть число частиц в единице объема. Величина $(\rho/m)^{2/3}$ пропорциональна числу частиц, приходящихся на 1 м² приповерхностного слоя. Если плотность полусферического потока теплового излучения q разделить на $(\rho/m)^{2/3}$, то комплекс q $(\rho/m)^{2/3}$ будет отнесен к частице на поверхности. В расчетах удобнее вместо массы частицы m использовать молекулярную массу $\mu = mN_A$, тогда $q^* = q(\mu/\rho)^{2/3}$. Относительный поток теплового излучения $U = q^*/q_1$. Масштабный поток $q_1^* = [q(\mu/\rho)^{2/3}]_1$ для каждого жидкого металла брался равным величине q^* при постоянном для всех металлов значении энтропии S/R = 10. Полусферическая интегральная

степень черноты для расчета q находилась по нормальным интегральным степеням черноты по методике [2].

Результаты применения зависимости (1) для обработки наших опытных данных и данных [3 - 8] по интегральным полусферическим потокам теплового излучения жидких металлов представлены на рис. 1. Часть данных для удобства изображения смещена вниз на 0.5 единицы (линия B), единицу (линия C), 1.5 единицы (линия D), 2 единицы (линия E) и вверх на 0.5 единицы (линия F), единицу (линия G) и 1.5 единицы (линия H) шкалы вертикальной оси. Усредняющая прямая обобщенной зависимости соответствует уравнению

$$U = 5.49 \cdot 10^{-7} exp(1.4414S/R). \tag{2}$$

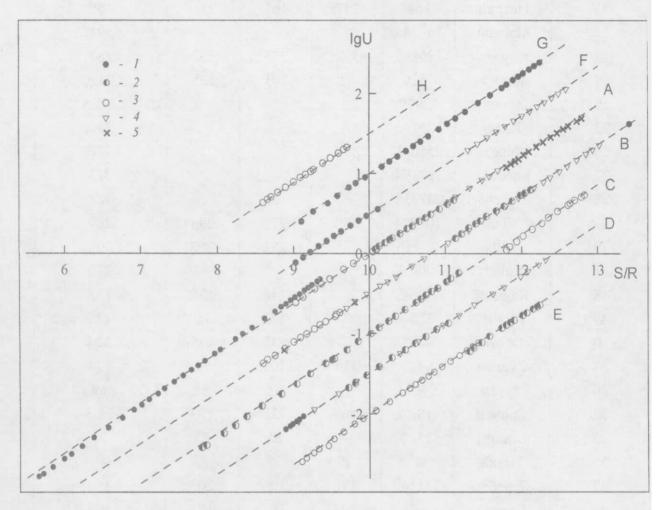


Рис. 1 - Относительные потоки теплового излучения чистых жидких металлов:

Линии	Α	В	C	D	E	F	G	Н
1	Li [6]	Nb [7]		Mg [6]		Zn	In	
2	Cu [6]	Pb [6]	Na [6]	Cd [6]	Bi [6]			
3	Zn [6]	AI [6]	Sb [6]		In [6]			Al
4	Ca [6]	Sn [6]		K[6]		Bi		
5	Sb	Hg [8]						

Энтропии жидких металлов взяты из справочников [9–11] и баз данных IVTANTERMO и Тегга. Масштабные потоки при постоянном значении энтропии S/R = 10 представлены в табл. 1.

Таблица 1 - Масштабные потоки и температуры Дебая жидких металлов

Номер элемента	Элемент	91, BT/M ²	<i>Θ</i> , К по [13]	Ø', K	Ø", K	<i>O</i> , К по уравнению (3)
3	Литий	616345			A	419
11	Натрий	11642	147	161	215	155
12	Магний	164385				301
13	Алюминий	136890	332	335	262	287
19	Калий	1536	82	101	125	93.6
20	Кальций	32939				201.5
22	Титан	125146				281
26	Железо	255641				336
27	Кобальт	193194				313
28	Никель	232518				328
29	Медь	105924	280	273	296	269
30	Цинк	27951		233	267	193
41	Ниобий	38829				210
48	Кадмий	7266		148	130	138
49	Индий	5101		143	101	126
50	Олово	4666		143	116	123
51	Сурьма	6493	114	109	96	134
80	Ртуть	467		105	85	69
82	Свинец	1877	108	123	103	98.5
83	Висмут	1518	94	85	73	93
55	Цезий	51*)	40	39	46	40
47	Серебро	27114*)	192	196	203	192
31	Галлий	30666*)	198	198	185	198
79	Золото	6807*)		150	143	135
81	Таллий	1993*)	Mrs. chin	115	99	100

^{*)} Оценка авторов по уравнению (3) и рис. 4.

Большинство экспериментальных данных воспроизводится уравнением (2) с точностью $\pm 3 - \pm 8$ %, что не превышает погрешность их измерений. Больший разброс получен для лития (до 14%). Причина, возможно, в его чистоте. Использовался электролитический

литий марки ЛЭ1 ГОСТ8774-75 (содержание компонентов, %: Li -98, Na -0.8, K -0.2, Mg -0.3, Ca -0.05, Al -0.03, Fe -0.01, Mn -0.005, SiO₂ -0.2, N -0.05). Влияние примесей малой концентрации на тепловое излучение жидких металлов не изучено.

Тепловое излучение переходных металлов (железо, кобальт, никель) также имеет большие отклонения от уравнения (2). Связано это, в первую очередь, с тем, что в справочных изданиях теплоемкость этих жидких металлов, используемая для расчета энтропии, принимается не зависящей от температуры. По различным источникам теплоемкости железа значительно отличаются: $c_p = 43.08 \, \text{Дж/(моль·К)}$ [10]; 46 Дж/(моль·К) (база данных Тегга); 41.8 Дж/(моль·К) [12]. Авторы статьи [12] приводят рассчитанные через парную функцию распределения значения энтропии жидких железа, кобальта и никеля. Относительные потоки излучения, найденные по энтропиям, приводимым в указанных источниках, имеют значительные отклонения от усредняющей прямой как в большую, так и в меньшую сторону (рис. 2). Для расчета масштабных потоков q_1 железа, кобальта и никеля

приняты энтропии по

данным [12].

При плавлении полуметаллов и полупроводников происходит частичное разрушение ковалентных связей. При дальнейшем повышении температуры частично или полностью разрушаются остатки ковалентной связи, продолжают расти число свободных электронов и координационное число [13]. Сложный характер изменения структуры расплавов приводит к эффектам послеплавления - аномалии структурночувствительных свойств (вязкости, скорости ультразвука). Этим объясняются большие занижения относительных потоков излучения для сурьмы и

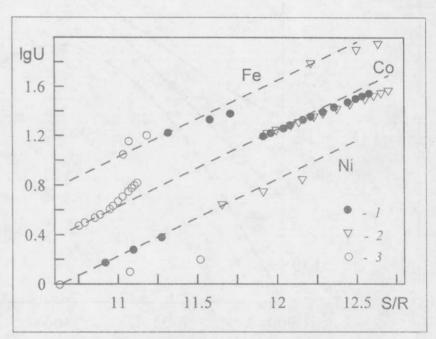


Рис. 2 - Относительные потоки теплового излучения для железа, кобальта и никеля при значениях энтропии: по данным [12] (1 — экспериментальные значения, 2 — рассчитанные через парную функцию распределения); базы данных Terra (3)

висмута от усредняющей линии при температурах, близких к плавлению. Зависимость скорости ультразвука от температуры для жидких металлов линейна вплоть до температуры плавления. При наличии эффектов послеплавления эта зависимость нарушается. У сурьмы, например, с понижением температуры до 1100К скорость ультразвука а проходит через максимум и затем резко снижается к точке плавления (рис. 3). Поскольку масштабный поток пропорционален температуре Дебая, а следовательно, и скорости ультразвука в четвертой степени, то его изменение учтено для сурьмы и висмута поправочным коэффициентом у, равным отношению действительной скорости ультразвука к линейно экстраполирован-

ной на интервал послеплавления из области высоких температур в четвертой степени. Коэффициент у меньше единицы и с ростом температуры стремится к ней (табл. 2).

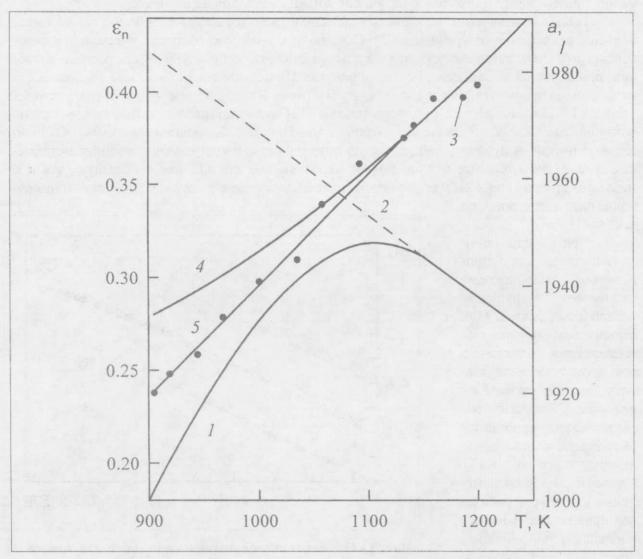


Рис. 3 - Скорость ультразвука (1, 2) и нормальная интегральная степень черноты (3-5) жидкой сурьмы вблизи температуры плавления: 1, 3 – экспериментальные данные [13] и [6] соответственно; 2 – линейная экстраполяция на низкие температуры; 4 – расчет по уравнению (2) при постоянном масштабном потоке; 5 – то же, но при скорректированном масштабном потоке

Таблица 2 - Коэффициенты у сурьмы и висмута

Элемент	$T-T_{nn}$, K							
элемент	0	50	100	150	200	250		
Sb	0.841	0.896	0.930	0.964	0.989	1.00		
Bi	0.967	0.977	0.991	1.00	August - A	-1473		

Масштабные потоки обнаруживают периодичность (рис. 4), типичную для ряда физико-химических свойств элементов. По характеру кривых и чередованию максимумов наблюдается удовлетворительная корреляция с аналогичной зависимостью температур Дебая [13]. Четвертый, пятый и шестой периоды периодического закона имеют пики, форма которых качественно одинакова. С увеличением номера периода абсолютные значения q_1 уменьшаются.

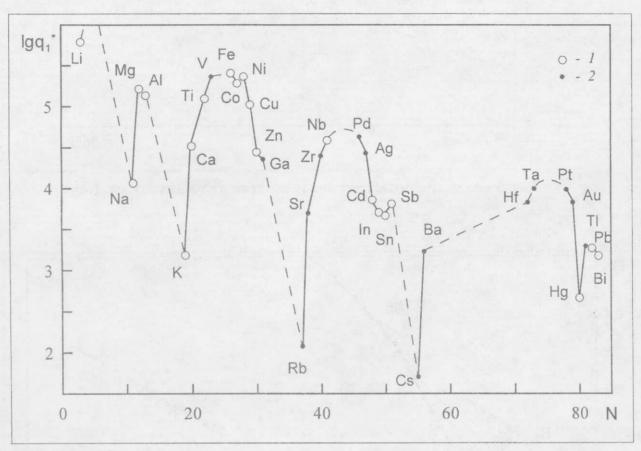


Рис. 4 - Периодичность масштабных потоков: 1 – опытные данные; 2 – оценка авторов

Масштабный поток пропорционален температуре Дебая в четвертой степени. Температура Дебая характеризует прочность химической связи. Применение ее к расплавам согласно [13] даже предпочтительнее, чем к твердым телам. Масштабные потоки для жидких металлов в зависимости от температуры Дебая [13] группируются в логарифмических координатах около прямой с угловым коэффициентом 4 (рис. 5).

$$lgq_1^* = 4 lq\Theta - 4.7. (3)$$

Температуры Дебая для жидких металлов, рассчитанные по скорости ультразвука, приведены в [13] (табл. 1). Температуры Дебая, снятые с графика небольшого формата, обозначены как Θ' (по ультразвуку) и Θ'' (по вязкости).

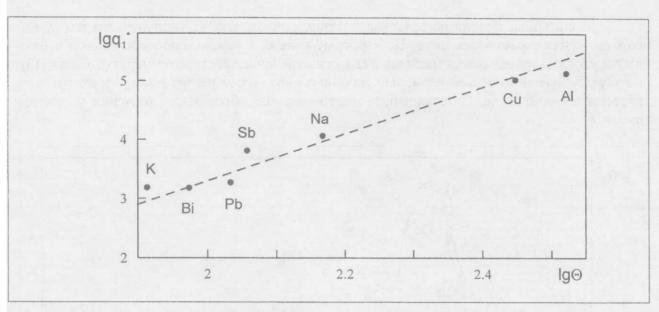


Рис. 5 - Зависимость масштабных потоков от температуры Дебая

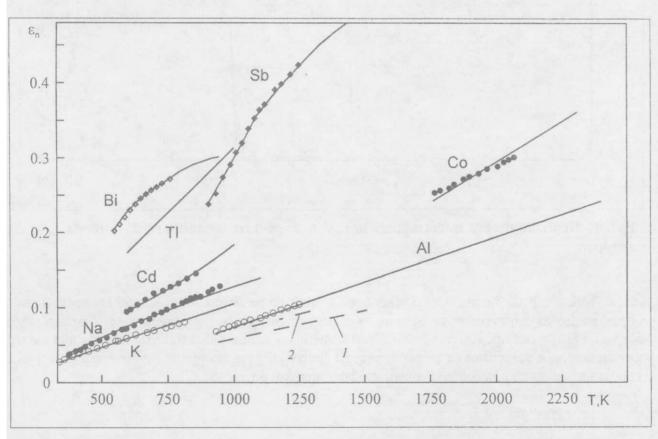


Рис. 6 - Нормальные интегральные степени черноты жидких металлов: I — степень черноты алюминия по [3]; 2 — степень черноты алюминия по [4] (точки — эксперимент, линии — расчет по уравнению (2))

Уравнение (3) и рис. 5 могут служить для предварительной оценки масштабных потоков по температуре Дебая и наоборот. В последней колонке табл. 1 представлены рассчитанные по уравнению (3) температуры Дебая жидких металлов. Найденные по уравнению (3) масштабные потоки позволяют прогнозировать степени черноты не исследованных жидких металлов. В качестве примера на рис. 6 дан прогноз нормальных интегральных степеней черноты таллия.

Уравнение (2) можно применять для нахождения степеней черноты металлов при температурах, не охваченных экспериментом. Рассчитанные и экспериментальные нормальные интегральные степени черноты ϵ_n (рис. 6) согласуются в пределах погрешности измерений.

Литература

- 1. Панфилович К.Б. // ТВТ. 1995.Т.33.№ 1. С. 155 158.
- 2. *Siegel R.*, *Howell J.R.* Thermal Radiation Heat Transfer. New York: McGraw-Hill Book Company, 1972.934c.
- 3. Шварев КМ., Байтураев С.Х., Баум Б.А. // ИФЖ. 1983. Т.44. № 2. С. 322 326.
- 4. Шварев КМ., Байтураев С.Х., Баум Б.А. // ИФЖ. 1984. Т.47. № 5. С. 823 827.
- 5. Шварев КМ., Баум Б.А., Гельд П.В. // ТВТ. 1973. Т. 11. № 1. С. 78 83.
- 6. Панфилович КБ., Сагадеев В В. // Пром. теплотехника. 1990. Т.19. № 5. С. 66 71.
- 7. *Андреева Р.Г., Игнатова С.И., Розанова Н.С.* Свойства и применение металлов и сплавов для электровакуумных приборов. М.: Наука, 1973. 225с.
- 8. Блох А.Г. Основы теплообмена излучением. М.: Госэнергоиздат, 1962. 332 с.
- 9. Термодинамические свойства индивидуальных веществ: Справочник / Под ред. $B.\Pi.\Gamma$ лушко: В 4-х т. М.: Наука, 1982. 623 с.
- 10. Рябин В.А., Остроумов М.А., Свит Т. Φ . Термодинамические свойства веществ. Справочное издание. Л.: Химия, 1977. 392 с.
- 11. Термодинамические свойства неорганических веществ. Справочник / Под ред. $A.\Pi.3e\phi upo в a.$ М.: Атомиздат, 1965. 460 с.
- 12. Казимиров В.П., Шовский В.А., Рева В.М., Сокольский В.Э., Баталин Г.И. II ФММ. 1986. Т.61. № 3. C. 478-482.
- 13. Глазов В.М., Айвазов А.А. Энтропия плавления металлов и полупроводников. М.: Металлургия, 1980. 175 с.
- О **И. JI.** Голубева ст. преп. каф. инженерной графики **КГТУ; В. В. Сагадеев** канд. техн. наук, доц. той же кафедры; **К. Б. Панфилович** д-р техн наук, проф. **КГТУ.**