УДК 691-405.8

Майникова Н.Ф., Овсянников О.А., Курепина Д.С. Шишкинская В.А.

ТЕПЛОПРОВОДНОСТЬ МАТЕРИАЛА ПОКРЫТИЯ

Майникова Нина Филипповна – доктор технических наук, профессор кафедры энергообеспечения предприятий и теплотехники; maynikova.nf@yandex.ru.

Овсянников Олег Алексеевич – студент 4-го курса обучения кафедры энергообеспечения предприятий и теплотехники;

Курепина Дарья Сергеевна – студент 4-го курса обучения кафедры энергообеспечения предприятий и теплотехники;

ФГБОУ ВО «Тамбовский государственный технический университет, ТГТУ»;

Россия, Тамбов, 392000, ул. Советская д.106;

Шишкинская Вероника Александровна – магистрант 2-го курса обучения кафедры технологии переработки пластмасс.

ФГБОУ ВО «Российский химико-технологический университет им. Д.И. Менделеева»,

Россия, Москва, 125047, Миусская площадь, дом 9.

В статье рассмотрен тепловой метод неразрушающего контроля, позволяющий определять теплопроводность материала полимерного покрытия металлического изделия с достаточной точностью. Ключевые слова: неразрушающий тепловой контроль, полимерные покрытия, тепловое воздействие, теплопроводность.

THERMAL CONDUCTIVITY OF THE COATING MATERIAL

Mainikova N.F.¹, Ovsyannikov O.A.¹, Kurepina D.S.¹, Shishkinskayia V. A.²

¹ Tambov State Technical University, Tambov, Russian Federation

²D. I. Mendeleev Russian University of chemical technology, Moscow, Russia

The article considers the thermal method of non-destructive testing, which allows determining the thermal conductivity of the polymer coating material of a metal product with sufficient accuracy.

Keywords: non-destructive thermal control, polymer coatings, thermal effect, thermal conductivity.

Введение

решении задачи обеспечения металлических изделий с низкотеплопроводными покрытиями важную роль играют способы и средства контроля качества. Тепловые способы неразрушающего контроля (HK) позволяют определять качество исследуемых покрытий (теплофизические свойства материала покрытия, наличие включений, расслоений, неплотностей и другие дефекты), а также качество готовых изделий (например, толщину покрытий) с достаточной точностью [1,2].

Рассматриваемый данной работе неразрушающий способ определения полимерных теплопроводности покрытий металлах основан на физической модели (рис. 1), которой на пластине с покрытием расположен измерительный зонд (ИЗ), включающий себя плоский круглый нагреватель, теплоизолирующую подложку и термоприёмники. Аппаратное исполнение измерительной системы, реализующей способ НК детально представлен в работах [3,4]. Теоретическое обоснование способа НК детально представлено в работе [5].

Первый низкотеплопроводный слой (покрытие) имеет теплофизические свойства: теплопроводность λ_1 , теплоёмкость c_1 , плотность ρ_1 . Второй слой изделия — высокотеплопроводный (металл) с теплофизическими свойствами λ_2 , c_2 , ρ_2 . Толщина первого слоя — h_1 , второго — h_2 . Температура в точках

контроля измеряется с помощью термоприемников $(T\Pi 1, T\Pi 2)$.

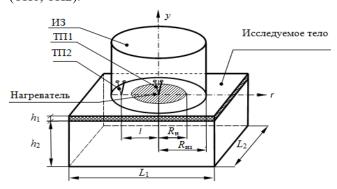


Рис.1. Измерительная схема: ИЗ — измерительный зонд; ТП1, ТП2 — термоприемники; l — расстояние между ТП; R_{H} — радиус нагревателя; R_{u3} — радиус ИЗ; $L_1 L_2$ — длина и ширина пластины.

Ha систему c равномерным начальным температурным распределением, тепловое воздействие осуществляется с помощью нагревателя постоянной мощности, выполненного в виде тонкого диска радиусом $R_{\rm H}$, встроенного в подложку ИЗ, радиусом $R_{\text{из}}$. Размеры подложки металлической пластины (L_1, L_2, h_2) подобраны так, что их можно считать полуограниченными. Для упрощения расчётов не учитывались теплоёмкость оттоки тепла по нагревателя и теплоприемников.

Экспериментальная часть

Сформулирована в виде прямой задачи теплопроводности в исследуемой системе и решена математически задача. Получено решение, которое представляет собой линейную зависимость, коэффициенты которой связаны с теплопроводностью материала покрытия и его толщиной [2,5].

Получено выражение:

$$h_1 = \frac{\lambda_1 \cdot b_0}{q}.$$

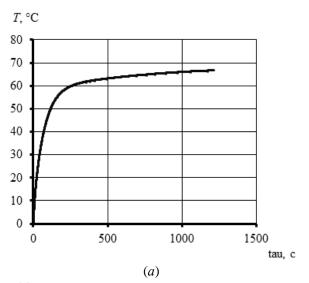
где q — тепловой поток, Bm/m^2 ; h_1 — толщина первого слоя, m; λ_1 — теплопроводность, $Bm/(m\cdot K)$.

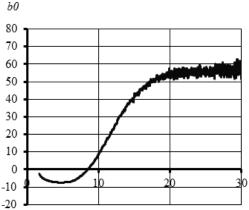
Из данного выражения, зная h_1 , можно определить λ_1 при реализации одномерного распространения тепла и достижении режима регуляризации [5].

В данной работе определяли теплопроводность акрилового покрытия на стальной пластине. Состав имеет хорошую термостойкость и применяется для окрашивания радиаторов отопления, труб, металлических конструкций. В состав входят: высококачественная акриловая дисперсия, диоксид титана, целевые добавки, вода. Покрытие не желтеет при воздействии температуры до 100 °C и предназначено для работ как снаружи, так и внутри помещений. После высыхания долговечно, стойко к мытью и истиранию. При нанесении состав быстро высыхает, без резкого запаха, является экологически чистым.

Испытаниям подвергали ПЯТЬ изделий c различными толщинами покрытий Экспериментальное исследование проводилось при постоянной мощности теплового воздействия (q) от плоского круглого нагревателя. Напряжение на нагревателе U = 5 В. Радиус нагревателя $R_{\rm H} = 0{,}004$ м. Временной шаг измерения температуры $\Delta \tau - 0.25$ с; материал подложки ИЗ – пенополиуретан марки Рипор. Испытаниям подвергались пять изделий и измерения проводились пять раз на каждом образце.

Учтено, что регулярные тепловые режимы первого и второго рода имеют общее свойство, характеризующееся независимостью от времени отношения теплового потока в любой точке тела к потоку тепла на его поверхности. Основная часть методов базируется на моделях для тел конечных Применительно размеров. же методам неразрушающего контроля следует говорить не о регулярном тепловом режиме для всего тела (так как принимается неограниченным), регуляризации теплового процесса только ДЛЯ определенной (локальной) области тела.


В нашем случае можно проводить термический анализ, основываясь только на участке термограммы, соответствующем регуляризации теплового режима в области нагревателя и термоприемника [3].


На рис. 2(a) представлены термограммы (a), зарегистрированные термоприёмником (где T –

избыточная температура в точке контроля; τ – время, c).

На рис.2(δ) представлен график зависимости $b_0 = f(\sqrt{\tau})$.

Испытаниям подвергали четыре изделия с различными толщинами покрытий (Таблица1), измеренными микрометром. Режимные теплопроводность характеристики: материала покрытия – 0,1 Вт/(м·К); временной шаг измерения температуры – 0,25 с; радиус нагревателя –0,004 м; время проведения экспериментов – до 900 с; мощность теплового воздействия на нагревателе - 9753 BT/m^2 .

корень (tau), c^{1/2}

Puc. 2. Термограмма (a) и зависимость $b_0 = f(\sqrt{\tau})$ (б)

На основании снятых термограмм определены коэффициенты математической модели b_0 для четырёх опытов (Таблица1). Проведена линия тренда. По b_{0i} (где i=1...4) построена зависимость $b_0 = f(h_{1u})$.

Построен график зависимости $\lambda_1 = f(b_0)$.

На основании термограмм определяли коэффициенты математической модели b_0 и значение теплопроводности покрытий через постоянную прибора, полученную из градуировочного опыта. Полученные данные представлены в таблице 2.

Определены значения λ_1 . *Таблица 1. Результаты экспериментов на изделиях с различными* $h_{1\text{и}}$

№ опыта	<i>h</i> _{1и} , м	λ _{1и} , Вт/(м·К)	b_0	λ ₁ , Βτ/(м·Κ)	$\delta = \left \frac{\lambda_{lis} - \lambda_{l}}{\lambda_{lis}} \right \cdot 100\%$
1	0,00049	0,1	49,9677	0,096	4
2	0,00050	0,1	51,0201	0,096	4
3	0,00052	0,1	53,1249	0,095	5
4	0,00054	0.1	55,2298	0,095	5

Tаблица 2. Pезультаты экспериментов на изделиях c одинаковыми $h_{1\text{H}}$

№ опыта	λ _{1и} , Вт/(м·К)	b_0	λ ₁ , Βτ/(м·Κ)	$\delta = \left \frac{\lambda_{la} - \lambda_{l}}{\lambda_{la}} \right \cdot 100\%$
1	0,1	81,33040	0,10022	0,22
2	0,1	106,3264	0,09631	3,69
3	0,1	108,8260	0,09600	4,00
4	0,1	113,8252	0,09548	4,52
5	0,1	118,8244	0,09498	5,02

Результаты экспериментов подтверждают работоспособность метода. Детальное описание метода и измерительной системы, его реализующей, представлены в работах [2-5].

Список литературы

- 1. Жуков Н.П. Многомодельные методы и средства неразрушающего контроля теплофизических свойств твердых материалов и изделий М.: Машиностроение, 2004. 288с.
- 2. Жуков Н.П. Метод неразрушающего определения толщины защитных покрытий // Вестник Тамбовского государственного технического университета. -2017. -T. 23. -№ 1. C. 6 -11.
- 3. Жуков Н.П. Измерительно-вычислительная система неразрушающего теплофизического контроля // Приборы и системы. Управление, контроль, диагностика. 2005. – \mathbb{N} 2. C. 153.
- 4. Жуков Н.П. Измерительно-вычислительная система неразрушающего контроля теплофизических свойств // Приборы и техника эксперимента. 2005. –№ 4. С. 164-166.
- 5.Жуков Н.П. Теоретическое обоснование теплового метода неразрушающего контроля двухслойных изделий // Вопросы современной науки и практики. Университет им. В.И. Вернадского: Серия технические науки. 2009. 9 (23).