УДК 620.179.1
Е.И. Косарина1, А.А. Демидов1, Н.А. Михайлова1, А.В. Смирнов1
ТЕОРЕТИЧЕСКИЕ АСПЕКТЫ ПРИ СОЗДАНИИ ЭЛЕКТРОННЫХ ЭТАЛОННЫХ РЕНТГЕНОВСКИХ СНИМКОВ, СОДЕРЖАЩИХ КОЛИЧЕСТВЕННУЮ ИНФОРМАЦИЮ
DOI: 10.18577/2071 -9140-2019-0-4-87-94
Представлены результаты теоретических исследований создания альбома эталонных цифровых изображений пористости алюминиевых сплавов группы «силумин», аналогичных эталонным рентгенографическим снимкам, которыми пользуются рентгенологи при разбраковке отливок по баллам пористости. Существует пятибалльная шкала пористости, однозначно определяемая по шлифу и рисунку на рентгенографическом изображении. Каждый балл пористости соответствует определенным прочностным характеристикам сплава. Создание и тиражирование альбомов эталонных рентгенограмм представляет собой трудоемкий и дорогостоящий процесс, поэтому альбом с изображением пористости на электронном цифровом носителе является радикальным решением проблемы.
Ключевые слова: пористость, эталонный образец, эталонная рентгенограмма, рентгеновская шкала пористости, радиографическое изображение, цифровое изображение.
E.I. Kosarina1, A.A. Demidov1, N.A. Mikhaylova1, A.V. Smirnov1
THEORETICAL ASPECTS WHEN CREATING ELECTRONIC REFERENCE X-RAY IMAGES CONTAINING QUANTITATIVE INFORMATION
The article presents the results of theoretical researches of creation of a catalog of reference digital images of porosity of silumin group aluminum alloys similar to the reference radiographic pictures which radiologists use when grading castings by the porosity points. There is a five-point scale ofporosity which is unambiguously defined by a thin section and drawing in the radiographic image. Each point of porosity corresponds to certain strength characteristics of an alloy. Creation and copying of catalogs of reference X-ray patterns is a labor-intensive and costly process therefore catalogs ofporosity images on the electronic data medium, is a radical solution of this problem.
Keywords: porosity, reference sample, reference X-ray pattern, X-ray scale of porosity, radiographic image, digital image.
"'Федеральное государственное унитарное предприятие «Всероссийский научно-исследовательский институт авиационных материалов» Государственный научный центр Российской Федерации [Federal State Unitary Enterprise «All-Russian Scientific Research Institute of Aviation Materials» State Research Center of the Russian Federation]; e-mail: admin@viam.ru
Введение
Объекты авиационной техники представляют собой изделия из стали, никелевых, титановых, алюминиевых, магниевых и других сплавов, неметаллических и металлических композиционных материалов [1, 2]. Поскольку большинство изделий авиационной техники работают в экстремальных условиях, вопрос их качества (отсутствие недопустимых дефектов) приобретает первостепенное значение [3]. Во всем комплексе неразрушающего контроля рентгеновский метод - один из наиболее эффективных и распространенных в производстве авиационной техники. Несмотря на это, его адаптация к многообразию материалов и объектов авиационно-космической техники с целью обнаружения недопустимых дефектов представляет сложную задачу [4].
Состояние рентгеновского контроля в производстве авиационной техники зависит от оснащения техническими средствами и от качества технологии проводимого контроля, которая, в свою очередь, определена общими положениями действующих стандартов, регламентирующих область применения, режимы, параметры и средства контроля. Анализ действующих стандартов ГОСТ, ISO, EN, ASTM показал близкий методический подход к проведению рентгеновского контроля. Отличительной особенностью стандартов США является обязательное использование эталонных рентгенограмм с определенным значением оптической плотности, выполненных на определенном классе пленочной системы [5-7].
В последнее десятилетие для предприятий, производящих авиационную технику, характерно интенсивное переоснащение, в том числе
Таблица 1
Данные из альбомов эталонных рентгенограмм отливок из алюминиевых сплавов
Название альбома Сплавы
Унифицированная рентгеновская шкала газовой пористости отливок и деталей из алюминиевых литейных сплавов типа «силумин» Система «алюминий-кремний»: АК12 (АЛ2), АК9ч. (АЛ4), АК5М (АЛ5), АК7ч. (АЛ9), АК7п.ч. (АЛ9-1), АК8М (АЛ32), АК8л (АЛ34), АК8М3ч. (ВАЛ8)
Рентгеновская шкала пористости усадочного характера образцов алюминиевых сплавов АМ5 (АЛ19), АМ4,5Кд (ВАЛ10), ВАЛ14
оборудованием и средствами рентгеновского не-разрушающего контроля. Некоторые международные стандарты ISO переведены в статус ГОСТ ISO. В связи с этим возникает проблема, как адаптировать технологию рентгеновского контроля к новому оборудованию и новым положениям ГОСТ ISO [8, 9].
В данной статье приведены результаты исследований, выполненных в рамках реализации комплексной научной проблемы 2.3. «Методы неразрушающих исследований и контроля» («Стратегические направления развития материалов и технологий их переработки на период до 2030 года») [2].
Особенности формирования радиационных изображений пористости и их преобразования в радиографические и цифровые
Эталонные образцы и эталонные рентгенограммы Эталонные рентгеновские снимки регламентированы некоторыми российскими нормативными документами [10, 11], которые применяют при оценке качества литых деталей. Эталонные рентгенограммы, наглядно иллюстрирующие допустимые и недопустимые дефекты в данной детали, содержат информацию о связи интенсивности дефектов, определенных по рентгенограмме отливки, с понижением прочности материала, так как существует тесная связь между наличием дефекта и прочностными характеристиками изделия, его содержащего. Степень опасности зависит от конструктивных особенностей изделия, условий его эксплуатации, размеров и ориентации содержащихся в нем дефектов. В рентгеновском контроле вопрос о связи между дефектами и свойствами изделия недо-
статочно изучен, хотя существует зависимость такой корреляции. Во ФГУП «ВИАМ» при проведении большого объема многолетних теоретических и экспериментальных исследований установлена связь между баллами пористости в алюминиевых сплавах и изображением пористости на рентгенограммах. Эти исследования привели к разработке рентгеновских шкал пористости для целого ряда алюминиевых сплавов [12-14].
Для оценки качества отливок из литейных алюминиевых сплавов следует применять данные из альбомов эталонных рентгеновских снимков (табл. 1).
Перечисленные шкалы представляют собой альбомы рентгенограмм образцов сплавов с пятью баллами пористости (первый балл - наиболее низкий). Зависимость балла пористости, определенного по рентгенограмме, от запаса механической прочности определена экспериментально и представлена в альбомах. Для каждой просвечиваемой толщины образцов с различными баллами пористости рекомендованы режимы просвечивания, аппаратура, тип радиографической пленки и другие условия и параметры контроля. Оценку пористости осуществляют визуально путем сравнения рентгенограммы контролируемой отливки с эталонными рентгенограммами. Допустимый балл пористости на изделии определяет главный конструктор по согласованию с главным металлургом. Заключение о годности изделия устанавливают с учетом норм на другие дефекты литья (раковины, неслитины, включения), обнаруженные в результате радиографического контроля. На рис. 1 представлена рентгенограмма эталонных образцов толщиной 5 мм из сплава АК7п.ч. (АЛ9-1) с газовой пористостью 1-5 баллов.
Рис. 1. Рентгенограмма эталонных образцов толщиной 5 мм из сплава АК7п.ч. (АЛ9-1) с газовой пористостью 1-5 баллов
Таблица 2
Баллы пористости, определяемые на шлифах
Балл пористости Вид пористости Диаметр пор, мм Количество пор на 1 см , шт.
1 Мелкая До 0,1 До 5
2 Пониженная От 0,1 до 0,2 От 8 до 2
3 Средняя От 0,3 до 0,5 От 12 до 2
4 Повышенная От 0,5 до 1,0 От 14 до 6
5 Высокая От 0,5 до 1,0 (свыше 1,0) От 15 до 8 (свыше 2)
Согласно ГОСТ 1583-93 «Сплавы алюминиевые литейные. Технические условия», определение пористости осуществляют по специально изготовленному шлифу с шероховатостью не более 1,6 мкм. В табл. 2 приведена разбраковка по баллам пористости на шлифе.
Шкала состоит из пяти рентгеновских изображений эталонных образцов толщиной 5, 10, 15, 20 и 25 мм. Каждое изображение содержит пять рентгенограмм с газовой пористостью 1, 2, 3, 4 и 5 баллов.
Эталонные образцы пористости, по которым изготавливается рентгеновская шкала пористости, имеют размер 4,0*5,5 см (22 см2). Рассмотрим образец толщиной 5 мм с пористостью первого балла (рис. 2). Масса монолитного образца (т) без пор равна произведению плотности материала (р) на его объем (V):
где ^ - площадь образца; к - толщина образца.
до к. Представим это математически: к - толщина образца при полном отсутствии пор; ктт - толщина образца, когда все поры, содержащиеся в каждом элементарном слое, будут вытянуты в одну линию на пути рентгеновского фотона. Пусть элементарный слой равен диаметру поры 0,1 мм. В образце толщиной 5 мм содержится 50 таких слоев. В каждом слое на площади 5=22 см2 содержится максимум 22 поры. Толщина образца, не содержащего поры, для прохождения фотона рентгеновского излучения составляет
к=
т(р) р-5
Если при прохождении фотона встречается пора, то толщина изменится на величину Дк, уравнение примет вид
к - Дк=
т(р)-Дт(р) _ 1
(р-Др> ^
т(р)-Дт(р) т(р)
р-Др
Составим интегральную сумму:
]г д/;=т(р)-Дт(р) т(р).
(р- Др> р5 '
р
- Дк=1
5
т(р)- Дт(р) т(р)
р - Др
р
поменяем знаки в левой и правой частях уравнения и получим:
Дк=1
5
т(р) т(р)- Дт(р)
Дк =1
Рис. 2. Эскиз эталонного образца пористости толщиной 5 мм
Для образца, содержащего поры, его толщина к со стороны источника рентгеновского излучения меняется. Если на пути рентгеновского фотона попадается пора, то ослабление его в пределах поры меньше, так как пора представляет собой газовое включение, плотность которого значительно меньше, чем плотность сплава.
Поскольку поры в объеме образца расположены случайно, то толщина металла в образце по его площади меняется и может принимать любые значения в пределах от некоторого значения ктт
р р- Др т(р)Др+Дт(р)Др
р (р-Др) . 1 р-5-к-Др_ к0 'Др
5 р2 р так как р»Лр, то р-Лр~р; при Лр^-0 получим:
ак=-
т ар
к=к
¿р.
5 р 1 р
рт1п
к=ко 1пр] рт;1п=к0 [1прА1-1прт1П],
где к0 - толщина эталонного образца, в данном случае равная 5 мм; рА1 - плотность алюминиевого сплава, не содержащего поры, г/см3; р^ - интегральная плотность в направлении оси пучка излучения, г/см3.
На пути фотона может быть любое число пор, поэтому р=РдгРфпор, где Р - вероятность того, что на пути фотона встретится k пор из п возможных (на рис. 2 стрелкой показано направление движения фотона). Величина Р является типичным распределением случайной величины по Бернулли, согласно которому определяется из соотношения
Р=Ск ■ pkqn-k =-
pkqn-k
к!(п - к)!
С к ч I £ п-£
п - число сочетании из п по £; р£ и д - соответственно вероятность того, что на пути фотона встретятся поры, и вероятность того, что это событие не произойдет.
сти измерения, - например, 2,02; 2,04; 1,98 и т. д. Более того, если рассматривать эталонный рентгеновский снимок с изображением второго, третьего, четвертого и пятого баллов пористости, измерение оптической плотности приведет к тем же самым результатам. По причине относительно равномерной рассредоточенности этого дефекта измерение показывает интегральную картину оптической плотности по площади, охваченной апертурой денситометра, которая составляет
пП1„
изм ^ '
где 5изм - площадь измерения; ,Оден - диаметр апертуры.
Для эталонного образца толщиной 5 мм и первого балла пористости число k может принимать любые значения 1, 2, 3, ... 50 (число п для первого балла пористости, как принято ранее, равно 50): - если £=1, то /=1/50=0,02; дп-£=0,98, тогда
Р =Сk ■ nk ■qn-k =_50_
Р Сп p q 11(50-1)!
■ 0,02 ■ 0,9849 =0,37 ;
- если k=5, то вероятность P=0,19; если k=10, то вероятность P=0,09; при к=п значение P=0 и так далее - такими числами характеризуется распределение случайной величины.
Анализ радиационных и радиографических изображений, содержащих пористость
Радиационное изображение эталонного образца представляет собой дозу излучения, меняющуюся в зависимости от изменения толщины образца, вызванного наличием пор, спроектированную на плоскость. Размер плоскости равен площади образца. Светотеневая картина пористости, полученная в результате преобразования радиационного изображения в оптическое (радиографический снимок), сопровождается рядом обстоятельств, которые затрудняют ее анализ. Особенностью пористости является ее практически равномерно рассредоточенный характер по всему объему. Следовательно, в плоскости радиационного, оптического или цифрового изображения наблюдается интегральная рассредоточенность физического параметра, формирующего это изображение: для радиационного изображения - это доза излучения; для радиографического - оптическая плотность снимка; для цифрового - уровень серого цвета.
Например, рассмотрим рентгенограмму эталонного образца с пористостью первого балла. На рис. 1 фрагмент под номером один - самая мелкая пористость. Оптическая плотность (S) рентгенограммы по требованиям нормативно-технических документов не должна быть ниже определенной величины (по ГОСТ - не ниже 1,5 Б; по ISO - не ниже 2,0 или 2,3 Б). Если снимок выполнен с оптической плотностью, равной 2 Б, то, проводя ее измерения денситометром, получаем ряд значений, отличающихся на величину, равную точно-
Таким образом, автоматическая расшифровка по результатам непосредственного измерения оптической плотности не определит балл пористости так, как это происходит в случае локальных дефектов: пор, раковин и включений. Однако при анализе оператором рентгенограмм с изображением пористости различных баллов его зрительная система практически безошибочно определяет различия в изображениях пористости от первого до пятого баллов. Это происходит потому, что при распознавании образов осуществляется оптимальная фильтрация изображения с последующим сравнением полученного двухмерного сигнала с неким пороговым изображением. Оптимальная фильтрация изображения заключается в свертке видимой глазом частоты изменения яркости изображения рентгенограммы L(х, у)=Lo•10S(х, у) с ожидаемым образом Ln-г0 бшшаС*", у). Зрительная система как бы дифференцирует изображение на рентгенограмме и, как следствие, снижает вероятность ложной отбраковки до приемлемых величин без снижения вероятности обнаружения дефекта.
Рассмотрим особенности рассредоточенного дефекта (пористости). Обычно дефект на изображении - это случайный сигнал, который оператору предстоит обнаружить, на фоне шумов. Для рентгенографического изображения природа шумов (также случайных процессов) различна - это, во-первых, случайный характер генерации фотонов в рентгеновской трубке; во-вторых, стохастический характер взаимодействия фотонов рентгеновского излучения с материалом объекта контроля; в-третьих, колебания толщины объекта контроля; в-четвертых, квантово-статистический характер взаимодействия электронов с микрокристаллами бромида серебра в эмульсионном слое радиографической пленки и многое другое, что невозможно учесть. Следовательно, колебания оптической плотности рентгенограммы эталонных образцов связаны не только с наличием пористости. Оптическая плотность рентгенограмм претерпевает колебания от множества случайных процессов с неизвестными законами распределения. Так, при рентгеновском контроле с использованием радиографической пленки режим
п
Рис. 3. Модель колебаний оптической плотности:
а - шумовые колебания на снимке, полученном при равномерно экспонированной радиографической пленке; б - колебания оптической плотности радиографического снимка эталонного образца с первым баллом пористости
контроля выбирают таким, чтобы оптическая плотность рентгеновских снимков была не менее 1,5 или 2,0 Б в зависимости от того, в какой системе стандартов проводят контроль. Следовательно, шумовые процессы вызывают колебания оптической плотности около ее среднего значения, т. е. выполняются условия центральной предельной теоремы: распределение шума подчиняется нормальному закону [14].
Чем отличается нормальный закон распределения шумовых колебаний оптической плотности от колебаний оптической плотности, вызванных пористостью? Попробуем это установить.
Рассмотрим два процесса, распределенных по нормальному закону с равными математическими ожиданиями (рис. 3). То, что изображено на рис. 3, а, представляет собой модель шумовых колебаний снимка, полученную при равномерно экспонированной радиографической пленке. Моделирование шумов на радиографическом снимке проведено в программе Mathcad в соответствии с описанием процедуры, представленной в работах [15, 16]; там же приведено следующее обоснование -считать оптическую плотность рентгенограммы случайной величиной, представляющей собой «белый шум» с нормальным распределением («белым шумом» обычно называют случайный процесс, не имеющий статистических связей).
Точно такая же процедура использована для построения модели колебаний оптической плотности, вызванной пористостью (рис. 3, б). Для этого на массив точек 1000*1000 на площади рентгенограммы 60*60 мм2 наложим изображение 1000 пор диаметром 0,1 мм и менее, случайно расположенных по всей площади снимка. На рис. 3, б видно проявление статистических связей случайного процесса.
Примечание. Статистическая связь случайного процесса определяется следующим образом. Если при реализации случайного процесса выбрать точку с коорди-
натой 1 и измерить оптическую плотность то в близко расположенной от нее точке 2 оптическая плотность S2 с большой вероятностью близка к значению S1 (рис. 3, б). Это означает, что случайный процесс имеет сильные статистические связи, в отличие от «белого шума», представляющего совокупность дельта-функций, и значения оптической плотности в близко расположенных координатах могут принимать любые значения.
Отличить эти два процесса возможно, так как:
- шумовые процессы отличаются отсутствием статистических связей;
- уровень шумов значительно меньше размаха колебаний оптической плотности.
Выполнение последнего условия гарантировано ограничением в выборе анодного напряжения на рентгеновской трубке, поэтому при радиографическом контроле отливок из алюминиевых сплавов анодное напряжение должно быть не больше напряжения, регламентированного ГОСТ 20426-82. При этом лучше всего использовать сильноточные рентгеновские аппараты, излучатель которых снабжен бериллиевым окном для выхода пучка излучения. Отношение сигнал/шум радиационного изображения (ОСШрад.из) тем выше, чем ниже энергия излучения, а контраст оптического изображения (Копт.из), выполненного на радиографической пленке, определяется соотношением
К = ОСШ ОСШрадиз ,
о^ рп1+ОСШрад.из ,
где ОСШрп - отношение сигнал/шум радиографической пленки, т. е. отношение «градиент/гранулярность» (G/aS), значение которого достаточно высокое, например, для радиографической пленки класса С4 - G/aS=160 при оптической плотности снимка S=2 Б.
Поскольку радиографическая пленка представляет собой малошумящий детектор, то для радиографического метода контроля в первую очередь
следует обеспечить высокий контраст изображения [17], т. е. не превышать значения анодного напряжения выше значений, регламентированных ГОСТ 20426-82 .
Анализ формирования цифровых изображений
Проведем аналогичный анализ для цифровой радиографии, который заключается в преобразовании радиационного изображения объекта контроля в цифровое изображение, представленное дискретным распределением уровня серого оттенка в зависимости от величины дозы радиационного изображения. Чем больше уровней серого оттенка - от черного до белого, тем выше нюансная точность преобразования радиационного изображения в зависимости от колебаний его дозы. Этот процесс называется квантованием. Относительно доступные цифровые детекторные системы, в частности, непрямого преобразования определяются разрядностью уровней серого оттенка. Показатель разрядности (8, 14 или 16) определяет количество градаций серого: 28 или 214, или 216 соответственно. Таким образом, квантование определено разрядностью.
С другой стороны, цифровое изображение представляет собой совокупность участков (пикселей), каждый из которых имеет определенный уровень серого оттенка. Чем на большее количество участков разбито изображение, тем точнее оно соответствует радиационному изображению объекта контроля. Этот процесс называется дискретизацией. Дискретизация определена размером матрицы - например, для квадратной матрицы размером 1024*1024 размер пикселя составляет 200*200 мкм.
Для осуществления процессов квантования и дискретизации, т. е. метода цифровой рентгенографии в целом, необходима специализированная установка, включающая источник рентгеновского излучения, плоскопанельный цифровой детектор, компьютер [18, 19].
В отличие от радиографической пленки плоскопанельный детектор (ОСШппд) сам является источником шума, точнее источником шума является размер пикселя матрицы. Поэтому отношение сигнал/шум цифрового изображения (ОСШщф.ш) зависит в равной степени от параметров ОСШрадиз и ОСШппд. При выборе анодного напряжения на рентгеновской трубке стремятся, чтобы оно было таким, чтобы значение ОСШрадиз было по возможности минимальным.
Согласно работе [9], приняты следующие основные характеристики детектора и их обозначения:
- значение серого оттенка (grey value - GV) -числовое значение пикселя на цифровом изображении;
- отношение сигнал/шум (signal-to-noise ratio -SNR) - отношение среднего значения линеаризованных значений серого оттенка к стандартному
отклонению линеаризованных значении серого оттенка (шум) в интересующей области цифрового изображения;
- отношение контраст/шум (contrast-to-noise ratio - CNR) - отношение разницы средних уровней сигналов между двумя областями изображения к усредненному пространственному отклонению уровней сигналов;
- базовое пространственное разрешение цифрового детектора (basic spatial resolution -gRdetector) - соответствует половине измеренной на детекторе нерезкости цифрового изображения. Эффективный размер пикселя и наименьший размер детали индикации могут быть обнаружены с использованием цифрового детектора при коэффициенте увеличения, равном 1 [20].
При анализе цифрового изображения яркость на экране монитора должна быть не менее 250 кд/м2 При такой яркости глаз может зафиксировать ее изменение, равное 0,05 кд/м2. Для детектора, имеющего показатель разрядности 14, количество градаций серого оттенка составляет 214=16384. Для диапазона яркости 250-350 кд/м2 параметр SNR должен быть не менее 120 (ГОСТ ISO 17632-22017), при этом уровень серого оттенка (GV) должен быть в пределах 20-80% [21].
По программному обеспечению детектора требуется выбирать анодное напряжение равным 120-150 кВ. Проведем проверку данных программного обеспечения.
Согласно проведенному расчету контраста радиационного изображения с использованием зависимости
ОСШ
ъ^ _рад.из _
рад.из _ рад.деф 1 + ОСШ _
=^-ОСШОСШ"
^ 1 + ОСШрад Из '
полученной в работе [17], 0СШрадиз~10 при анодном напряжении 120 кВ.
Контраст радиационного изображения дефекта (поры) составляет
Храд.деф=ц£=0,54-0,001=0,0054,
где ц - линейный коэффициент ослабления излучения алюминиевым сплавом при анодном напряжении 120 кВ, равный 0,54 см-1; D - диаметр поры, равный 0,01 см.
Этот результат соответствует требованиям программного обеспечения для детектора. Расчет радиационного контраста и 0СШрадиз в диапазоне анодных напряжений 30-150 кВ для эталонного образца толщиной h=5 мм с пористостью первого балла (диаметр поры 0,1 мм) приведен в табл. 3.
Влияние шума радиационного изображения можно не учитывать при условии, когда
ОСШ„
1+ОСШ„
к1, т. е. при анодном напряжении
Таблица 3
Радиационный контраст и отношение сигнал/шум (ОСШрад.из)
U, кВ ц, см-1 Крад=ЦО цй/2 е-цЛ/2 JÜ ОС-Ш-рад.из
30 9,4 0,090 2,35 0,09 5,48 0,55
45 3,0 0,030 0,15 0,47 6,86 3,22
60 1,5 0,015 0,34 0,71 7,75 5,50
75 0,97 0,0097 0,24 0,78 8,66 6,75
90 0,73 0,0073 0,18 0,83 9,49 7,87
120 0,54 0,0054 0,13 0,87 10,9 9,48
150 0,46 0,0046 0,12 0,88 12,2 10,5
120 кВ. Из данных табл. 3 видно, что это условие выполняется при анодном напряжении i7=120 кВ, однако радиационный контраст при U=120 кВ ничтожно мал - ^рад=ц^=0,0054. Преобразование радиационного изображения в цифровое с таким незначительным контрастом невозможно. Это означает, что на экране монитора плоскопанельного детектора первый балл пористости неразличим. Аналогичный расчет показал, что и второй балл пористости также неразличим. Различим только третий, четвертый и пятый баллы пористости.
Еще одна немаловажная характеристика детектора - базовое пространственное разрешение. По ГОСТ ISO 17636-2-2017 параметр S Я£е'ес4отдолжен быть не более половины геометрической нерезкости SRdetector =1/2иг. Для поры диаметром 0,1 мм пространственное разрешение должно составлять не более 50 мкм и должно выполняться условие
SRdetect°r<50_l ^35 мкм.
b V2
В настоящее время отсутствуют детекторные системы с таким малым размером пикселя. Таким образом, расчет показал, что первый балл пористости не может быть воспроизведен на цифровом изображении.
Обычно первый и второй баллы пористости считают допустимыми, разбраковку осуществля-
ют по третьему баллу пористости. Поскольку для третьего балла пористости возможно формирование радиационного изображения, преобразуемого в цифровое, то создание рентгеновских шкал пористости в цифровом исполнении возможно. Следовательно, теоретически возможен рентгеновский контроль алюминиевых отливок с применением цифровых детекторных систем на предмет оценки баллов пористости.
Заключения
Проведено исследование эталонных образцов из сплава АК7п.ч.(АЛ9-1) и установлена вероятность содержания пор в эталонном образце размером 50*40*5 мм. Построены модели радиографического изображения шума и пористости первого балла. Показано, что при выборе рентгеновского аппарата и энергии излучения можно отстроится от шума, вызванного гранулярностью пленки, и определить пористость. При этом отличить пористость по баллам невозможно посредством денситометра, однако оператор такую задачу осуществляет практически безошибочно. Разработка эталонной шкалы пористости в цифровом исполнении теоретически возможна только для третьего, четвертого и пятого баллов пористости.
ЛИТЕРАТУРА
1. Каблов Е.Н. Материалы нового поколения - основа инноваций, технологического лидерства и национальной безопасности России // Интеллект и технологии. 2016. №2 (14). С. 16-21.
2. Каблов Е.Н. Инновационные разработки ФГУП «ВИАМ» ГНЦ РФ по реализации «Стратегических направлений развития материалов и технологий их переработки на период до 2030 года» // Авиационные материалы и технологии. 2015. №1 (34). С. 3-33. DOI: 10.18577/2071-9140-2015-0-1-3-33.
3. Каблов Е.Н. Ключевая проблема - материалы // Тенденции и ориентиры инновационного развития России. М.: ВИАМ, 2015. С. 458-464.
4. Каблов Е.Н Современные материалы - основа инновационной модернизации России // Металлы Евразии. 2012. №3. С. 10-15.
5. Косарина Е.И., Генералов А.С., Демидов А.А. Проблемы в государственной системе стандартизации РФ в области радиационного неразрушающего контроля // Труды ВИАМ: электрон. науч. -технич. журн. 2018. №11 (71). Ст. 10. URL: http://viam-works.ru (дата обращения: 17.06.2019). DOI: 10.18577/2307-6046-2018-011-86-92.
6. Косарина Е.И., Михайлова Н.А., Крупнина О.А., Демидов А.А. Радиографический контроль сварных соединений в системах ГОСТ и ISO // Заводская лаборатория. Диагностика материалов. 2019. Т. 85. №6. С. 37-41.
Испытания материалов •
7. ISO 19232:2013. Non-destructive testing - Image quality of radiographs. Part 1: Determination of the image quality value using wire-type image quality indicators. Part 2: Determination of the image quality value using step/hole-type image quality indicators. URL: http://iso.org (дата обращения: 10.07.2019).
8. Гнедин М.М., Шаблов С.В. Радиографический контроль. Требования по выбору радиографической пленки // В мире неразрушающего контроля. 2019. №2. С. 14-18.
9. ГОСТ ISO 17636-2-2017. Контроль сварных швов неразрушающий. Радиографический контроль. Часть 2. Способы рентгено- и гаммаграфического контроля с применением цифровых детекторов. М.: Стандартинформ, 2018. 76 с.
10. Трофимов Н.В., Леонов А.А., Дуюнова В.А., Уридия З.П. Литейные магниевые сплавы (обзор) // Труды ВИАМ: электрон. науч.-технич. журн. 2016. №12 (48). Ст. 01. URL: http://viam-works.ru (дата обращения: 10.07.2019). DOI: 10.18577/2307-6046-2016-0-12-1-1.
11. Попов Д.А., Огородов Д.В., Трапезников А.В. Альтернативные источники борсодержащего сырья для производства лигатуры Al-B (обзор) // Труды ВИАМ: электрон. науч.-технич. журн. 2015. №10. Ст. 07. URL: http:// viam-works.ru (дата обращения: 12.07.2019). DOI: 10.18577/2307-6046-2015-0-10-7-7.
12. Расщупкин В.П., Корытов М.С. Дефекты металла: учеб. пособие. Омск: Изд-во СибАДИ, 2006. 38 с.
13. Моисеев Н.Н. Математические задачи системного анализа: учеб. пособие. 2-е изд. М.: Либроком, 2012. 488 с.
14. Косарина Е.И. Теоретические аспекты и технология радиационного неразрушающего контроля материалов и изделий авиационной техники: дис. ... докт. техн. наук. М., 2000. 279 с.
15. Багаев К.А., Адаспаева С.А., Ромашин С.Ф. О применимости компьютерной радиографии в ракетно-космической отрасли // В мире неразрушающего контроля. 2016. Т. 19. №2. С. 56-60.
16. Калман Р., Фарб П., Арбиб М. Очерки по математической теории систем. М.: Либроком. 2012. 354 с.
17. Косарина Е.И., Крупнина О.А., Демидов А.А., Турбин Е.М. Влияние энергии излучения на формирование оптического изображения при рентгеновском контроле // Дефектоскопия. 2018. №3. С. 58-63.
18. Майоров А.А. Цифровые технологии в неразрушающем контроле // Сфера Нефтегаз. 2009. №9. C. 26-37.
19. Майоров А.А. Рентгеновское телевидение в промышленном НК // В мире неразрушающего контроля. 2007. №1 (35). С. 4-8.
20. Гонсалес Р., Вудс Р. Цифровая обработка изображений. 3-е изд., испр. и доп. М.: Техносфера, 2012. 1104 с.
21. Лебедев М.Б., Сидуленко О.А., Удод В.А. Анализ современного состояния и развития цифровой рентгенографии // Известия Томского политехнического университета. Сер.: Инжиниринг георесурсов. 2008. №6. С. 47-55.