Эскарханов Л.У.
ТЕОРЕТИЧЕСКИЕ АСПЕКТЫ ЭКОНОМИЧЕСКОГО ПРОГНОЗИРОВАНИЯ РАЗВИТИЯ АГРОПРОМЫШЛЕННОГО КОМПЛЕКСА
В статье приводятся основные методы прогнозирования агропромышленного комплекса. Особенно эффективно использование экспертного метода в задачах, характеризующихся неопределённостью ситуации, её вероятностным характером, которые характерны для сельского хозяйства.
Ключевые слова: экономическое прогнозирование, функционально-отраслевая, производственно-техническая, региональная (территориальная), организационно-хозяйственная структура АПК
Eskarhanov L.U.
THEORETICAL ASPECTS OF ECONOMIC FORECASTING OF THE DEVELOPMENT OF AGRO INDUSTRIAL COMPLEX
The article describes the main methods of forecasting of the agro-industrial complex. Especially effective use of expert method in problems, characterized by uncertainty of the situation, its probabilistic character, which are typical for agriculture.
Key words: economic forecasting, functionally-sectoral, technological, regional (territorial), reports-but-economic structure of AIC
Введение. Экономика северокавказского региона и ее структура в условиях обеспечения продовольственной программы и ее безопасности должна включать агропромышленное производство. На равне с другими субъектами Северного Кавказа и перед Чеченской республикой стоить проблема необходимость приоритетного развития агропромышленного комплекса (АПК) подтверждают экономико-географические факторы, учитывающие специфики производства продукции сельского хозяйства и ее переработки, а также климатические и другие условия.
Существовавшая структура АПК прошлых лет в условиях рынка оказалась недееспособной без изменения с учетом рыночных отношений. А попытка аврального перевода всю систему АПК с плановой на рыночную экономику без учета объективных экономических законов оказалась не способным функционировать в полной мере. Так как моделирование нового типа функционально-отраслевой, производственно-технической, региональной (территориальной), организационно-хозяйственной структуры АПК не завершено. И в этих условиях важную роль необходимо было отводится некоторым элементам плановой экономики таких как планирования и экономическому прогнозирования. Так как аргументированное представление о возможном состоянии экономики народного хозяйства и агропромышленного комплекса в будущем возможно только на основе применения методов прогнозирования.
В условиях рынка, экономическое прогнозирование имеет важное значение для развития теории и практики управления экономикой, необходимость, которая является предвидения вероятностного исхода событий на перед в будущем. Это связано с высокой неопределённостью событий, обусловленной коренными социально-экономическими изменениями общества переходом к рыночным отношениям. Сложность производственных систем, разнообразие и во многих случаях неопределённый характер поступающей производственной ин-
формации придают задаче управления творческий характер, повышающей, а зачастую делающей незаменимой роль человеческого фактора. Это непосредственно проявляется в возрастающей роли в современном управлении и планировании производства методов экспертных оценок.
Коротко об агропромышленном комплексе, о его состав и особенности, а так же об аграрная политика. В известной степени, агропромышленный комплекс (АПК) является важнейшим межотраслевым комплексом. Он создан для обеспечения населения продовольствием и входит в число основных приоритетов экономики. АПК представляет сложную биоэкономическую производственную систему. Ее центральное звено - сельскохозяйственное производство, главными ресурсами которого наряду с орудиями труда и трудовыми ресурсами являются земля, климат, погода, составляющие в совокупности биоклиматический потенциал. Поэтому при прогнозировании и планировании развития АПК следует исходить из взаимодействия экономических и естественно-биологических процессов [9, с.331].
Формирование АПК базируется на агропромышленной интеграции и, как мы знаем, включает в себя три сферы. Первая сфера - отрасли промышленности, поставляющие сельскому хозяйству средства производства, а также занятые производственно-техническим обслуживанием сельского хозяйства. Вторая сфера - сельское и лесное хозяйство. Третья сфера - отрасли занятые доведением сельскохозяйственной продукции до потребителя (заготовка, переработка, хранение, транспортировка, реализация).
Цель функционирования АПК состоит в удовлетворении общественных потребностей в продовольствии и сельскохозяйственном сырье [9, с.332]. Региональные органы управления АПК решают проблемы развития в рамках своей территории, особая роль в управлении принадлежит экономическому прогнозированию. Характерными особенностями сельскохозяйственного производства являются: многообразие форм собственности; сезонность сельскохозяйственного производства; влияние природно-климатических условий.
Большую роль в развитии АПК играет обоснованная аграрная политика. Аграрная политика предполагает проведение аграрной реформы, нацеленной на преодоление негативных тенденций и обеспечение устойчивого развития АПК, повышение уровня самообеспечения продуктами питания, увеличение экспорта сельскохозяйственной продукции и укрепление продовольственной безопасности региона. Достижение поставленных целей предусматривается путем системного реформирования отношений собственности и комплексного проведения преобразований во всех сферах АПК.
Главной задачей прогнозирования и планирования развития АПК являются максимизация объема конечной продукции АПК и приближение объема и структуры производства продукции к объемам и структуре потребностей в ней. В состав конечной продукции АПК входит продукция, используемая на личное потребление населения, производственное потребление в отраслях, не входящих в АПК, прирост запасов, резервов, экспорт [9, с.334].
Продукция поступает потребителю главным образом через сферу обращения: государственную и кооперативную торговлю, систему общественного питания, колхозный рынок. Часть продукции, минуя сферу обращения, потребляется непосредственно семьями, ведущими личное подсобное хозяйство. Прогнозирование и планирование развития АПК осуществляется по подкомплексам, которые определены исходя из технологической взаимосвязи по производству конечной продукции. Выделены следующие подкомплексы: зернопродук-товый, картофелепродуктовый, мясной, молочный и др.
В действующей практике прогнозирования и планирования развития АПК широко применяются методы экстраполяции, нормативный, балансовый и программно-целевой методы [9, с.334].
С учетом особенностей сельскохозяйственного производства особое место принадлежит методам экспертных оценок.
Сущность прогнозов и их классификация. В экономической науке даются различные определения понятий "прогноз" и "прогнозирование", предлагаются различные варианты классификации методов прогнозирования. Так С. Вишнев понимает под прогнозом "... объективно научно обоснованное суждение, направленное на уменьшение неопределенности будущего и имеющее целью выбор наиболее рациональных практических решений". По мнению Э. Ян-ча: "Прогноз - вероятностное утверждение о будущем с относительно высокой степенью достоверности". Мотышина М.С. определяет прогноз как " вероятностное научно обоснованное суждение о перспективах возможного состояния того или иного явления в будущем и (или) об альтернативных путях и сроках их осуществления"[7].
Примем за основу следующее определение: "Под прогнозом понимается научно обоснованное суждение о возможных состояний объектов в будущем, об альтернативных путях и сроках достижения этого состояния. Процесс разработки прогнозов называется прогнозированием [4, с.167].
Существует также и большое количество классификаций видов прогнозов по различным классификационным признакам. Для разработки прогнозов используется свыше 150 методов прогнозирования.
Прогнозы можно разделять в зависимости от целей, задач, объектов, времени упреждения, методов организации прогнозирования и т.д.
В зависимости от объекта прогнозирования прогнозы можно подразделять на научно-технические, экономические, социальные, военно-политические и т.д. Экономические прогнозы в свою очередь могут подразделяться в зависимости от масштабности объекта на:
а) глобальные - рассматривают наиболее общие тенденции и закономерности в мировом масштабе;
б) макроэкономические - анализируют наиболее общие тенденции явлений и процессов в масштабе экономики страны в целом;
в)структурные ( межотраслевые и межрегиональные)-предсказывают развитие народного хозяйства в разрезе отраслей материального производства и промышленности;
г) региональные - предсказывают развитие отдельных регионов;
д)прогнозы развития народнохозяйственных комплексов определяют закономерности развития совокупностей отраслей, объединённых единой целью функционирования и т.д.
е)отраслевые - прогнозируют развитие отраслей;
з) микроэкономические - предсказывают развитие отдельных предприятий и т. д. [7, с. 15].
По времени упреждения выделяются следующие экономические прогнозы : оперативные (до одного месяца); краткосрочные (от нескольких месяцев до 1 года ); среднесрочные(от 1 до 5 лет); долгосрочные (от 5 до 20 лет и более). Оперативный прогноз основан на предположении о том, что в прогнозируемом периоде не произойдёт существенных изменений в исследуемом объекте как количественно, так и качественно. В них преобладают детально-количественные оценки ожидаемых событий. Краткосрочный прогноз предполагает только количественные изменения. Оценка событий соответственно даётся количественная. Среднесрочный и долгосрочный прогнозы исходят как из количественных, так и из качественных изменений в исследуемом объекте. В среднесрочном прогнозе оценка событий даётся количественно-качественная, в долгосрочном - качественно-количественная [7, с.16].
В зависимости от целей прогноза можно выделить два типа: поисковый и нормативный. Нормативный прогноз-прогноз, который предназначен для указания возможных путей и сроков достижения заданного, желаемого конечного состояния прогнозируемого объекта. Поисковый прогноз не ориентируется на заданную цель, а рассматривает возможные направления будущего развития прогнозируемого объекта. Поисковый прогноз отталкивается при определении будущего состояния объекта от его прошлого и настоящего, нормативный же прогноз осуществляется в обратном порядке: от заданного состояния в будущем к существенным тенденциям и их изменениям в свете поставленной цели [4, с.19].
Прогнозирование в управлении социально-экономическими системами. В известной степени, прогнозирование (греч. prognosis - знание вперёд) -вид познавательной деятельности человека, направленной на формирование прогнозов развития объекта, на основе анализа тенденций его развития. В зависимости от степени конкретности и характера воздействия на ход исследуемых процессов и явлений различают три формы предвидения : гипотезу (общенаучное предвидение), прогноз и план. Исходное начало этого процесса - гипотеза -это научно обоснованное предположение о структуре объекта ,характере элементов и связей, образующих этот объект, механизме его функционирования и развития. На уровне гипотезы даётся качественная характеристика объекта, выражающая общие закономерности его поведения .
Прогноз в сравнении с гипотезой имеет большую определенность и достоверность, поскольку основывается не только некачественных, но и на количественных характеристиках и поэтому позволяет характеризовать будущее состояние объекта также количественно. Прогноз выражает предвидение на
уровне конкретно-прикладной теории, так как связан с будущим, которое всегда стохастично. План представляет собой систему взаимосвязанных, направленных на достижение единой цели плановых заданий, определяющих порядок, сроки и последовательность осуществления отдельных мероприятий. В нём фиксируется пути и средства развития в соответствии с поставленными задачами, обосновываются принятые управленческие решения. Существенное различие между планом и прогнозом состоит в том, что план-отражение и воплощение уже принятого хозяйственно политического решения, а прогноз - это поиск реалистического, экономически верного пути. Прогнозирование представляет собой исследовательскую базу планирования, имеющую собственную методологическую и методическую основу, которая во многом отличается от планирования.
Таким образом, задачи прогнозирования в управлении социально-экономическими системами следующие:
- выявление перспектив ближайшего и ли более отдалённого будущего в исследуемой области на основе реальных процессов действительности;
- выработка оптимальных тенденций и перспективных планов с учётом составленного прогноза и оценки принятого решения с позиций его последствий в прогнозируемом периоде [2, с.21].
Управление социально-экономическими системами должно иметь соответствующую информационную основу.
Разработка статистической или любой иной системы данных должна, очевидно, основываться на конкретных задачах, которые данная система призвана решать.
Научный инструмент, в наибольшей степени приспособленный для анализа функционирования крупных экономических систем - это модель.
Модель представляет собой не уменьшенную копию оригинала, а, скорее, карту, чертеж, отображающий его структуру и взаимосвязи между всеми его частями. Модельный подход сегодня может считаться практически незаменимым средством систематического изучения функционирования или же нарушений функционирования современной экономики, поиска потенциальных и фактических источников таких нарушений и определения путей и средств их устранения.
Метод построения моделей широко используется как правительством, так и частными предприятиями. Он признан эффективным средством контроля и руководством для принятия решений о сложных системах производства, перевозок и распределения, а также анализа рынка [8, с.227].
По форме модель представляет собой систему уравнений. Некоторые из входящих в нее переменных описывают затраты, выпуск и цены различных товаров и услуг, а также уровни дохода и занятости в различных отраслях и регионах; другие представляют, например, уровни капиталовложений в новые производственные мощности или объемы экспорта и импорта. Параметры, входящие в описание отдельных уравнений, представляют структурные характеристики различных частей экономики.
Модели различаются по широте охвата и степени детализации. Существуют модели определенных производственных секторов, таких как сельское хозяйство и нефтехимическая промышленность; модели отдельных географических регионов и модели экономики в целом [8, с.229].
Методология прогнозирования сельскохозяйственного производства и общая характеристика методов прогнозирования. Наиболее распространенной в экономической литературе является классификация методов прогнозирования по степени формализации. Классификация методов прогнозирования по степени формализации
Методы прогнозирования, которые складываются по степени формализации имеют классифицируются следующем образом: Формализованные в том числе Структурное моделирование, Информационное моделирование; Интуитивные (экспертные) в том числе метод комиссий, метод мозговой атаки, метод Дельфи; Статистические в том числе Прогнозная экстраполяция, Прогнозирование на основе регрессионных моделей, Прогнозирование на основе индикаторов и индексов, Прогнозирование сезонных колебаний; Логические в том числе По аналогии, Построение дерева целей, Сетевые модели, Дерево целей, Прогнозный граф, Дерево решений.
Представленные формализованные методы, наиболее часто употребляемые для прогнозирования развития социально-экономических систем. В пользу использования количественного подхода к прогнозному процессу, который реализуется на основе статистических методов, можно привести следующие аргументы:
Статистические методы прогнозирования входят в большинство известных статистических пакетов прикладных программ (111111), таких как Statistica, SPSS и др. Соответственно, несмотря на довольно сложные математические вычисления при использовании большинства методов - они наиболее просты и требуют сравнительно небольшого времени для их применения и или обновления оценок параметров.
Представленные методы основываются на реальной статистической информации и поэтому относительно экспертных методов объективны.
Требуют сравнительно небольшого объема данных (обычно один временной ряд), кроме того практически любой другой метод прогнозирования требует прогнозирования хотя бы одного временного ряда.
Интуитивные методы прогнозирования (основные из которых представлены в левой части рисунка) как научный инструмент решения сложных не формализуемых проблем позволяют получить прогнозную оценку состояния развития объекта в будущем независимо от информационной обеспеченности. Их сущность заключается в построении рациональной процедуры интуитивно-логического мышления человека в сочетании с количественными методами оценки и обработки полученных результатов. При этом обобщенное мнение экспертов принимается как решение проблемы [4, с.18].
В случае применения методов экспертных оценок для предвидения результатов развития экономических объектов преимущественно реализуется качественный подход к прогнозному процессу.
Методы экспертных оценок "в чистом виде" используются в следующих случаях: отсутствие или недостаточное количество статистических данных об объекте; объект прогнозирования чрезвычайно сложен для формализации, крупномасштабен или достаточно велик период упреждения прогноза; достаточно велик фактор неопределенности, связанный с будущим состоянием прогнозного фона; острый дефицит времени в связи с экстремальной ситуацией и др.
Экспертные методы прогнозирования, которые также называют интуитивными, по принципу действия можно разделить на индивидуальные и коллективные экспертные оценки. Индивидуальные оценки целесообразно использовать только тогда, когда есть компетентный специалист в сфере деятельности, подлежащей прогнозному исследованию. Индивидуальная экспертная оценка включает методы прогнозирования, основанные на использовании в качестве источника информации одного эксперимента. В зависимости от того, каким образом проводится опрос эксперта, индивидуальные экспертные оценки можно условно разделить на методы прямого и анонимного экспертного опроса к первой группе относятся методы интервью и психоинтеллектуальной генерации идей. А ко второй - аналитическая индивидуальная оценка (докладные оценки), метод сценария, морфологический анализ и др. При аналитической индивидуальной оценке эксперт анализирует представленную ему совокупность достоверных и разнообразных сведений по исследуемой проблеме.
Метод построения сценария - аналитический метод прогнозирования, основанный на установлении логической последовательности состояний объекта прогнозирования и прогнозного фона во времени. Преимуществом разработки сценария является необходимость детальной проработки экспертом будущего состояния и альтернативных путей развития объекта, что могло быть упущено, если бы эксперт обсуждал прогнозируемые варианты поверхностно, а не с общих позиций. Недостатком методов индивидуальной экспертной аналитической оценки является необходимость использования специалиста, энциклопедически информированного в различных смежных областях знаний, что на практике очень проблематично.
Морфологический анализ - метод прогнозирования, основанный на построении матрицы характеристик объекта прогнозирования и их возможных значений с последующим перебором и оценкой вариантов сочетаний этих значений. Важнейший принцип морфологического анализа, проводимого экспертом с целью прогнозной оценки развития какого-либо объекта, состоит в рассмотрении и систематизации по всем без исключения возможным аспектам изучаемой проблемы. Недостатком метода является субъективность выбора наилучшего варианта решения проблемы, а достоинством - возможность широкого использования ЭВМ для "перебора" альтернативных решений.
Методы коллективных экспертных оценок представляют собой попытку повысить степень объективности мнений экспертов, увеличить достоверность коллективного суждения . Метод коллективного экспертного опроса - метод прогнозирования, основанный на выявлении обобщённой объективированной оценки экспертной группы путём обработки индивидуальных независимых оценок, вынесенных экспертами, входящими в группу.
Методы коллективной экспертной оценки могут осуществляться путём непосредственного опроса экспертов (метод комиссии, методы коллективной генерации идей), а также "заочно" с помощью анкетирования (метод "Дельфи", эвристическое прогнозирование и др.). Первая группа методов может быть отнесена к "зависимому интеллектуальному эксперименту", так как каждый эксперт "лицом к лицу" должен аргументировать, или отстаивать своё мнение, в идеале независящее от мнения большинства, от личностного восприятия и эмоциональной окраски отдельных суждений и т.д., что на практике весьма затруднительно. Вторая группа методов характеризует "независимый интеллектуальный эксперимент", когда с помощью анкет, обеспечивающих анонимность экспертов и возможность всесторонне обдумать свою точку зрения, выявляется достаточно согласованное мнение экспертной группы. Согласованность суждений достигается путём многоэтапного (два, три и более раз) анкетирование экспертов, причём итоговые характеристики каждого предыдущего этапа доводятся до сведения всех без исключения экспертов с просьбой мотивировать своё суждение, если оно в достаточной степени отличается от усреднённой оценки.
Таким образом , можно сделать вывод, что сущность экспертного метода состоит в проведении интуитивно-логического анализа проблемы, выполняемого привлечёнными для этой цели специалистами экспертами, обладающими необходимым профессиональным образованием, опытом и интуицией [6, с. 27].
Экспертные методы: проблемы и технологии их применения. К основным проблемам совершенствования экспертных технологий относятся следующие.
1. Формирование экспертной комиссии.
Одной из центральных проблем при формировании экспертной комиссии является определения качества эксперта.
При формировании экспертной комиссии необходимо предусмотреть возможность эффективного взаимодействия экспертов, входящих в ее состав, с целью получения полной и адекватной оценки объекта экспертизы.
2. Организация и проведение экспертиз.
Ряд работ посвящен организации и проведению экспертиз. Это, прежде всего, работы по систематизации многочисленных разновидностей метода "Дельфи", касающиеся, в основном, совершенствования процедур обмена информации между экспертами в процессе экспертизы. Дальнейшее развитие получили методы мозговой атаки, сценариев, ситуационного анализа.
В настоящее время все большее значение приобретает проведение комплексных экспертиз при оценке сложных объектов.
3. Получение экспертной информации.
Широкое распространение получили методы экспертных ранжировании и гиперупорядочений, классификаций, парные и множественные сравнения и др.
При практическом использовании значительное внимание уделяется как качественным, так и количественным методам получения экспертной информации.
Разрабатываются методы измерения экспертной информации. К числу основных проблем относятся: проблема представляемости экспертной информации; проблема единственности измерений; проблема адекватности.
4. Определение результирующих экспертных оценок.
Одной из центральных проблем обработки экспертной информации является определение результирующих экспертных оценок - результата коллективной работа экспертов. Для этой цели был введен аналог расстояний - мера близости между ранжированиями, классификациями и т.д.
Это позволило разработать корректные способы определения результирующих экспертных оценок, такие как медиана Кемени, метод строчных сумм и др.
5. Многокритериальные оценки.
Многокритериальный опыт использования методов и процедур экспертного оценивания показал, что во многих случаях, хотя и не во всех, оценки объектов экспертизы экспертами оказывались более точными при использовании методов многокритериального оценивания.
6. Анализ результатов экспертизы.
Полученная экспертная информация обязательно должна быть проанализирована. Получили развитие методы оценки согласованности экспертных суждений, высказанных в виде ранжировании, парных сравнений и т.д. При этом установлена связь между коэффициентами ранговой корреляции, характеризующие согласованность экспертных суждений, и упомянутыми ранее мерами близости.
Скорее поставлены, чем решены проблемы оценки степени конъюнктур-ности, конформизма и других факторов, характеризующих адекватность экспертной информации.
7. Компьютерная система поддержки.
Характерным для современного этапа использования методов экспертного оценивания является широкое применение компьютерных систем поддержки. К числу таких систем могут быть отнесены экспертные системы, позволяющие использовать знания и опыт экспертов-специалистов высокой квалификации специалистами менее высокой квалификации для решения задач, возникающие в их практической деятельности.
Система поддержки принятия решений, находящая применение в различных областях, в качестве одной из основных составляющих использует результаты экспертного оценивания.
Однако наиболее важным классом компьютерных систем, позволяющих обеспечить сопровождение и поддержку непосредственно процедур получения,
обработки и анализа экспертной информации являются, с нашей точки зрения, автоматизированные системы экспертного оценивания (АСЭО).
АСЭО обеспечивает технологическое сопровождение, необходимое методическое и информационное обеспечение процесса экспертного оценивания при организации и проведении экспертиз с учетом специфического характера проводимой экспертизы [1, с. 17 - 20].
Для прогнозов развития науки и техники, будущих открытий и изобретений, для которых не имеется достаточной теоретической базы в момент составления прогноза, составления картины будущего мира широко применяется один из методов, связанный с обобщением и статистической обработкой мнений группы экспертов, получивший название метода "Дельфи". Этот метод относится к классу методов групповых экспертных оценок. Он был разработан и применен в США впервые в 1964 году сотрудниками научно-исследовательской корпорации РЭНД О. Хелмером и Т.Гордоном [3, с.155].
Происхождение названия этого метода связывают с понятиями "дельфийский оракул". Дельфийский оракул - наиболее известное в Древней Греции место религиозных пророчеств. Дельфийский оракул находился в городе Дельфы при храме Аполлона, считавшегося покровителем и прорицателем. Пророческие изречения в Дельфийском оракуле от имени Аполлона давала жрица-пифия.
Метод "Дельфи" наиболее целесообразно применять в таких случаях, когда имеющиеся в распоряжении или доступные данные непригодны для решения существующей проблемы; в распоряжении нет нужных данных; нет достаточного времени для сбора необходимых данных; процесс получения и анализа необходимых данных слишком дорогостоящий [5, с. 30].
В методе "Дельфи" предусматривается создание условий, обеспечивающих наиболее продуктивную работу экспертной комиссии [6, с.26]. Это достигается равномерностью процедуры, возможностью пополнить информацию о предмете экспертизы, отказом от коллективного мнения. Еще одно важное свойство - обратная связь, позволяющая экспертам корректировать свои суждения с учетом промежуточных усредненных оценок и пояснений экспертов, высказавших "крайние" точки зрения. Для реализации обратной связи необходима многотуровая процедура. Экспертизы по методу "Дельфи" проводятся, чаще всего, в 4 тура при помощи анкетирования [6, с.26].
На первом туре экспертам сообщается цель экспертизы, и формируются вопросы, на которых составляют основное содержание экспертизы. Вопросы предъявляются каждому эксперту персонально в виде анкеты, иногда сопровождаемой пояснительной запиской. Если предъявляемые экспертам вопросы достаточно сложны, целесообразна предварительная разработка приближенной модели исследуемой системы, чтобы правильно ориентировать эксперта, конкретизировать цели и предмет экспертной процедуры, показать характер возможных ответов.
Успеху экспертизы способствует предоставление эксперту дополнительной информации о предмете экспертизы. Информация, полученная от эксперта,
поступает в распоряжение аналитической группы, обеспечивающей организацию, проведение, обработку промежуточных и окончательных результатов экспертизы. Аналитическая группа определяет экспертов, высказавших "крайние" точки зрения, давших самую высокую и самую низкую оценку альтернативе, усредненное мнение экспертов — медиану, верхнюю и нижнюю квартили, т.е. значение оцениваемой альтернативе, выше и ниже которых расположены 25% численных значений оценок.
Медиана — значение признака, которое находится в середине ранжированного ряда. Для нахождения медианы ряда с четным числом вариант складывают две средние варианты и делят сумму пополам.
На втором туре "Дельфийской" процедуры экспертам предъявляется усредненная оценка экспертной комиссии и обоснования экспертов, высказавших "крайние" точки зрения [6, с.27]. Обоснования принимаются анонимно, без указания давших их экспертов. После получения дополнительной информации эксперты, как правило, корректируют свои оценки. Скорректированная информация вновь поступает в аналитическую группу. На третьем туре эта информация вместе с анонимными аргументациями поставленных оценок снова направляется каждому участнику. На основе полученной информации эксперты пересматривают предыдущие оценки [5, с.31]. Если же оценка какого-либо эксперта значительно выходит за рамки общего интервала, то он должен подтвердить достаточной аргументацией свою позицию и объяснить, почему предыдущая информация и аргументация противоположных оценок не заставили его изменить свое мнение. На четвертом туре каждому эксперту предоставляется распределение оценок третьего тура, и он должен снова представить на рассмотрение пересмотренную оценку в свете полученной информации. Как показывает практика, желаемое согласие наступает к четвертому туру.
В некоторых случаях согласованная точка зрения экспертов может быть получена уже после второго или третьего туров. Тогда необходимость проведения следующих туров отпадает.
При использовании метода "Дельфи" следует учитывать следующее:
1. Группы экспертов должны быть стабильными и численность их должна удерживаться в благоразумных рамках.
2. Время между турами опросов должно быть не более месяца.
3. Вопросы в анкетах должны быть тщательно продуманы и четко сформулированы.
4. Число туров должно быть достаточным, чтобы обеспечить всем участникам возможность ознакомится с причиной той или иной оценки, а также и для критики этих причин.
5. Должен проводиться систематический отбор экспертов.
6. Необходимо иметь самооценку компетенции экспертов по рассматриваемым проблемам.
7. Нужна формула согласованности оценок, основанная на данных самооценок.
8. Следует установить влияние общественного мнения на экспертные оценки и на сходимость этих оценок.
9. Необходимо установить влияние различных видов передачи информации экспертам по каналам обратной связи.
Следует также отметить, что использование меридианы и квартилей в методе "Дельфи" имеет помимо положительной стороны и отрицательную. В частности при рассмотрении оценок группы экспертов оценка, слишком сильно отличающаяся от других, практически исключается, не смотря на то, что она может оказаться более верной, чем остальные, т.е. большинство экспертов могут сойтись в ошибочной оценке [1, с.159].
Правда, подобные отклонения, по мнения авторов метода "Дельфи", компенсируются автором до некоторой степени тем, что по данному методу эксперта, несогласного с большинством, просят высказать причины несогласия. Все эксперты имеют возможность не согласиться с этими причинами и могут принять во внимание или отвергнуть их, переоценивать свое мнение или остаться при нем.
Так что оценка, далеко отстающая от других, отбрасывается фактически лишь в том случае, если эксперту не удается достаточно веско аргументировать свою точку зрения.
Имеется и другая трудность. Это трудность четкой формулировки вопросников. Максимальная точность достигается за счет громоздкого стиля изложения, вызывающего отрицательную реакцию у отвечающих на анкету. Здесь также надо найти оптимум между четкостью и лаконичностью поставленных вопросов, дабы все участники одинаково их интерпретировали. Другим недостатком дельфийского прогноза является то, что ответы высококомпетентных экспертов как бы разбавляются оценками менее информированных специалистов, кроме того, в ряде случаев, одни и те же специалисты включены в разные группы (чего допускать нельзя).
В заключение можно сказать, что, несмотря на указанные недостатки, метод "Дельфи" является достаточно надежным инструментом получения экспертной информации. С помощью метода "Дельфи" выявляется преобладающее суждение специалистов по какому-либо вопросу в обстановке, исключающей их прямые дебаты между собой, но позволяющей им, вместе с тем, периодически взвешивать свои суждения с учетом ответов доводов коллег. Пересмотр и возможность изменения прежних оценок на основе выяснения соображений каждого из экспертов и последующий анализ каждым участником совокупности причин, представленных экспертами, стимулирует опрашиваемых к учету факторов, которые они на первых порах склонны были опустить как незначительные.
Прогнозирование наивными методами. В наивных методах прогнозирования реализуются эконометрические подходы к прогнозному процессу. В связи с развитием экономико-математических методов окончательная классификация формализованных (наивных) методов пока еще не сложилась. Накопленные исследования по этой проблеме позволяют дифференцировать форма-
лизованные методы на две самостоятельные группы: методы прогнозной экстраполяции и методы моделирования. К наиболее распространенным наивным методам прогнозирования относятся следующие [9, с. 53].
Анализ и декомпозиция трендов. Целью анализа тренда является разложение временного ряда продаж на главные компоненты, измерение эволюции каждой составляющей в прошлом и ее экстраполяция в будущем. В основе метода лежит идея стабильности причинно-следственных связей и регулярность эволюции факторов среды, что делает возможным использование экстраполяции. Метод состоит в разложении временного ряда на пять компонент:
1. структурная компонента, или долгосрочный тренд, обычно связанный с жизненным циклом;
2. циклическая компонента, соответствующая колебаниям относительного долгосрочного тренда под воздействием среднесрочных флуктуаций экономической активности;
3. сезонная компонента, или краткосрочные периодические флуктуации, обусловленные различными причинами;
4. случайная компонента, отражающая совокупное действие плохо изученных комплексных процессов, не представимых в количественной форме.
Для каждой компоненты рассчитывается параметр, основанный на наблюдавшихся закономерностях: долгосрочном темпе прироста, конъюнктурных флуктуациях, сезонных коэффициентах, специфичных факторах, затем эти параметры используются для составления прогноза [4].
Понятно, что такой прогноз имеет смысл только как краткосрочный, на период, в отношении которого можно принять, что характеристики изучаемого явления существенно не изменяются. Это требование часто оказывается реалистичным вследствие инертности среды.
Метод экспоненциального сглаживания. Используется для краткосрочного прогноза и основан на средневзвешенном значении продаж по определенному числу прошедших периодов. При этом наибольшие весовые коэффициенты придаются позднейшим продажам.
Главная слабость этих методов в том, что они не позволяют действительно предсказать эволюцию спроса, поскольку неспособны предвидеть какие-либо "поворотные точки". В лучшем случае они способны быстро учесть уже произошедшее изменение. Поэтому их называют "адаптивной прогнозной моделью". Тем не менее, для многих проблем управления такой "апостериорный" прогноз оказывается полезным при условии, что имеется достаточно времени для адаптации и факторы, определяющие уровень продаж, не подвержены резким изменениям [4, с.47].
Необходимость интегрального подхода: метод сценариев. Рассмотрение различных возможных методов прогнозирования выявило достоинства и недостатки каждого из них. На самом деле все эти методы являются взаимодополняемыми и эффективная прогнозная система должна обеспечить возможность использования любого из этих методов.
Ясно, что в условиях турбулентной среды интуиция и воображение способны стать важными инструментами восприятия реальности, дополняя количественные подходы, которые, по определению, опираются только на наблюдаемые факты. С другой стороны, понятно, что чисто качественному методу также присущи значительные риски и что интуиция должна в возможно большей степени проверяться с помощью доступных факторов и знаний. Таким образом, следует обеспечить сопоставление этих двух подходов [1, с.27].
Прогнозирование основных показателей развития сельского хозяйства. В современных условиях в Чеченской республике один из основных секторов экономики является агропромышленный комплекс. И проводимая в республике аграрная реформа направлена на создание экономических условий для функционирования сельских товаропроизводителей всех форм собственности и на этой основе скорейшую стабилизацию сельскохозяйственного производства в новых условиях хозяйствования.
На протяжении всего периода экономической реформы сокращение производства валовой продукции происходило по разным причинам, в том числе военных действии на территории республике, за счет реорганизации сельхозпредприятии, за счет укрупнении хозяйств и так далее. В результате удельный вес продукции сельхозпредприятий в валовой продукции (в фактически действовавших ценах) за последние десятилетия снизился госхозов и вырос удельный вес продукции, производимой в хозяйствах населения.
Практическое применение в прогнозировании и программное планирование АПК сельскохозяйственных показателей базируется на разных методах, принципах, приемах экономического прогнозирования и планирования. Специфика АПК как объекта прогнозирования выражается в том, что он включает несколько органически взаимосвязанных отраслей народного хозяйства, первичным же является сельское хозяйство. Известно, что в сельскохозяйственном производстве условно можно выделить два периода: в одном - процесс производства совершается под действием человека, в другом - под воздействием природных сил. Специфика АПК как объекта прогнозирования выражается в том, что он включает несколько органически взаимосвязанных отраслей народного хозяйства, первичным же является сельское хозяйство. Известно, что в сельскохозяйственном производстве условно можно выделить два периода: в одном - процесс производства совершается под действием человека, в другом -под воздействием природных сил.
Прогнозирование методом экстраполяции динамических рядов. Исходной информацией для экстраполяции являются временные ряды. При экстраполяции предполагается, что:
- текущий период изменения показателей может быть охарактеризован плавной траекторией - трендом;
- основные условия, определяющие технико-экономические показатели в текущем периоде, не претерпят существенных изменений в будущем, то есть в будущем они будут изменяться по тем же законам, что в прошлом и настоящем;
- отклонения фактических значений показателей от линии тренда носят случайный характер и распределяются по нормальному закону.
При принятии управленческого решения должны быть учтены результаты, полученные и другими методами.
Заключение. В заключении данной работы можно сделать вывод, что задачами экономического прогнозирования является выявление перспектив ближайшего или более отдалённого будущего в исследуемой области на основе реальных процессов действительности, выработка оптимальных управленческих решений и перспективных планов с учетом составленного прогноза и оценки принятого решения с позиций его последствий в прогнозируемом периоде.
Сущность экспертных методов состоит в проведении интуитивно-логического анализа проблемы, выполняемого привлечёнными для этой цели специалистами экспертами, обладающими необходимым профессиональным образованием, опытом и интуицией. Использование экспертного метода целесообразно только в задачах, отвечающим условиям:
1) задача не может быть решена никаким другим существующим способом;
2) другие, кроме экспертного способы или менее точны, или более трудоёмки.
Особенно эффективно использование экспертного метода в задачах характеризующихся неопределённостью ситуации, её вероятным характером. Подобные ситуации характерны для сельского хозяйства.
Следовательно, прогноз, сделанный, с помощью метода Дельфи является, более достоверным, чем наивный прогноз. При принятии управленческого решения необходимо учитывать результаты и наивных и экспертных прогнозов.
Список использованных источников
1. Бешелев С.Д.,Гурвич Ф.Г. Математико-статистические методы экспертных оценок.2-е изд. перераб. и доп. М: Статистика. 1980-263с.
2. Бобровников Г.Н., Клебанов А.И. Прогнозирование в управлении техническим уровнем и качеством продукции: Учеб. Пособие.-М: Издательство стандартов. 1984-232с.
3. Глущенко В.В., Глущенко И.И. Разработка управленческого решения. Прогнозирование-планирование. Теория проектирования экспериментов. - г. Железнодорожный, Моск. обл.: ТООНПЦ "Крылья",1997-400с.
4. 4. Гранберг А.Г. Статистическое моделирование и прогнозирование/ Под ред. Гранберга А.Г. М: Финансы и статистика 1990-383с.
5. Кузьбожев Э.Н. Экономическое прогнозирование (методы и модели): Учеб. пособие. (Курск. гос. техн. ун-т Курска), 1997 -84с.
6. Литвак Б.Г. Экспертные оценки и принятие решений . М: Патент, 1996-217с.
7. Мотышина М.С.Методы социально-экономического прогнозирования: Учебное пособие-СПб: Изд-во СПб УЭФ,1994-114с.
8. Прогнозирование и планирование в условиях рынка : Учеб. пособие для вузов. Под ред. Морозовой Т.Г., Пикулькина А.В.-М: ЮНИТИ-ДАТА,1999-318с.
9. Прогнозирование и планирование экономики: Учеб. пособие/ Борисевич В.И., Кандаурова Г.А. -Мн.: ИП "Экоперспектива", 2000. - 432с.
10.Теория прогнозирования и принятия решений. Учеб. пособие. Под ред. Саркисяна С.А. М: "Высш. Школа",! 977
Сведения об авторах
Абасова Хабсат Узеровна - соискатель ИСЭИ ДНЦ РАН. Амирова Эльмира А.- аспирантка каф. «ЭиСТ» ДГУ
Асильдерова Лейла Мансуровна - соискатель ГОУ ВПО «Дагестанский государственный университет» Багомедов Магомед Алиевич - к.э.н., зав. отделом ИСЭИ ДНЦ РАН. Гаджиев Мурад Хабибович, к.э.н., ст. преподаватель кафедры «Аудит и финансовый контроль»,
Гасанова Аида Джигановна - к.э.н., доцент кафедры «Менеджмент» Дагестанского государственного университета Гусейнов Абзагир Абдурагимович, преп. Буйнакского филиала ДГУ Ибрагимова Заира Абдурахмановна - соискатель ГОУ ВПО «Дагестанская
государственная сельскохозяйственная академия» Иналова Роза Мауловна - к.э.н., доцент кафедры экономической теории, Иналов Бай -Али Маулаевич - к.э.н., старший преподаватель кафедры экономической теории, финансово-экономического факультета ЧГУ Кадиева Джамиля Гасанхановна, ассистент кафедры «Экономическая тео-рия»ГОУ ВПО «Дагестанский государственный технический университет», 89882749070 Куцулова Ф.А ст. преп. СКГНИ г. Махачкала Магомедов М.-С.М. - Дэн, зав. каф. «ЭиСТ» ГОУ ВПО «ДГУ» Магомедова Мальвина Эминовна - соискатель ГОУ ВПО «Дагестанская государственная сельскохозяйственная академия» Мамедбекова Марина Османовна - доц., кэн, доц. каф. «социальных технологий» ДГУ е-mail: uis@mail.dgu.ru Мусаева Айнулхаят Запировна - к.э.н., доц. каф. ЭиСТ ДГУ Мусаева Светлана Халитовна, преподаватель ГОУ ВПО «ДГИНХ при ПРД» Мусаев Гамид Юсупович, студент ГОУ ВПО «ДГИНХ при ПРД Омаров Шамиль Камалудинович - соискатель МАДИ, г.Махачкала Омарова З.К. - к.э.н., нс ИСЭИ ДНЦ РАН
Омарова Нина Камалудиновна - соискатель МАДИ, г.Махачкала Паничкин Артем Владимирович - к.э.н.
Сулейманов Алибек Магомедович - соискатель МАДИ, г.Махачкала Сулейманов Магомед Валибагандович - соискатель МАДИ, г.Махачкала Султанов Рустам Магомедович - аспирант ДГПУ. Тел. 89882024599 Хамзатов В.А.- к.э.н., доцент кафедры экономического анализа ЧГУ Цахаева Камиля Набиевна к.э.н., доцент, г. Москва
Эскарханов Л.У. - к.э.н., профессор, зав.каферы «Экономическая теория»ЧГУ