Научная статья на тему 'Technology for Training Creative Graduates in Engineering Bachelor’s Programs'

Technology for Training Creative Graduates in Engineering Bachelor’s Programs Текст научной статьи по специальности «Науки об образовании»

CC BY
106
57
i Надоели баннеры? Вы всегда можете отключить рекламу.
Ключевые слова
engineering education / engineering Bachelor’s programs / project-based learning / problem-based learning / integration of educational technologies / creative capacities / инженерное образование / проектное обучение / проблемное обучение / интеграция технологий обучения / творческие способности

Аннотация научной статьи по наукам об образовании, автор научной работы — Isaev Alexandеr P., Plotnikov Leonid V.

This article is devoted to technologies of engineering education that produce the most in-demand professional qualities of graduates from Bachelor’s programs. a review of studies about introducing innovations to improve the educational process in practice-oriented Bachelor’s studies is carried out. The advantages and limitations of project-based and problem-based learning technologies are defined. The work presents the experience of developing and applying a unique teaching technology based on the integration of problemand project-based training approaches, designed to enhance the creativity of the study process in engineering Bachelor’s programs. It is described with a focus on the mechanisms for the integrated use of the advantages of methods of problemand project-based training in the formation of the professional competencies required for an engineer’s innovative activity in the development of a new product project. The data from an empirical study have been considered; they allow us to substantiate the conclusion that the integration of projectand problem-based learning in the form of a holistic technology is effective for developing students’ creative capacities.

i Надоели баннеры? Вы всегда можете отключить рекламу.
iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.
i Надоели баннеры? Вы всегда можете отключить рекламу.

Технология подготовки креативных выпускников инженерного бакалавриата

Статья посвящена технологиям инженерного образования, позволяющим формировать наиболее востребованные профессиональные качества у выпускников бакалавриата. Сделан обзор исследований в области внедрения инноваций для совершенствования образовательного процесса в практико-ориентированном бакалавриате. Выделены достоинства и ограничения проектной и проблемной технологий обучения. В работе представлен опыт разработки и применения авторской технологии обучения на основе интеграции проблемного и проектного обучения, предназначенной для повышения креативности образовательного процесса в инженерном бакалавриате. Дано её описание, в котором показаны механизмы комплексного использования преимуществ методов проблемного и проектного обучения в формировании профессиональных компетенций, необходимых для инновационной деятельности инженера – от проектной разработки до производства нового изделия. Рассмотрены данные эмпирического исследования, на основе которых обоснованы выводы о том, что интеграция проблемного и проектного обучения в виде целостной технологии является эффективным инструментом развития творческих способностей у студентов.

Текст научной работы на тему «Technology for Training Creative Graduates in Engineering Bachelor’s Programs»

towards the substance of this method [11-18], though all of them acknowledge the principal benefits of project-based learning. The problem-based method allows students:

- to analyze problematic situations arising from the deficiencies of the knowledge applied;

- to formulate problems and tasks, allowing them to find ways to solve controversies;

- to summarize knowledge, principles and ways of applying them to solve problems and tasks;

- to carry out the search for necessary knowledge in the course of mastering scientific notions;

- to form goal-setting and problematization skills in the course of scientific cognition;

- to boost cognitive activity in the search for effective ways and methods of acting in uncertain conditions and situations;

- to master basic elements of research activity.

In combination with the traditional approach, problem-based learning is deemed an effective means for the general and intellectual development of students at different levels of mastering different academic programs. In the work by Ayyildiz and Tarhan [15], a comparison of the effectiveness of applying traditional and the problem-based learning approaches to chemistry is presented. On the basis of the results obtained by the authors, it was concluded that the average results of the group learning through the problem-based approach were much higher. In the works by X. Ma et al. [16] and A. Shishigu et al. [17], a successful practice of introducing the problem-based learning approach in the training of IT-specialists and teachers was presented. The authors demonstrated that problem-based learning allows for a better understanding of the relationship between theory and practice, increases student motivation and eliminates rote memorization. The article by M.A. Khoiry et al. [19] describes the method of assessing the quality of training in a course on material technology by employing the problem-based learning approach. It was shown that the technology of problem-based learning could be improved by receiving feedback throughout the period of study.

In the work by C. Veale et al. [20], the authors discuss the blending of problem-based learning and student teamwork, which was aimed at forming the creative ideas necessary for the development of advanced medicines: they note that such a type of learning requires the transformation of the whole study program.

In the studies of G.I. Ibragimov [14], it is underlined that the "problematic" character has become a standard practice in professional activities under the present cultural conditions. This leads to the conclusion that in modern higher education, especially in a technical one, problem-based learning should be considered as a basic type of education, a kind of a systemic foundation that allows one to integrate the possibilities and technologies of education, as well as to implement ideas ofpractical orientation.

It is of interest to study the experience of integrating project-based learning and problem-based learning approaches in the development of academic courses aimed at the formation of competencies necessary for the sustainable development of specific organizations and areas of activity. A course in environmental studies developed for a Master's program created additional opportunities in the development of interdisciplinarity and boosted a proactive attitude towards education, academic studies and professional practice. During the course, the students increased the sustainability of their competencies and professional skills and used opportunities for carrying out research in collaboration with their lecturers [9].

Existing trends for the integration of problem- and project-based learning are determined by the desire to combine the advantages of these methods and thereby overcome the limitations that exist in each of them. A limitation of the creative activity of students working in accordance with the project-based learning method is the fact that they work in the framework of the studied issues and the project task offered by a lecturer or chosen by them. Analysis of problems and tasks solved in the course of such design activities is limited, as the main efforts are targeted at the application of already gained

88 Bbicrnee o6pa3oeaHue e Poccuu • № 7, 2019

Fig. 1. Model oftraining and practical

and independently found knowledge related to this discipline. The depth of their studies and the creativity of solutions definitely depend on this knowledge, but these characteristics of design activities largely depend on the level of understanding of the problem (which is always interdisciplinary).

Binary technology in engineer training

The integration of problem- and project-based approaches ("Binary technology") was developed by the authors for the organization of student academic and practical activities in a special industrial training practical course (ITPC). The variant presented for integrating the two methods is not only about consolidating them into a larger instrument for organizing the study process, but is also about maintaining the relative independence of problem-based and project-based approaches, along with their benefits. The integration of these two methods results in the extension of the methodological instrument and in the algorithmization of study and practical work while maintaining opportunities for creativity when achieving the necessary results. Binary technology increases the level of student self-discipline and strengthens the benefits of the integrated methods: problem-based learning becomes more practice-oriented, while

tivity based on the binary technology

project-based learning starts to employ deeper research and analytical grounding. The general framework of the binary technology, including its main steps, is presented in Figure 1.

The difference between the integration of problem-based and project-based learning through binary technology and its other variants [8; 9] lies in the fact that students work with one complex object that includes many components throughout their activities.

The integration of problem-based and project-based learning rests upon combining them into one problem to solve another problem (creation of an engineering project of a new technical product) and developing an algorithm for its implementation including: a) working on the problem in order to develop theoretical solutions for the problematic situation (steps 2-5, Fig. 1); b) adapting the results of the research and analytical work to the problems of design and engineering activity (steps 6-8, Fig. 1); c) a design process with the further project defense (steps 9-12, Fig. 1).

The presented binary technology differs from other blended learning technologies by the following features.

1. Students are involved in more analytical and research activities, especially during the first semesters, when they have not yet started

studying specialized courses: they thus have to search for the necessary knowledge independently.

2. Designing each product is carried out as a particular part of a more complex technical system; development of this system is an output. This leads to some extra requirements for each product, as it is necessary to integrate them with the other projects forming the system.

3. Students keep on switching from the problem-based to the project-based method and back, trying to find a decision that better corresponds with the requirements of a specific product and its compatibility with other parts of the end product. In the course of this process, students often recognize their own mistakes, the limitations of some solutions, and existing systemic problems: they learn to find ways of coping with them.

4) The design process is as close as possible to the production process of an industrial enterprise and takes into account all the conditions of uncertainty, customer requirements (the consulting engineers perform as customers here), deadlines, regulatory documentation, etc.

5) The binary technology significantly changes the character of the participants' activity. The functions of lecturers, who are not only staff members of the university but also highly qualified engineers in machine-building enterprises, are consulting and tutoring.

6) At each stage of the technology, methodological techniques and means to regulate and boost student activities are used.

It is important to note that study and practical work based on the binary technology are organized so that engineering tasks solved within its framework are reflected in the content of the disciplines studied by the students in the same period. In contrast to the traditional study process, mastering the program is not only a preparation for further professional activities, but also a necessary condition for solving current training and practical engineering tasks set within the framework of the practical course, which increases the proactive attitude and pur-posefulness of their actions [21].

Results of empirical studies on the possibilities ofthe binary technology

To assess the benefits and effectiveness of the binary technology, we carried out a student survey to compare their learning activity in the framework of the practical course, which actively employed this technology, with the other engineering discipline which implemented project-based learning methods and other interactive techniques. The main methodological difference between these disciplines is that the industrial training practical course is mainly based on binary technology, while in the course of Engineering Mechanics (EM), the project-based learning was predominantly used. In the training schedule, disciplines were taught in parallel. The volume of students' educational work in the training courses was the same (144 academic hours), including the volume of independent academic work (80-88 educational hours). The study was carried out among the students of the engineering Bachelor's program "System analysis and management" who are majoring in design and engineering and studied the compared disciplines during two semesters. The survey was a self-report; the students evaluated their actions, efforts and attitudes towards the study process in the frameworks of different disciplines employing the aforementioned technologies.

The developed questionnaire employs a nominal scale with partially closed questions; the majority are menu questions with polyvari-ant responses and control questions, which are required in order to check the sustainability and the univocacy of the respondents' opinions.

More than 68% of the students of the academic groups concerned took part in the voluntary survey. Thus, we received six results from the surveys of academic groups (from 11 to 15 questionnaires in each, 82 in total) The results of the surveys as primary statistics are presented in Table 1. The secondary statistical analysis was carried out with the Mann-Whitney U test [22] to assess the difference between the average values of the number of students choosing the specific indicators of study and practical ac-

90

Bbicrnee oôpmoeame e Poccuu • № 7, 2019

Table 1

Differences in the results of students' independent educational and practical work in ITPC m EM (%)

Characteristics of independent educational and practical work of students ITPC EM

1. Systematization of new knowledge 28,6** 4,8

2. Search for and use of new information unrelated to the academic disciplines 38,1* 23,8

3. Becoming acquainted some specific issues of the disciplines that have not been studied yet 23,8** 4,8

4. Optimizing task performance 38,1** 14,3

5. Skills of solving new (original) problems 47,6* 28,6

6. Development of self-education skills 52,4* 33,3

7. Development of system analysis and thinking skills 38,1** 9,5

8. Development of creative capabilities 33,3** 9,5

9. Ability to navigate complex engineering tasks 29,1* 14,7

10. Use of knowledge gained in lectures and practical classes 9,5 47,6**

11. Skills of solving typical problems 14,3 47,6**

12. Use knowledge from previously studied topics 38,1 61,9**

Note. The detected statistically relevant differences at the level of confidence of 95% are indicated by one asterisk and at the level of confidence of 99% by two asterisks.

tivity (N, %) obtained in different studies (in six questionnaires of academic groups).

The analysis of the data presented in the table shows that students working on the basis of the binary technology search for new information and employ it more actively. The content of the learning activities has a pronounced interdisciplinary nature; they use not only information related to different academic disciplines, but also information from beyond the framework of the study plan (Table 1, point 2). To perform training and practical tasks, they combine knowledge from different subject areas, disciplines and research fields. It is no coincidence that work based on the binary technology requires systematization of new knowledge (Table 1, point 1).

Conditions mentioned in points 3 and 4 are much more important for work based on the binary technology than for work based on traditional project learning technology. These are factors of exceptional importance for efficiency of the practice-oriented learning and the formation of the skills of creative activity. It is necessary to note the importance of the condition "optimizing task performance" (Table 1, point 4), which means not only finding the solution, but also optimizing it in accordance with the requirements of the next stage.

From the analysis of these indicators, it also follows that the range of searching for new information in independent work based on the binary technology is much wider, as it includes the specific issues and topics of disciplines that are planned for the later stages of the study plan (Table 1, point 3). These elements of forward-looking learning form independence, responsibility, creativity and other qualities important for the engineering profession.

In Table 1 (points 5-8), we can see how the students assess the level at which their self-guided work influences feelings of confidence and readiness for further professional activities. The analysis of these data demonstrates that the binary technology actively forms the skills required for solving new (original) problems (Table 1, point 5); in contrast, it has a very slight impact on forming the skills for solving typical problems (Table 1, point 11). The most substantial difference was observed in the evaluation of the influence of study and practical work on the development of creative capabilities (Table 1, point 8) (by more than 3.5 times) and on the development of system analysis and thinking (Table 1, point 7) (by more than 4 times). Work based on the binary technology actively influences the development of self-education skills (Table 1, point 6), and ability to navigate

complex engineering tasks (Table 1, point 9). Development of these skills and qualities makes students confident about their capacity to carry out professional activities.

The study also revealed the strengths of traditional project-based training used in the course on EM, which include: a) the ability to use lecture notes and practical exercises (Table 1, point 10); b) the ability to solve typical tasks (Table 1, point 11); c) possession of the content of previously studied topics (Table 1, point 12). These indicators are important for effective learning activities and mastering the content of the discipline. But in this study, they were not directly related to the development of creative abilities.

Conclusion

The indicated advantages of binary technology, which are well demonstrated by the difference in the indicators obtained are among the most in-demand qualities of modern engineers. Graduates who have an experience of study and practical work based on binary technology are more active and independent when solving complicated tasks. They are more prepared to analyze problems, set goals, carry out expanded searches for and system analysis of the necessary information and use it for the development of constructive solutions.

Using binary technology for the practical training of bachelor's students and to prepare them for engineering activities increases the level of their creative activity and thus allows them to develop the abilities necessary for the development and production of innovative products.

Thus, on the basis of the obtained data we can conclude that the developed variant of the blended technology in the form of integrated problem-based and project-based learning provides the achievement of study goals and develops creative capacities in professional activity. According to the authors, students learning on the basis of this technology tend to be proactive, think unconventionally, search for new information and develop original solutions.

References

1. Petruneva, R.M., Toporkova, O.V., Vasilyeva, V.D. (2015). Project-Based Training as a Modern Trend in Engineering Education. Vysshee obra-zovanie v Rossii = Higher Education in Russia. No. 7, pp. 30-35. (In Russ., abstract in Eng.)

2. Ziyatdinova, Y.N., Sanger, F.A. (2015). Project Based Learning for Training the XXI Century Engineer. Vysshee obrazovanie v Rossii = Higher Education in Russia.. No. 3, pp. 92-97. (In Russ., abstract in Eng.)

3. Sazonova, Z.S., Arifullin, I.V., Feofanova, L.S., Sherbakova, V.L. (2015). Project-Oriented Learning in the Context of Student Life. Vysshee obrazovanie v Rossii = Higher Education in Russia. No. 11, pp. 114-118. (In Russ., abstract in Eng.)

4. Ignatova, I.G., Balashov, A.G., Sokolova, N.Y. (2014). Interdisciplinary Projects as a Method of Competence Building in the Process of Educational Programs Realization. Vysshee obrazo-vanie v Rossii = Higher Education in Russia. No. 5, pp. 86-92. (In Russ., abstract in Eng.)

5. Fini, E.H., Awadallah, F., Parast, M.M., Abu-Lebdeh, T. (2018). The impact of project-based learning on improving student learning outcomes of sustainability concepts in transportation engineering courses. European Journal of Engineering Education. No. 43 (3), pp. 473-488.

6. Lin, J.-W. (2018). Effects of an online team project-based learning environment with group awareness and peer evaluation on socially shared regulation of learning and self-regulated learning. Behaviour and Information Technology. No. 37 (5), pp. 445-461.

7. Bonanno, A., Bozzo, G., Sapia, P. (2018). Physics meets fine arts: a project-based learning path on infrared imaging. European Journal of Physics. No. 3 (2), pp. 025805.

8. Elmore, B.B. (2017). Integrating problem-based and project-based learning in large enrollment freshman engineering courses. In: ASEE Annual Conference and Exposition. Columbus. US. 25-28 June 2017.

9. Kricsfalusy, V., George, C., Reed, M.G. (2018). Integrating problem- and project-based learning opportunities: assessing outcomes of a field course in environment and sustainability. Environmental education research. No. 24 (4), pp. 593-610.

10. Raycheva, R.P., Angelova, D.I., Vodenova, P.M. (2017). Project-based learning in engineering de-

sign in Bulgaria: expectations, experiments and results. European Journal of Engineering Education. No. 42 (6), pp. 944-961.

11. Okon, V. (1990). Vvedenie v obshchuyu didakti-ku [Introduction to General Didactics]. Moscow: Vyshaya shkola Publ., 381 p. (In Russ.)

12. Makhmutov, M.I. (1998). Problemnoe obu-chenie. Entsiklopediya professional'nogo obra-zovaniya [Problem-based Learning. Encyclopedia of Professional Education]. Moscow: APO Publ., 1784 p. (In Russ.)

13. Kudryavtsev, V.T. (1991) Problemnoe obuchenie: istoki, sushchnost', perspektivy [Problem-based Learning: Origins, Substance, Prospects]. Moscow: Znanie Publ., 80 p. (In Russ.)

14. Ibragimov, G.I. (2016). About the Role and Place of the Problem-based Learning in the Modern Higher Education. Alma Mater (Vest-nik vysshey shkoly) = Alma Mater (Higher School Herald). No. 12, pp. 21-26. (In Russ., abstract in Eng.)

15. Ayyildiz, Y., Tarhan, L. (2018). Problem-based learning in teaching chemistry: enthalpy changes in systems. Research in Science and Technological Education. No. 36 (1), pp. 35-54.

16. Ma, X., Pan, Y.-J., Chen, F., Ding, X., Tseng, S.-P. (2018) A constructive problem-based course design for internet of things. Smart Innovation, Systems and Technologies. No. 86, pp. 397-402.

17. Shishigu, A., Hailu, A., Anibo, Z. (2018). Problem-based learning and conceptual understand-

ing of college female students in physics. Eurasia Journal of Mathematics, Science and Technology Education. No. 14 (1), pp. 145-154.

18. Moody, K., McHugh, M., Baker, R., Cohen, H., Pinto, P., Deutsch, S., Santizo, R.O., Schechter, M., Fausto, J., Joo, P. (2018). Providing Pediatric Palliative Care Education Using Problem-Based Learning. Journal of Palliative Medicine. No. 21 (1), pp. 22-26.

19. Khoiry, M.A., Hamid, R., Johari, M.H., Baharom, S. (2017). The efficacy of problem-based project learning method for materials technology course. Journal of Engineering Science and Technology. No. 12, pp. 42-49.

20. Veale, C.G.L., Krause, R.W.M., Sewry, J.D. (2018). Blending problem-based learning and peer-led team learning, in an open ended 'homegrown' pharmaceutical chemistry case study. Chemistry Education Research and Practice. No. 19 (1), pp. 68-79.

21. Isaev, A.P., Plotnikov, L.V. (2016). «Educational Engineering» in the Context of Implementation of the CDIO Ideology. Vysshee obrazovanie v Rossii = Higher Education in Russia. No. 12, pp. 45-52. (In Russ., abstract in Eng.)

22. Conover, W.J. (1999). Practical Nonparametric Statistics. New York: John Wiley & Sons.

The paper was submitted 25.05.19 Received after reworking 30.05.19 Accepted for publication 16.06.18

Технология подготовки креативных выпускников инженерного бакалавриата

Исаев Александр Петрович - д-р экон. наук, доцент. E-mail: ap_isaev@mail.ru Плотников Леонид Валерьевич - канд. техн. наук, доцент. E-mail: leonplot@mail.ru Уральский федеральный университет имени первого Президента России Б.Н. Ельцина, Екатеринбург, Россия

Адрес: 620002, г. Екатеринбург, ул. Мира, 19

Аннотация. Статья посвящена технологиям инженерного образования, позволяющим формировать наиболее востребованные профессиональные качества у выпускников бакалавриата. Сделан обзор исследований в области внедрения инноваций для совершенствования образовательного процесса в практико-ориентированном бакалавриате. Выделены достоинства и ограничения проектной и проблемной технологий обучения. В работе представлен опыт разработки и применения авторской технологии обучения на основе интеграции проблемного и проектного обучения, предназначенной для повышения креативности образовательного процесса в инженерном бакалавриате. Дано её описание, в котором показаны

механизмы комплексного использования преимуществ методов проблемного и проектного обучения в формировании профессиональных компетенций, необходимых для инновационной деятельности инженера - от проектной разработки до производства нового изделия. Рассмотрены данные эмпирического исследования, на основе которых обоснованы выводы о том, что интеграция проблемного и проектного обучения в виде целостной технологии является эффективным инструментом развития творческих способностей у студентов.

Ключевые слова: инженерное образование, проектное обучение, проблемное обучение, интеграция технологий обучения, творческие способности

Для цитирования: Isaev, A.P., Plotnikov, L.V. (2019). Technology for Training Creative Graduates in Engineering Bachelor's Programs. Vysshee obrazovanie v Rossii = Higher Education in Russia. Vol. 28. No. 7, pp. 85-93.

DOI: https://doi.org/l0.31992/0869-3617-2019-28-7-85-93

Статья поступила в редакцию 25.05.19 После доработки 30.05.19 Принята к публикации 16.06.18

С

НАУЧНАЯ ЭЛЕКТРОННАЯ БИБЛИОТЕКА

iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.

library.ru

Science Index РИНЦ-2017

вопросы философии социологические исследования 16,100 6,292

вопросы образования психологическая наука и образование философские науки 5,196 5,050 4,528

Педагогика Вестник международных организаций образование и наука Эпистемология и философия науки Высшее образование в России 2,412 2,328 1,734 1,647 1,430

интеграция образования Экономика образования Высшее образование сегодня Университетское управление: практика и анализ Alma Mater Инженерное образование 1,380 0,971 0,902 0,626 0,542 0,420

О современной модели инженерной подготовки

Сысоев Александр Алексеевич - д-р физ.-мат. наук, проф. E-mail: AASysoev@mephi.ru Весна Елена Борисовна - д-р психол. наук, проф., проректор. E-mail: EBVesna@mephi.ru Национальный исследовательский ядерный университет «МИФИ», Москва, Россия Адрес: 115409, г. Москва, Каширское шоссе, 31

Александров Юрий Иосифович - д-р психол. наук, проф., член-корр. РАО. E-mail: yuraalexandrov@yandex.ru

Институт психологии Российской академии наук, Москва, Россия Адрес: 129366, г. Москва, ул. Ярославская, 13

Московский государственный психолого-педагогический университет, Москва, Россия Адрес: 127051, г. Москва, ул. Сретенка, 29

Аннотация. Целью статьи является представление модели подготовки инженеров, базирующейся на новых подходах к инженерному образованию с учётом современных достижений педагогики высшей школы. По мнению авторов, основная причина недостаточного уровня инженерной подготовки состоит в несоответствии сущности передаваемых студентам знаний (как по форме, так и по содержанию) специфике деятельности инженера. Поэтому важной задачей является устранение этого противоречия. В основе предлагаемой модели инженерной подготовки лежит проектирование учебного процесса в логике построения инженерного процесса при разработке инновационной техники. Такая технология обучения, получившая название имитационно-деятельностной технологии инженерной подготовки (ИДТИП), разработана и апробирована в Национальном исследовательском ядерном университете (МИФИ) при подготовке инженеров-разработчиков инновационной техники. Основы, заложенные в предлагаемую технологию инженерной подготовки и механизмы её реализации, можно рассматривать как старт для разработки новой парадигмы подготовки специалистов в данном направлении.

Ключевые слова.: инженерное образование, имитационно-деятельностная технология инженерной подготовки, инженерные навыки, метод ТРИЗ, изобретательская мотивация Для цитирования: Сысоев А.А, Весна Е.Б, Александров Ю.И. О современной модели инженерной подготовки // Высшее образование в России. 2019. Т. 28. № 7. С. 94-101. DOI: https://doi.org/10.31992/0869-3617-2019-28-7-94-101

Введение. Постановка проблемы

Разные виды деятельности в университете вносят разный вклад в развитие способности самостоятельно осваивать инженерные навыки как в процессе обучения, так и после его окончания. Формально их можно расположить на линейке от «пассивных» до «активных». К первым относят, например, слушание лекций или приём любой речевой информации. К активным формам относятся виды деятельности, в процессе которых студент самостоятельно обрабатывает учебную или научную информацию для дости-

жения тех или иных результатов (подготовка и чтение лекций/докладов, выполнение проектирования, подготовка и выполнение лабораторных работ и т.п.). Однако увеличение доли активных методов в сравнении с пассивными не решает полностью задачу повышения эффективности инженерной подготовки. Необходима более существенная перестройка всего учебного процесса. Последний, по сути, должен быть встроен в настоящую инженерную деятельность.

Описание подобной технологии обучения можно, в частности, встретить в рабо-

тах К.Г. Марквардта [1]. Пожалуй, в этой работе впервые сделана попытка радикально «сшить» классический процесс обучения с реальной инженерной деятельностью. В дальнейшем фундаментальные основы такого подхода были рассмотрены в работах А.А. Вербицкого в рамках теории контекстного обучения [2].

Масштабные педагогические эксперименты по перенастройке инженерного образования, сближения его с инженерной деятельностью проводились в Советском Союзе в 80-е годы прошлого века параллельно в некоторых ведущих инженерных вузах. Так, например, в Институте городского хозяйства (г. Харьков) и Московском институте инженеров железнодорожного транспорта активно внедрялось проектное обучение. Студентам первого курса поручали инженерный проект в облегчённом варианте, соответствующем их стартовому уровню знаний. Учебные дисциплины формировались исходя из требований теоретической поддержки решений, предусмотренных инженерным проектом. На каждом последующем курсе сложность задач в ходе проработки проекта возрастала. К дипломному проекту студенты подходили с развитыми инженерными компетенциями и опытом решения реальной инженерной проблемы. В это же время в Московском инженерно-физическом институте (МИФИ) стартовал проект по разработке и апробации принципиально новой модели подготовки инженеров-физиков, названной «Имитационно-деятель-ностная технология обучения» (ИДТО) [3; 4]. Позднее она получила название «Имита-ционно-деятельностная технология инженерной подготовки» (ИДТИП). Технология разрабатывалась и апробировалась в рамках индивидуальных планов обучения студентов. Её отличительные особенности: выполнение многосеместрового сквозного курсового проекта со всеми атрибутами инженерной деятельности, индивидуальная мотиваци-онная поддержка всего процесса обучения, инновационный (изобретательский) харак-

тер поставленной перед студентами задачи [5]. В настоящее время этот подход активно развивается в нашем университете с учётом новых реалий.

Попытка максимально приблизить инженерную подготовку к повседневной инжее-нерной деятельности предпринята в широко распространённой в США программе STEM Education (Science, Technology, Engineering, Mathematics), которая синтезировала последние достижения педагогической науки в этой области [6; 7]. Авторами программы отмечается приоритетность комбинирования традиционной формы подготовки специалистов с опорой на самостоятельное освоение знаний в процессе профессиональной деятельности. Другой попыткой сблизить инженерное образование с решением реальных инженерных задач является проект «Всемирная инициатива CDIO» (Conceive -Design - Implement - Operate, т.е. Планировать - Проектировать - Производить -Применять) [8]. С 2002 г. в нём принимают участие ведущие инженерные школы и технические университеты США, Канады, Европы, Соединённого Королевства, Африки, Азии (более 40 университетов в 20 странах мира). В его основу положены 12 стандартов [9], в которых формулируются действия, обеспечивающие улучшение инженерной подготовки. Одной из важных составляющих CDIO является стандарт 5, определяющий наличие в учебном плане двух или более проектов, предусматривающих получение студентом опыта проектно-внедренческой деятельности. Инициатива призвана изменить природу инженерного образования, вернув ему фокус на изобретательские компетенции.

Следует отметить, что у инициативы CDIO много общего с технологией ИДТИП. Вместе с тем, на наш взгляд, CDIO имеет два существенных недостатка. Первый состоит в относительно низком уровне предлагаемой студентам проектной работы. Если в ИДТИП проект является «сквозным» (с 1-го курса по заключительный, вплоть до защиты

i Надоели баннеры? Вы всегда можете отключить рекламу.