Научная статья на тему 'Technologies of Diffractive Optics for IR and THz Ranges '

Technologies of Diffractive Optics for IR and THz Ranges Текст научной статьи по специальности «Медицинские технологии»

CC BY
67
14
i Надоели баннеры? Вы всегда можете отключить рекламу.
i Надоели баннеры? Вы всегда можете отключить рекламу.

Похожие темы научных работ по медицинским технологиям , автор научной работы — V. Pavelyev, B. Knyazev, M. Komlenok, K. Tukmakov, T. Kononenko

iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.
i Надоели баннеры? Вы всегда можете отключить рекламу.

Текст научной работы на тему «Technologies of Diffractive Optics for IR and THz Ranges »

THz-I-10

NONLINEAR AND TERAHERTS PHOTONICS

Technologies of Diffractive Optics for IR and THz Ranges

VPavelyev12, B. Knyazev3, M. Komlenok4, K. Tukmakov1, T. Kononenko4, A. Reshetnikov1, A. Agafonov1, Yu. Choporova3, N. Osintseva3, V. Konov4, V. Soifer1,2, G. Kulipanov3, N. Vinokurov3

1 - Samara National Research University, Moskovskoye Shosse 34, Samara, Russia, 443086 2 - IPSIRAS - Branch of the FSRC "Crystallography and Photonics" RAS, Molodogvardeyskaya 151, Samara, Russia, 443001 3 - Budker Institute of Nuclear Physics of SB RAS, Pr. Lavrentyeva 11, Novosibirsk, Russia, 630090 4 - Prokhorov General Physics Institute of the Russian Academy of Sciences, Vavilova str. 38, 119991 Moscow, Russia

[email protected]

Technologies for silicon and diamond transmissive diffractive microoptics have been developed [1-6]. Silicon and diamond diffractive optical elements for focusing terahertz laser beam [1-3] as well for formation of terahertz laser beam with pre-given mode composition [4] and polarization state [5] have been fabricated and experimentally investigated. The experiments were carried out at a wavelength of 130-150 ^m using the Novosibirsk Free Electron Laser [6]. Developed technologies are based on lithographic etching [1,4,5] and laser ablation [2,3]. The application of antireflection coating and antireflection structures for decreasing Fresnel losses is considered [6]. Technology of laser ablation was used for fabrication of high-effective infrared (A=10.6 mm) diamond diffractive optics in before [7]. Besides, technology of micromilling was used for reflective terahertz free-form optics fabrication [8]. In the present talk the fabrication of photonics elements for far terahertz and millimeter ranges is considered. The perspectives of 3D printing application [9] as well as micromilling for fabrication of diffractive optics of submillimeter and millimeter ranges are considered.

The experiments were carried out at the Novosibirsk Free Electron Laser Facility, which is part of "the Siberian Synchrotron and Terahertz Radiation Center".

This work was supported by the Russian Science Foundation grant 19-72-20202.

[1] A.N. Agafonov, B.O. Volodkin, D.G. Kachalov, B.A. Knyazev, G.I. Kropotov, K.N. Tukmakov, V.S. Pavelyev, D.I. Tsypishka, Yu.Yu. Choporova, and A.K. Kaveev, Focusing of Novosibirsk Free Electron Laser (NovoFEL) radiation into paraxial segment. Journal of Modern Optics 63(11), 1051-1054 (2016). https://doi.org/10.1080/09500340.2015.1118163

[2] M.S. Komlenok, T.V Kononenko, V.I. Konov, Yu.Yu. Choporova, N.D. Osintseva, B.A. Knyazev, V S. Pavelyev, K.N. Tukmakov, V.A. Soifer, Silicon diffractive optical element with piecewise continuous profile to focus high-power terahertz radiation into a square area, J. Opt. Soc. Am. B 38, B9-B13 (2021) https://doi.org/10.1364/J0SAB.425286

[3] M. Komlenok, T. Kononenko, D. Sovyk, V. Pavelyev, B. Knyazev, E. Ashkinazi, A. Reshetnikov, G. Komandin, V. Pashinin, V Ralchenko, and V Konov, Diamond diffractive lens with a continuous profile for powerful terahertz radiation!/Optics Letters. -2021.- Vol.46, P.340-343. https://doi.org/10.1364/0L.414097

[4] Yu. Yu. Choporova, B. A. Knyazev, G. N. Kulipanov, V. S. Pavelyev, M. A. Scheglov, N. A. Vinokurov, B. O. Volodkin, and V. N. Zhabin, High-power Bessel beams with orbital angular momentum in the terahertz range. Physical Review A 96, 023846 (2017). https://doi.org/10.1103/PhysRevA.96.023846

[5] V.S. Pavelyev, S.A. Degtyarev, K.N. Tukmakov, A.S. Reshetnikov, B.A. Knyazev, Yu. Yu Choporova, (2021). Silicon sub-wavelength axicons for terahertz beam polarization transformation// Journal of Physics: Conference Series, 1745 (1), 012022 doi:10.1088/1742-6596/1745/1/012022

[6] Yu. Choporova, B. Knyazev, V. Pavelyev, Holography with high-power CW coherent terahertz source: optical components, imaging, and applications, Light: Advanced Manufacturing, Article number: 31 (2022), https://doi.org/10.37188/lam.2022.031

[7] T.V. Kononenko, D.N. Sovyk, P.A. Pivovarov, VS. Pavelyev, A.V. Mezhenin, K.V. Cherepanov, M.S. Komlenok, VR. Sorochen-ko, A.A. Khomich, V.P. Pashinin, E.E. Ashkinazi, V.G. Ralchenko, VI. Konov, Fabrication of diamond diffractive optics for powerful CO2 lasers via replication of laser microstructures on silicon template, Diamond and Related Materials, Volume 101, January 2020, 107656 https://doi.org/10.1016/j.diamond.2019.107656

[8] A.N. Agafonov, B.A. Knyazev, V.S. Pavel'ev, E.I. Akhmetova, and V.I. Platonov, Elements of the Terahertz Power Reflective Optics with Free-Form Surfaces. Optoelectronics, Instrumentation and Data Processing 55(2), 148-153 (2019). 10.3103/ S8756699019020067

[9] A. Agafonov, A. Reshetnikov, I. Tzibizov, A. Shakhmin, (2021). The technology of manufacturing metal-dielectric photonic crystals for THz and millimeter ranges by 3D printing// Journal of Physics: Conference Series, 1745 (1), 012021 DOI:10.1088/1742-6596/1745/1/012021

ALT'22

i Надоели баннеры? Вы всегда можете отключить рекламу.