Научная статья на тему 'Technique - economic analysis of the use of solar air collector in the conditions of the Fergana region of the Republic of Uzbekistan'

Technique - economic analysis of the use of solar air collector in the conditions of the Fergana region of the Republic of Uzbekistan Текст научной статьи по специальности «Электротехника, электронная техника, информационные технологии»

CC BY
219
58
i Надоели баннеры? Вы всегда можете отключить рекламу.
Ключевые слова
RENEWABLE ENERGY SOURCES / SOLAR ENERGY / SOLAR HEATING / SOLAR COLLECTORS / SOLAR AIR HEATER / EFFICIENCY

Аннотация научной статьи по электротехнике, электронной технике, информационным технологиям, автор научной работы — Abbasov Erkin Sodikovich, Nasretdinova Feruza Nabievna, Uzbekov Mirsoli Odiljanovich, Ismoilov Ibroximjon Keldiboyevich

In recent years, the demand for energy by geometric progression increases with an increase in production capacity, population, and with an increase in the standard of living of the population. This development has led to the depletion of natural resources and environmental degradation throughout the world. To this end, the use of environmentally friendly renewable energy sources is an urgent task and the main strategy of all countries. In this article, the optimal place to use a solar air heater is chosen in the natural climatic conditions of the Fergana region of the Republic of Uzbekistan. A technical and economic comparison of the solar air heater with a traditional heat source was also made.

i Надоели баннеры? Вы всегда можете отключить рекламу.
iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.
i Надоели баннеры? Вы всегда можете отключить рекламу.

Текст научной работы на тему «Technique - economic analysis of the use of solar air collector in the conditions of the Fergana region of the Republic of Uzbekistan»

Section 9. Technical sciences

Abbasov Erkin Sodikovich, doctor of technical sciences, professor Feruza Nabievna Nasretdinova, Senior Lecturer of the Department"Electric Power" Uzbekov Mirsoli Odiljanovich, Assistant of the Department"Electric Power" Ismoilov Ibroximjon Keldiboyevich, Assistant of the Department "Electric Power" Fergana Polytechnic Institute, Uzbekistan E-mail: education.fer@mail.ru

TECHNIQUE - ECONOMIC ANALYSIS OF THE USE OF SOLAR AIR COLLECTOR IN THE CONDITIONS OF THE FERGANA REGION OF THE REPUBLIC OF UZBEKISTAN

Abstract. In recent years, the demand for energy by geometric progression increases with an increase in production capacity, population, and with an increase in the standard of living of the population. This development has led to the depletion of natural resources and environmental degradation throughout the world. To this end, the use of environmentally friendly renewable energy sources is an urgent task and the main strategy of all countries. In this article, the optimal place to use a solar air heater is chosen in the natural climatic conditions of the Fergana region of the Republic of Uzbekistan. A technical and economic comparison of the solar air heater with a traditional heat source was also made.

Keywords: Renewable energy sources, Solar energy, solar heating, solar collectors, solar air heater, efficiency.

One of the promising areas of renewable energy is the direct production of environmentally friendly heat for the air conditioning system, the drying of agricultural products with the conversion of solar radiation [1]. The easiest way to convert solar radiation into heat energy is to use solar air heaters. Among the various types of solar thermal installations, solar air heaters are widely used due to their lower cost and simplicity of design [2]. In the air heating system, the solar collector is the main component, which, receives solar radiation, then it, converts and collects direct and scattered sunlight in the form of heat and transfers thermal energy to the coolant [3]. The elements of the simplest solar air heater are (Fig. 1.): a case for collecting heat 4, a transparent coating 2 that transmits solar radiation inside the collector and protects the radar absorbing surface (absorber) from the external environment and reduces heat losses from the front side of the collector. Absorber 3 absorbs solar radiation, converts it into heat and transfers it to the coolant. Thermal insulation 1 reduces heat loss from the rear and side surfaces of the collector [4; 5; 6].

Figure 1. 1 - Thermal insulation,2 - Absorber, 3 -transparent coating, 4 - Case, 5 - air flow

The principle of operation of the solar air collector is as follows: most of the solar radiation incident on the collector is absorbed by the absorber, which has a black surface in relation to solar radiation. A part of the absorbed energy is transferred by the air flow circulating in the collector, the rest is lost in the process of heat exchange with the environment. The heat carried away by the coolant which is the useful heat that is accumulated or used to cover the heat demand [7; 8; 9; 10; 11; 12].

For the reliability of the economic feasibility of the use of a solar air heater in a particular area and taking into account all the positive aspects of a solar air heater are demanded to perform a feasibility study. For the accuracy of the technical and economic analysis, the geographical location and climatic conditions of the area, where the ICS is applied, are taken into account. In this area, the Fergana region of the Republic of Uzbekistan is considered as an area for calculation.

The Fergana region is located in the eastern part of the Republic of Uzbekistan in the southern part of the Fergana Valley at an altitude of580 meters above sea level at a latitude of 40.38 °C and 71.78 °B. The main part of the annual dura-

Table 1

tion of sunshine is the volume within 2900-3100 hours. The climate of the Fergana region is continental.

From a technical and economic point of view, the factors affecting the operation of the ICS, the Fergana region, can be divided into three territories: Kokand, Fergana, Shakhimardan, according to the totality of climatic and solar resources, such as air temperature, solar radiation density, wind speed, etc.

Below are shown the climatic conditions of the above factors in the indicated territories of the Fergana region during the year: in table 3.5 - ambient temperature t, °C; in table 3.6 - the average total solar radiation W/m2; in (table 3) -the average duration of sunshine T, h for region.

. [13]

territory Month

I II III IV V VI VII VIII IX X XI XII

Kokand -1.8 1.6 8.4 16.4 21.6 25.6 27.4 25.5 20.1 13.1 5.5 0.4

Fergana -1.7 1.5 7.9 15.6 20.8 25.0 26.9 25.0 19.7 13.1 5.7 0.7

Shakhimardan -1.6 -1.7 3.2 10.4 14.4 18.7 22.2 21.3 16.4 10.3 3.9 -1.1

Table 2 [13]

Territory Month

I II III IV V VI VII VIII IX X XI XII

Kokand 195 267 389 518 707 792 810 740 579 383 225 150

Fergana 193 266 387 517 706 792 808 739 578 383 228 151

Shakhimardan 191 264 384 515 704 789 800 735 571 378 219 145

Table 3. [14]

Month

I II III IV V VI VII VIII IX X XI XII

110.4 121 149.4 213.7 279.4 328.2 354.9 347.8 293.6 228.6 139.4 102.2

It can be seen from the above tables that the territories of the Fergana region do not differ much from each other. Less favorable climatic conditions for the operation of ICS, despite the relatively high rates may occur in the western part of the region where the territory of Kokand is located. The territory of Kokand is located in the neck of the Fergana Valley because of this, a strong wind often occurs in this area, which reduces the efficiency of the ICS. Taking into account the above factors, the territory with the most favorable conditions, namely the territory of Fergana, was considered for further calculations. Here, the average monthly intensity ofsolar radiation on a horizontal surface varies from 0.151 kW/m2 in December to 0.808 kW/m2 in June.

It is also necessary to take into account the daily variation of the duration of sunshine T according to which during the winter months the longest sunshine is observed (13.6-15.5 h), which falls on the interval from 10 to 14 h. In spring, it increases and the highest values (17.2-24.2 h) fall

on 11-12 h. In summer, the longest sunshine duration is observed from 9-10 to 13-14 h and amounts to 29.4-29.8 h on average per hour interval. In the autumn season, the duration of sunshine is reduced compared with summer, but its influence is slightly higher than in spring. These differences are due to increased cloudiness in the spring months compared with autumn. The longest sunshine (25 hours) in October is observed from 10-11 to 12-13 hours [14; 15].

Taking into account the above-mentioned climatic conditions and the results of the experimental research conducted on efficiency and the optimum consumption found from them at various levels of solar radiation of ICS, given in this chapter, it is possible to calculate the effectiveness of using ICS for a year. To calculate the generalized climatic conditions of the territory of Fergana is given in (table 4).

Table 4.

Month Q, W/m2 T, h Work time of ICS accounting, T, h Average CF ICS t, oc

I 193 110.4 73.5 0.3 -1.7

II 266 121 73.5 0.33 1.5

III 387 149.4 111.8 0.4 7.9

IV 517 213.7 173.3 0.45 15.6

V 706 279.7 262.7 0.5 20.8

VI 792 228.2 297.5 0.6 25.0

VII 808 354.9 327.6 0.6 26.9

VIII 739 347.8 337.2 0.5 25

IX 578 293.6 274.8 0.4 19.7

X 383 228.6 195.6 0.4 13.1

XI 228 139.4 117.3 0.33 5.7

XII 151 102.2 82.2 0.3 0.7

The calculation results were processed using the Exel program and are shown below in (Fig. 2) graphically.

- generation of powering the air conditioning system for the year, kW • h; - total solar power, falling horizontal surface per year, kW • h. Figure 2. Optimum generation of useful thermal energy of VCS per m2, depending on solar radiation per year

From the calculations it can be seen that for the year the generated heat from the solar air heater with an area of 1 m2 is 692 kW • h, the highest heat generation is observed in the summer season, the total time of424 kW • h is the maximum in July 159 kW • h of heat per month low heat generation in winter -14.4 kW • h, the minimum figure in December is 4.2 kW • h,

while the level of total solar radiation per year is 1527 kW • h. Analysis of the efficiency of operation of 1 m2 of the internal airways makes up 45% per year. According to the tariffof the Republic of Uzbekistan from April 1, 2018, the cost of electricity used for heating, hot water and air conditioning is 241.5 soums. The calculation of the solar air heater is given in (table 5).

Table 5.

n/n Materials name Material size Price of one item thousand soums Expense thousand soums

1 2 3 4 5

1. Glass 1 M2 26 42

2. Aluminium shape 15 m 6 90

3. sheet metal plate 1 M2 36 36

1 2 3 4 5

4. Cutting machine 2 2

5. Pipe 32 1 3 3

6. Fan 20 W 50 50

7. Shaving 3 kg 0.5 1.5

8. Cost price 224.5

9. Service manufacturing 50

Market price 274.5

Comparison of the results with the electric air heater is given in (Table 6).

Table б.

п/п Materials name Consuming electricity for heating 692 kW /h Set price Thousand soums Price of 1 kW energy Expense of electricity thousand soums Total expense thousand soums

1. Calorifer 865 250 241.5 208.897 458.897

2. ICS 50 274.5 228.6 11.430 285.93

Economy of using ICS in 1 year thousand soums.

3. 155.043

cover of expenditure ICS. years

4. 1.8

Conclusions: Considering the sharp increase in energy the world, the reduced cost method is distorted by the use of

demand caused by the increase in population, the develop- plants using renewable energy, it should be considered as a

ment of science and technology, which led to a decrease in way out of the current situation [16].

mineral resources and environmental degradation throughout

References:

1. Шишкин А. А. Воздушный солнечный коллектор. F24J 2/00. бюл. № 3. 17.03.2013.

2. Аббасов Е. С. Повышение энергетической эффективности солнечных воздушных нагревателей интенсификацией теплообмена в каналах гелиоприемников: Диссертация на соискание ученой степени доктора технических наук: спец. 05.14.05 - теоретические основы теплотехники.- Фергана, 2007. - 282 с.

3. Ghritlahre H. K., Prasad R. K. Exergetic performance prediction of solar air heater using MLP, GRNN and RBF models of artificial neural network technique // Journal of Environmental Management, 223. 2018.- 566 c.

4. Туник А. А. Процессы тепломассопереноса и гидравлические режимы в плоском солнечном коллекторе с меандро-образными тепловоспринимающими трубками для систем отопления: диссертация на соискателя научной степени кандидата технических наук: спец. 05.23.03 - Теплоснабжение, вентиляция, кондиционирование воздуха, газоснабжение и освещение.- Иркутск, 2007.- 171 с.

5. Пасечник П., Приймак А. Особенности воздушных солнечных систем теплоснабжения // Budownictwo o zoptymalizowanym potencjale energetycznym. 1(15) 2015.- 154 c.

6. Раупов А. Х., Тюхов И. И. Разновидности воздушных солнечных коллекторов по конструкции теплопоглощающих панелей теплосъемных каналов // Инновации в сельском хозяйстве. - № 2 (12), 2015.- 64 c.

7. Nasretdinova F. N., Uzbekov M. O. Overview of the main types of solar air heaters // International Scientific Review No. 1(43) / International Scientific Review of the Problems and Prospects of Modern Science and Education: XLI International Scientific and Practical Conference (Boston. USA - 30 January, 2018).- 21 p.

8. Yorkin Sodikovich Abbasov, Mirsoli Odiljanovich Uzbekov. Studies efficiency solar air collector // Austrian journal of technical and natural sciences. "East West" Association for Advanced Studies and Higher Education GmbH (Вена).- No. 7-8. 2016.- P. 13-17.

9. Uzbekov Mirsoli Odiljanovich, Shermatov Bahodirjon Alijon Ugli. Research of absorbers efficiency of solar air heaters // European research: Innovation in science, education and technology XXXVII international scientific and practical conference. Problems of science. 2018.

10. Uzbekov Mirsoli Odiljanovich, Abbasov Erkin Sodikovich. Efficiency of Heat Exchange of a Solar Air Collector with a Light-Absorbing Surface Made of Stainless Steel Shavings // International Journal of Advanced Research in Science, Engineering and Technology.- Vol. 5.- Issue 2.- February 2018.- P. 5169-5176.

11. Uzbekov Mirsoli Odiljanovich, Abbasov Erkin Sodikovich. Theoretical analysis of the characteristics of the air flow when flowing metal shavings in the solar air heaters // European science review.- Vienna.- No. 1-2. 2018.- P. 255-259.

12. Аббасов Е. С., Узбеков М. О., Умурзакова М. А. Разработка эффективного солнечного воздухонагревателя с абсорбером из металлических стружек // Использование возобновляемых источников энергии: новые исследования, технологии и инновационные подходы. Материалы конференции НПО «Физика-Солнце» АН РУЗ им. С. А. Азимова институт Материаловедения. 2018.- C. 25-31.

13. Строительные нормы и правила. Климатические и физико-геологические данные для проектирования 2.01.01-94.-Ташкент. 1994.- с. 37.- с. 39.

14. Айзенштат Б. А. и др. Климат Ферганы. Ленинград Гидрометеоиздат. 1983.- 168 c.

15. Клычев Ш. И., Исманжанов А. И., Садыкова Н. С., Самиев М., Сайфиев А. У Методика оценки стоимости солнечных коллекторов при изменении цен на топливо // Гелиотехника.- № 3. 2013.- 128 c.

16. Такаев Б. В. Разработка воздушного солнечного коллектора с прозрачной тепловой изоляцией, и оптимизация систем солнечного теплоснабжения: Диссертация на соискание ученой степени доктора технических наук: спец. 05.14.08-Энергоустановки на основе возобновляемых видов энергии.- М., 2003.- 155 с.

i Надоели баннеры? Вы всегда можете отключить рекламу.