TO
INTERNATIONAL JOURNAL OF THEORETICAL AND PRACTICAL RESEARCH
International journal of theoretical and practical research
Scientific Journal
Year: 2022 Issue: 2 Volume: 2 Published: 28.02.2022
http://alferganus.uz
Citation:
Kosimova, M. Ya. (2022). Use interdisciplinary links to improve the quality of students' learning. SJ International journal of theoretical and practical research, 2 (2), 57-64.
Qosimova, M. Ya. (2022). Talabalarni ta'lim sifatini oshirishda fanlararo uzviyligidan foydalanish. Nazariy va amaliy tadqiqotlar xalqaro jurnali, 2 (2), 57-64.
Doi:
https://dx.doi.org/10.5281/zenodo.6466349
DOI 10.5281/zenodo .6466349
ISSN 2181-2357
T. 2. №2. 2022
SJIF 2022:5.962 QR-Article
Kosimova, Makhbubakhon Yakubjanovna
senior lecturer Fergana Polytechnic Institute
UDC 372.862
USE INTERDISCIPLINARY LINKS TO IMPROVE THE QUALITY OF
STUDENTS' LEARNING
Abstract: This article discusses the training of modern specialists who meet modern requirements, the ability to build a mathematical model in the process, the use of modern technologies in obtaining solutions. The growth in the use of highly efficient technologies in production sets the task for teachers to prepare professionally competent, competitive specialists. The mechanism of constructing a mathematical model in solving problems, the use of the mathematical apparatus, the analysis of the results obtained, the use of the Maple software in solving the problem are considered.
Keywords: Elastic beam, perforator, mathematical apparatus, mass, spring, Mathcad software system, quality of education, vibration amplitude, rotational frequency, time, initial phase.
TALABALARNI TA'LIM SIFATINI OSHIRISHDA FANLARARO UZVIYLIGIDAN FOYDALANISH
Qosimova Maxbubaxon Yakubjanovna
katta o'qituvchi Farg'ona politexnika instituti
Annotatsiya: Ushbu maqolada tayyorlanayotgan mutaxassisni zamon talablariga muvofiq o^qitish, bu jarayonda matematik model qurish, yechimni olishda zamonaviy texnologiyalardan foydalanish kabi masalalar ko^rib chiqilgan. Ishlab chiqarishda yuqori- samarali texnologiyalarni qollanilishning o^sishiprofessor-o^qituvchilar oldiga
@ ©
57
professional kompetentlikka ega, raqobatbardosh mutaxassislarni tayyorlash vazifasini qo^yadi. Masalalarni yechishda matematik modelni qurish mexanizmi, matematik apparatni qollay olish, olingan natijalarni tahlil qilish, yechimni olishdaMaple dastur tizimidan foydalanish ko^rib chiqilgan.
Kalit so'zlar: Elastik balka, perforator, matematik apparat, massa, prujinka, Mathcad dastur tizimi, ta'lim sifati, tebranish amplitudasi, aylanish chastotasi, vaqt, boshlang'ich faza.
Косимова Махбубахон Якубжановна
старший преподаватель Ферганский политехнический институт
ИСПОЛЬЗОВАНИЕ МЕЖДИСЦИПЛИНАРНЫХ СВЯЗЕЙ ДЛЯ ПОВЫШЕНИЯ КАЧЕСТВА ОБУЧЕНИЯ СТУДЕНТОВ
Аннотация: В данной статье рассматривается подготовка современных специалистов, которые соответствуют к современным требованиям, умение построения математической модели в процессе, использования современных технологий при получении решений. Рост использования высокоэффективных технологий в производстве ставит перед педагогами задачу подготовки профессионально грамотных, конкурентоспособных специалистов. Рассмотрены механизмы построения математической модели при решении задач, использование математического аппарата, анализы полученных результатов, использование программного обеспечения Maple при решении задачи. Ключевые слова: Упругая балка, перфоратор, математический аппарат, масса, пружинка, программное обеспечение Mathcad, качество образования, амплитуда колебаний, частота вращения, время, начальная фаза
Ta'lim sifati - o'qitishda eng asosiy va muhim ko'rsatkichdir.
"Oliy matematika" fani bo'yicha bilim sifatini oshirishda fanlararo bog'liqlik, uzviylikdan foydalanish maqsadga muvofiq. Oliy matematika fani birinchi va ikkinchi kursda o'rganilgani uchun - ta'lim jarayonida pedagogdan muhim maxorat talab qiladi. Ma'ruzachi yoki amaliyot o'qituvchisi ta'lim jarayonida, ularni o'rta maktabda olgan bilimlariga tayanib, asosiy tushunchalarni kiritish kerak, ayniqsa fanlararo bog'liqlik va uzviylikni e'tiborga olib, informatsion texnologiyani qo'llagan holda ta'lim jarayonini faollashtirish kerak. Ta'lim jarayoniga information texnologiyani qo'llash, qo'yilgan masalani matematik modelini qurish, yechim algoritmini yaratish shu bilan birga qaysi programma dasturidan foydalanish maqsadga muvofiqligini aniqlash kerak.
Ta'lim sifatini oshirishda o'quv jarayonini ratsional tashkillashtirish kerak. Ma'ruza, amaliyot va mustaqil ishlarni talaba shaxsiy spesifik xususiyatlarini, uni tayyorgarlik darajasini e'tiborga olish darsni effektivligini oshiradi.
Oliy matematika fanini o'qitish bu komil insonni tarbiyalashga, amaliy masalalarni yechishda matematik komponentlikni oshirishga, umumiy olganda shaxsni algoritmini mantiqiy fikrlashni rivojlantirishga qaratilgan bo'lishi kerak.
cc
®
58
INTERNATIONAL JOURNAL OF THEORETICAL AND PRACTICAL RESEARCH
ISSN 2181-2357
T. 2. №2. 2022
SJIF 2022:5.962
Ayniqsa talabalarga mustaqil topshiriqlarni berishda falar-aro bog'lanishni e'tiborga olish. Shu bilan birga topshiriqni information texnologiyani qo'llab yechim olish, tashkil qilish va to'g'ri qaror qabul qilish malakasini hosil qilish kerak.
Ayniqsa, matematik apparatni qo'llashni, oddiy mexanik masalalarni yechishda informatsion texnologiyani qo'llash yaxshi samara beradi.
Quyida eng soda masalalarning yechimini Mathcad dastur tizimida ko'rsatamiz.
1-masala. Elastik balka, ikkita tayanchga mahkamlanib, o'rtasiga perforator biriktirilgan. U turg'un bo'lmagan massaga ega vaqtga nisbatan balkaning egilishini hisoblang.
Yechish:
Perforator ishlashi bilan balka majburiy tebranadi. Perforator elastik balkaga qurilgani uchun, prujinkaga osilgan massa sifatida qarash mumkin. Masalaning majburiy tebranishi
y (t ) = A cos (ct — 0)
formula bilan aniqlanadi. Bu yerda A -tebranish amplitudasi c—aylanish chastotasi t — vaqt
0 — boshlang'ich faza. Bu holda balkaning tebranishi
y ( Xt ) = y (t ) sin y
bu yerda
x — balka qirqimining koordinati L — balkaning uzunligi
> restart;
> A:=1: omega:=0.1: beta:=0:
> u:=(x,t)->A*cos(omega*t-beta)*sin(Pi*x/2);
u ■■= {x, t) i-t-A cos(coi — P) sin ——
\ ^ )
> with(plots):
> plot3d(u(x,t), t = 0.01 .. 10, x = 0 .. 10, grid = [100, 100]);
@ ©
59
> V0:=49: g:=9.81: H:=t->V0*t-g*tA2/2;
H^t^VOt-jg?
> plot(H(t), t = 0.01 .. 10);
Masala 2. Jism yerdan V = S m / 5 tezlik bilan tik otilgan.
1. Maksimal balandligi necha metr bo'lishi mumkin.
2. Qancha vaqtdan keyin u yerga qaytib tushadi.
Bu masalani talabalarga mustaqil ishlash uchun va informatsion texnologiyani qo'llab sonli tajriba o'tkazish orqali yechish uchun beriladi. Fizika kursidan ma'lumki
jismni ko'tarilish balandligi H(t) = V0t-gt2 bu yerda t va S ga qiymatlar berilib uni
sonli tajriba yordamida aniqlanadi.
Yechish:
© ©
60
V0 = 49 g == 9.8
g J2
H(t) := V - f
t := 0.01.1C
150
100
H(t)
0 2 4 6 8 10 t
V0 := 49g := 9.8
g .2
H(t) := V0t - f
t := 6 Given
^ := root(H(t) ,t) = 9.99
V := 49
V : 49
g := 9.8 H(t) := V0
g± 2
t := 8 Given
t := root(H(t),t) = 3.161
> V0:=49: g:=9.81: t:=6: t0:=root(H(t),t);
tO ■= 2.212875664
> t:=8: t0:=root(H(t),t);
tO ■= 1.724119944
>
Misol. Silindr 103,3 (kpa) bosim bilan gaz bilan to'ldirilgan. Gaz ideal, porshen bilan siqilgan.
50
0
CC
©
61
Porshen h metr harakatlanganda bajargan ishini toping
n
A = J
PH
H - x
sdx
S = xR\ V = HS
H = 20 h = 1 m
R = 0,4 p = 103,3 kpa = 1,033-10T pa
> restart;
> A:=int(P1*H*S/(H-x),x=0..1);
A -.= -HPlS In
> A:=int(P1*H*S/(H-x),x=0..h);
Warning, unable to determine if H is between 0 and h; try to use assumptions or use the AllSolutions option
rh
. P1HS , Jo
> H:=10: h:=1: R:=0.4:P1:=1.033*10A5:
> S:=Pi*RA2;
S ■= 0.5026548246
> A:=A;
A := 54707.65058
0
CC
©
62
Oliy matematika fanida dars sifatini oshirishda informatsion texnologiyalar qo'llash va talabalarni mustaqil ishlarini boshqarishda fanlararo bog'lanishni e'tiborga olib, mutaxassislik kompotentlarini oshirishga olib keldi, bu esa dars samaradorligini oshirishga yordam beradi.
Foydalanilgan adabiyotlar ro'yxati:
1. Abdurazakov, A., Makhmudova, N., & Mirzamakhmudova, N. (2021). On one method for solving degenerating parabolic systems by the direct line method with an appendix in the theory of filration.
2. Abdurazakov, A., Mirzamahmudova, N., Maxmudova, N. (2021). "Iqtisod" yo'nalishi mutaxassislarini tayyorlashda matematika fanini o'qitish uslubiyoti. Scientific progress. 7. URL: https://cyberleninka.ru/article/n7iqtisod-yo-nalishi-mutaxassislarini-tayyorlashda-matematika-fanini-o-qitish-uslubiyoti
3. Azizov, M. S., & Rustamova, S. T. (2017). Yuqori tartibli differensial tenglamalarni bernulli tenglamasiga keltirib yechish. Toshkent shahridagi turin politexnika universiteti, 61.
4. Azizov, M., & Rustamova, S. (2019). The Task of Koshi for ordinary differential equation of first order which refer to equation of Bernoulli. Scientific journal of the Fergana State University, 2(1), 13-16.
5. Kosimova, М. Y., Yusupova, N. X., & Kosimova, S. T. (2021). Бернулли тенгламасига келтирилиб ечиладиган иккинчи тартибли оддий дифференциал тенглама учун учинчи чегаравий масала. Oriental renaissance: Innovative, educational, natural and social sciences, 7(10), 406-415.
6. Nishonov, F. M., Shaev, A. K., (2021). Some questions of the organization of individual works of students in mathematics in the conditions of credit training. Theoretical & Applied Science, (4), 1-7.
7. Nishonov, F.M. (2018). Some questions of design of tasks in mathematics. ISJ Theoretical & Applied Science, 09 (65): 41-44. Doi: https://dx.doi.org/10.15863/TAS.2018.09.65.7
8. Qosimova, M. Y., & Yusupova, N. X. (2020). On a property of fractional integro-differentiation operators in the kernel of which the meyer function. Scientific-technical journal, 24(4), 48-50.
9. Qosimova, M. Y., Yusupova, N. X., & Qosimova, S. T. (2021). On the uniqueness of the solution of a two-point second boundary value problem for a second-order simple differential equation solved by the bernoulli equation. ACADEMICIA: An International Multidisciplinary Research Journal, 77(9), 969-973.
10. Qosimova, S. T. (2021). Two-point second boundary value problem for a quadratic simple second-order differential equation solved by the bernoulli equation. Innovative Technologica: Methodical Research Journal, 2(11), 14-19.
11. Tojiboyev, B. T., & Yusupova, N. X. (2021). Suyuq kompozitsion issiqlik izolyatsiyalovchi qoplamalari va ularning issiqlik o'tkazuvchanlik koeffisentini aniqlash usullari. Oriental renaissance: Innovative, educational, natural and social sciences, 7(10), 517-526.
cc
®
63
ISSN 2181-2357
T. 2. №2. 2022
INTERNATIONAL JOURNAL OF THEORETICAL AND PRACTICAL
RESEARCH _o ni_
SJIF 2022:5.962
12. Yakubjanovna, Q. M. (2022). Some Methodological Features of Teaching the Subject «Higher Mathematics» in Higher Educational Institutions. Eurasian Journal of Physics, Chemistry and Mathematics, 4, 62-65.
13. Yusupova, N. X. (2021). The Role of Tests in Determining the Mathematical Ability of Students. Central Asian Journal of Mathematical Theory and computer sciences, 2(12), 25-28.
14. OO3H^OB, A., HnmoHOB, O., (2015). XycycHH TagÔHpKopïïHKHH экoнoметрнк ôa^o^am ycy^^apn. MKmucoàuu pecypcmpàan $ouàamnuM caMapaàopnmunu OMupuM uynanumnapu. HnMuu-aManuu anwyMan Mamepuamapu. 0apsona, 117-118.
© ©
64