600 CHEMICAL PROBLEMS 2019 no. 4 (17) ISSN 2221-8688
UDC 547.327
SYNTHESIS OF SOME FUNCTIONALIZED PYRIDONES DERIVATIVES
F.N. Naghiyev
Baku State University AZ-1148 Baku, Z.Khalilov 23, e-mail: [email protected]
Received 15.07.2019
It was establishedformation of new substituted pyridone derivativesin terms of addition reaction according to Michael with the participation of 2-cyano-3-(4-pyridul) acrylamide and benzoylacetone or ethyl alcohol in ether of acatecetic acid in the presence (MP) in methanol medium. The boiling of ethyl 5-cyano-2-hydroxy-2-methyl-6-oxo-4-phenylpiperidine-3-carboxylate in ethanole during 4 hours followed by dehydration and dehydrogenation (by air oxidation) generated 5-cyano-2-methyl -6-oxo-4-phenyl-1,6-dihydropyridine-3-carboxylic acid. Under similar conditions there were synthesized appropriate products of substituted pyridone according to Michael' addition reaction through interacting of 4-bromobenzoylacetonitrile with 2-cyano-3-(2-fluorophenyl)acrylamide. Structures of all synthesized compounds were proven by NMR spectroscopy.
Keywords: 2-cyano-3-(4-pyridyl)acrylamide, fluorobenzylidenecyanoacetamide, 4-chloroacetoacetate, 4-
bromobenzoylacetonitrile
DOI: 10.32737/2221-8688-2019-4-600-606
Introduction
2-Pyridone, hydroxypyridine, is heteroaromatic rings bioactive molecules
tatomer of 2-one of the major in natural products, and pharmaceutical
ingredients. Ciclopirox, milrinone, campto-thecin, (-)-citisin, fredericamycin, perampanel, bioactive molecules and pharmaceutical ingre-
dients contain valuable pyridone fragments in their composition. Also, synthesis methods of these compounds are different from in reaction conditions in literature [1-12]. Some articles [13-17] research into antimicrobial activity of pyridone derivatives.
Results and discussion
In the presence of methylpiperazine acetoacetate, 2-cyano-3-(pyridine-4-yl)
and methanol medium according to Michael acrylamide at a room temperature was addition reaction of benzoilacetone or ethyl hydroxysubsituted pyridone derivatives.
Scheme 1
CN C-CH3
/ \—ch=/ + h2c/
:—nh2
:—r
3 damci MP CH3OH, o.t. * R.
R = OEt, Ph
R = a) OEt, b) Ph
Scheme 1. Reaction of 2-cyano-3-(4-pyridyl)acrylamide with benzoylacetone and ethyl acetoacetate.
N
O
In our view, in the initial step of reaction the nucleophilic attack methylpiperazine to me-thylene-active compound results in the formation of corresponding anion
(nucleophilic particle), which, in turn, drew to the CH-electrophilic center of the activated double bound to form intermediate A (according to Michael adduct). In the final
CHEMICAL PROBLEMS 2019 no. 4 (17)
www.chemprob.org
step, in the intermediate A, the amide nitrogen desired ring closure product - pyridione attacked the carbonyl group to generate a (Scheme 2).
¿^CHX
C—CH3 —CH3 + H2C/
V—R
O
R = OEt, Ph
C—CH3
+ H/ . C—NH2 \c—R
C O
R = OEt, Ph
C—CH3
H^ + H:
V—R
Scheme 2
—CH3
R = OEt, Ph
# Wc^H/
CN
NH,
CN
CH3
OH
1
R = a) OEt, b) Ph
Boiling of ethyl 5-cyano-2-hydroxy-2-methyl- oxidation) to provide 5-cyano-2-methyl -6-
6-oxo-4-phenylpiperidine-3-carboxylate in oxo-4-phenyl-1,6-dihydropyridine-3-
ethanole for 4 hours was followed by carboxylic acid. dehydration and dehydrogenation (by air
oh 1a 2
Scheme 2. Synthesis of ethyl 5-cyano-2-methyl-6-oxo-4-phenyl-1,6-dihydropyridine-3-
carboxylat
Scheme 4 NO2
O2N
CN
O
C_C
_ CH2Cl
\-CH=/ + H,^ 3 dame1 MP
' 2 \ EtO-
2 t—OEt
NH2
CN
ClH2C
OH
Scheme 3. Reaction of 2-cyano-3-(4-nitrophenyl)acrylamide with ethyl 4-chloroacetoacetate.
O
O
N
O
R
A
O
O
3
Scheme 5
CN
CN
+ H2
—NH2
Nc
3 damci MP
CH3OH, o.t.
\ /
Br
Scheme 4. Reaction of 2-cyano-3-(2-fluorophenyl)acrylamide with 4-bromobenzoylacetonitrile.
F
Br
Under the same reaction condition, the acrylamide led to the formation of appropriate Michael addition of 4-bromobenzoyl- hydroxy substituted pyridone derivatives. acetonitrile to 2-cyano-3-(2-fluorophenyl)
Fig. 1. 1H NMR spectrum of 2-(4-bromophenyl)-4-(2-fluorophenyl)-2-hydroxy-6-oxopiperidine-3,5-dicarbonitrile (4)
13
Fig. 2. C NMR spectrum of 2-(4-bromophenyl)-4-(2-fluorophenyl)-2-hydroxy-6-oxopiperidine-3,5-dicarbonitrile (4)
Experimental part.
All commercially available chemicals were obtained from Merck and Fluka (Sigma -Aldrich) companies and used without further purification. Melting points were measured by Stuart SMP30 apparatus without correction. 1H, 13 C NMR spectra (Fig. 1) were recorded on BrukerAvance 300-MHz spectrometer at 300 and 75 MHz, respectively. Thin-layer chromatography (TLC) on commercial aluminum-backed plates of silica gel (60 F254) was used to monitor the reaction course.
Experimental procedures: Ethyl 5-cyano-2-hydroxy-2-methyl-6-oxo-4-(pyridin-4-yl)piperidine-3-carboxylate (1a): 2-Cyano-3-(4-pyridyl)acrylamide (5.1 mmol) and ethyl acetoacetate (5.2 mmol) was stirrered in 35 ml of methyl alcohol. Then 3-4 drops of
1-methylpiperazine were added to reaction mixture and stirrered for 5 minutes. Then reaction mixture was held out at a room temperature for 48 h. Reaction course was monitored by TLC (EtOAc/n-hexane, 3:1). Crystals were precipitated after evaporation of solvent, filtered, recrystallized from ethanol-water mixture and obtained in pure form (yield 1.27 g, 82.47%). Tmp. = 173°C.
rH NMR (300 MHz, DMSO-d6): 0.84 (t, 3H, CH3, Vh-h = 7); 1.47 (s, 3H, CH3); 3.44 (d, 1H, CH, 3Jh-h = 12.4); 3.82 (k, 2H, CH2O, 3Jh-h = 6.9); 3.92 (t, 1H, CH-Ar, 3Jh-h = 12.3); 4.31 (d, 1H, CH, 3Jh-h = 12.6); 6.27 (s, 1H, OH); 7.39 (d, 2H, 2CHpynd., 3Jh-h = 5.1); 8.55 (d, 2H, 2CHpyrid., 3Jh-h = 5.1); 8.97 (s, 1H, NH). 13C NMR (75 MHz, DMSO-dfc): 14.02 (CH3CH2), 28.34 (CH3), 40.41 (CH-CN), 41.44 (CH-Ar), 54.24 (CH-CO2), 60.64 (CH2O), 80.72 (O-Cdordlu), 117.29 (CN), 123.85 (2CHpyrid.), 148.63 (Cpyid.), 150.33 (2CHpynd.), 162.56 (N-C=O), 168.58 (O-C=O).
Found, %: 59.35 C; 5.67 H; 13.81 N. C15H17N3O4. Calculated, %: 59.40 C; 5.61 H; 13.86 N.
5-Benzoyl-6-hydroxy-6-methyl-2-oxo-4-(pyridin-4-yl)piperidine-3-carbonitrile (1b):
2-Cyano-3-(4-pyridyl)acrylamide (5.1 mmol) and benzoylacetone (5.2 mmol) was stirrered in 35 ml of methyl alcohol. After 3-4 drops of 1-methylpiperazine added to reaction mixture and stirrered for 5 minutes. Then reaction
General remarks
mixture was held out at a room temperature for 48 h. Reaction course was monitored by TLC (EtOAc/n-hexane, 3:1). Crystals were precipitated after evaporation of solvent, filtered, recrystallized from ethanol-water mixture and obtained in pure form (yield 1.32 g, 77.65%). Tmp. = 192°C.
1H NMR (300 MHz, DMSO-J6): 1.35 (s, 3H, CH3); 3.86 (t, 1H, CH-Ar, Vh-h = 11.4); 4.60 (d, 1H, CH, Vh-h = 12.3); 4.68 (d, 1H, CH, Vh-h = 11.1); 6.46 (s, 1H, OH); 7.44-8.44 (m, 9H, 5Ar-H+4CHpyrid); 8.84 (s, 1H, NH). 13C NMR (75 MHz, DMSO-öfc): 27.01 (CH3), 40.78 (CH-CN), 42.98 (CH-Ar), 55.15 (CH-C=O), 82.86 (O-Cdördlü), 117.26 (CN), 123.83 (2CHarom), 129.04 (2CHpMd.), 129.14 (2CHarom.), 134.09 (CHarom.), 138.17 (Car.), 148.52 (Cpyrid.), 150.25 (2CH„ynd.), 162.43 (N-C=O), 199.23 (C=O).
Found, %: 68.00 C; 5.02 H; 12.60 N. C19H17N3O3. Calculated, %: 68.06 C; 5.07 H; 12.54 N.
Ethyl 5-cyano-2-methyl-6-oxo-1,6-dihydro-[4,4'-bipyridine]-3-carboxylate (2):
Ethyl 5-cyano-2-hydroxy-2-methyl-6-oxo-4-(pyridin-4-yl)piperidine-3-carboxylate (5.1 mmol) was dissolved in 35 ml of ethyl alcohol and 5 h refluxed. Then the resulting reaction mixture was placed in a glass. Crystals were precipitated after evaporation of solvent, filtered, recrystallized from ethanol-water mixture and obtained in pure form (yield 1.07 g, 74.30%). Tmp. = 147°C.
1H NMR (300 MHz, DMSO-J6): 0.70 (t, 3H, CH3, Vh-h = 7.2); 2.45 (s, 3H, CH3); 3.83 (k, 2H, CH2O, Vh-h = 7); 7.36 (d, 2H, 2CHpynd., Vh-h = 5.1); 8.71 (d, 2H, 2CHpynd., Vh-h = 5.1); 12.82 (s, 1H, NH). 13C NMR (75 MHz, DMSO-^6): 13.37 (CH3CH2), 19.13 (CH3-C=), 61.43 (CH2O), 101.07 (=Cdördlü), 111.09 (=Cdördlü), 115.42 (CN), 122.35 (2CHpyrid.), 144.51 (Cpyrid.), 150.25 (2CHpynd.), 155.45 (=Cdördlü), 157.53 (=Cdördlü), 160.00 (N-C=O), 164.64 (O-C=O).
Found, %: 63.55 C; 4.65 H; 14.89 N. C15H13N3O3. Calculated, %: 63.60 C; 4.59 H; 14.84 N.
Ethyl 2-(chloromethyl)-5-cyano-2-hydroxy-4-(4-nitrophenyl)-6-oxopiperidine-3-carbo-
xylate (3): 2-Cyano-3-(4-
nitrophenyl)acrylamide (5.1 mmol) and ethyl 4-chloroacetoacetate (5.2 mmol) stirrered in 35 ml of methyl alcohol. After 3-4 drops of 1-methylpiperazine added to reaction mixture and stirrered for 5 minutes. Then reaction mixture hold out at room temperature for 48 h. Reaction course was monitored by TLC (EtOAc/n-hexane, 3:1). Crystals were precipitated after evaporation of solvent, filtered, recrystallized from ethanol-water mixture and obtained in pure form (yield 1.57 g, 80.51%). Tmp. = 209°C.
fH NMR (300 MHz, DMSO-d6): 0.86 (t, 3H, CH3, Vh-h = 6.9); 3.68 (d, 1H, CH, 3Jh-h = 12.3); 3.69 (s, 3H, CH2CO; 3.85 (k, 2H, CH2O, 3Jh-h = 7); 4.10 (t, 1H, CH-Ar, 3Jh-h = 12.3); 4.63 (d, 1H, CH, 3Jh-h = 12); 7.12 (s,
IH, OH); 7.70 (d, 2H, 2CHarom., 3Jh-h = 8.4); 8.24 (d, 2H, 2CHarom., 3Jh-h = 8.4); 9.10 (s, 1H, NH). 13C NMR (75 MHz, DMSO-öfc): 13.97 (CH3CH2), 40.13 (CH-CN), 41.31 (CH-Ar), 48.16 (CH?Cl), 49.80 (CH-COO), 61.06 (CH2O), 83.03 (O-Cdördlü), 117.01 (CN), 124.13 (3 CHarom.), 130.21 (CHarom.), 147.10 (Car.), 147.47 (Car.), 163.30 (N-C=O), 167.71 (O-C=O).
Found, %: 50.39 C; 4.14 H; 11.07 N. C16H16N3O6CL Calculated, %: 50.33 C; 4.19 H;
II.02 N.
2-(4-Bromophenyl)-4-(2-fluorophenyl)-2-hydroxy-6-oxopiperidine-3,5-dicarbonitrile (4): 2-Cyano-3-(2-fluorophenyl)prop-2-
enamide (5.1 mmol) and 4-bromobenzoylace-tonitrile (5.2 mmol) stirrered in 35 ml of methyl alcohol. After 3-4 drops of 1-methylpiperazine were added to reaction mixture and stirrered for 5 minutes. Then reaction mixture were held out at a room temperature for 48 h. Reaction course was monitored by TLC (EtOAc/n-hexane, 3:1). Crystals were precipitated after evaporation of solvent, filtered, recrystallized from ethanol-water mixture and obtained in pure form (yield 1.77 g, 84.28%). Tmp. = 121°C.
1H NMR (300 MHz, DMSO-^6): 3.98 (d,
IH, CH, Vh-h = 11.4); 4.56 (t, 1H, CH, 3Jh-h =
II.5); 4.66 (d, 1H, CH, 3Jh-h = 11.7); 7.287.72 (m, 8H, 8Ar-H+OH); 9.42 (s, 1H, NH). 13C NMR (75 MHz, DMSO-^6): 39.90 (CH-CN), 41.07 (CH-Ar), 46.08 (CH-CN), 82.34 (O-Cdordlu), 116.13 (CHarom), 116.43 (CHarom), 116.88 (CN), 117.03 (CN), 122.66 (Br-Car.), 124.45-124.67 (Car.), 125.88 (CHarom), 129.21 (2CHarom), 131.10-131.19 (CHarom), 131.42 (2CHarom), 141.11 (Car), 159.02-162.25 (F-Car), 163.12 (N-C=O).
Found, %: 55.01 C; 3.20 H; 10.09 N. C19H13NsFBrO2. Calculated, %: 55.07 C; 3.14 H; 10.14 N.
References
1. Maria A.Vodolazhenko, Nikolay Yu.Gorobets. Synthesis of highly substituted 2-pyridones. Chemistry of Heterocyclic Compounds. 2016, vol. 52, iss.11, pp. 894-896.
2. Zhi-Qiang Liu, Bo-Kai Liu, Qi Wu, Xian-Fu Lin. Diastereoselective enzymatic synthesis of highly substituted 3,4-dihydropyridin-2-ones via domino Knoevenagel condensation-Michael addition-intramolecular cyclization. Tetrahedron. 2011, vol. 67, iss.50, pp. 9736-9740.
3. Zhiqiang Liu, Lu Tan, Qi Wu, Xianfu Lin. Imidazole-catalyzed Three-component Cascade Reaction for the Facile Synthesis of Highly Substituted 3,4-Dihydropyridin-2-one Derivatives. Chin. J. Chem. 2012, vol. 30, pp. 2343—2348.
4. Naghiyev F.N. The investigation of michael addition of some ylidenecyanoacetamides with acetoacetanilide and methyl acetopyruvate. Azerbaijan Chemical Journal. 2019, no. 2, pp. 35-39.
5. Maharramov A.M., Asgarova A.R., Musayeva S.A., Rahimova A.G., Akhundova M.A., Ma-medov I.G. Synthesis of substituted pyridine derivatives by the three component reaction based on ylidenecyanoacetamides. Chemical Problems. 2019, no.1(17), pp. 8792.
6. Erica L. Lanni, Michael A. Bosscher, Bartel D. Ooms, Christina A. Shandro, Bruce A. Ellsworth, Carolyn E. Anderson. Synthesis of Substituted N-Benzyl Pyridones via an O- to N-Alkyl Migration.
J. Org. Chem., 2008, vol. 73, no. 16, pp. 6425-6428.
7. Archana B. Pandit, Mahesh M. Savant, Kartik D. Ladva. An Efficient One-Pot Synthesis of Highly Substituted Pyridone Derivatives and Their Antimicrobial and Antifungal Activity. Journal of Heterocyclic Chemistry. 2018, vol. 55, iss. 4, pp. 983-987.
8. Färber M., Osiander H., Severin T. Synthesis of N-substituted 3-hydroxy-2-methyl-4-pyridones and -pyridonimines. Journal of Heterocyclic Chemistry. 1994, vol. 31, iss. 4, pp. 947956.
9. Liquan Tan, Peng Zhou, Cui Chen and Weibing Liu. An efficient method for the construction of polysubstituted 4-pyridones via self-condensation of ß-keto amides mediated by P2O5 and catalyzed by zinc bromide. Beilstein J. Org. Chem. 2013, no. 9, pp. 2681-2687.
10. Rajib Sarkar, Chhanda Mukhopadhyay. l-Proline catalyzed expeditious multicomponent protocol for the synthesis of fused N-substituted-2-pyridone derivatives in aqueous medium. Tetrahedron Letters. 2014, vol. 55, iss.16, pp. 26182624.
11. IssaYavari, Mohammad J.Bayat. An efficient organocatalytic method for tandem synthesis of functionalized 2-pyridones. Tetrahedron Letters. 2011, vol. 52, iss. 49, pp. 6649-6651.
12. Marco Radi, Gian Paolo Vallerini, Alessia Petrelli, Paolo Vincetti, Gabriele Costantino. A one-pot two-step microwave-
assisted synthesis of N1-substituted 5,6-ring-fused 2-pyridones. Tetrahedron Letters. 2013, vol. 54, iss.50, pp. 69056908.
13. Weitao Yan, Ruo Wang, Tesen Zhang, Hongtao Deng, Jian Chen, Wei Wua and Zhiqiang Weng. Synthesis of 4-trifluoromethyl 2-pyrones and pyridones through the Bronsted base-catalyzed Pechmann-type reaction with cyclic 1,3-diones. Org. Biomol. Chem, 2018, vol. 16, pp. 9440-9445.
14. Rasha A. Azzam, Galal H. Elgemeie. Synthesis and antimicrobial evaluation of novel N-substituted 4-ethylsulfanyl-2-pyridones and triazolopyridines. Medicinal Chemistry Research. 2019, vol. 28, iss. 1, pp. 62-70.
15. Erol D.D., Yulug N. Synthesis and antimicrobial investigation of thiazolinoalkyl-4(1H)-pyridones. European Journal of Medicinal Chemistry. 1994, vol. 29, iss.11, pp. 893-897.
16. Hassan M. Faidallah, Sherif A.F. Rostom, Khalid A. Khan & Salem A. Basaif. Synthesis and characterization of some hydroxypyridone derivatives and their evaluation as antimicrobial agents. Journal of Enzyme Inhibition and Medicinal Chemistry. 2013, vol. 28, iss.5, pp. 926935.
17. Hayreddin Gezegen, Mustafa Ceylan, Isa Karaman & Ertan §ahin. Synthesis, Characterization, and Antibacterial Activity of Novel Pyridones. Synthetic Communications. 2014, vol. 44, iss.8, pp. 1084-1093.
BdZi FUNKSiONALLA§MI§ PiRIDON TÖROMdLdRiMN SiNTEZi
F.N. Nagiyev
Baki Dövldt Universiteti AZ 1148 Baki, Z.Xdlilov küg., 23; e-mail: [email protected]
Metanol mühitindd, metilpiperazinin (MP) i§tirakinda vd otaq temperaturunda 2-siano-3-(4-piri-dil)akrilamid ild benzoilasetonun vd ya asetosirkd tur§usunun etil efirinin Mixael birld§md reaksiyasindan müvafiq yeni dvdzldnmi§ piridon tördmdldrinin dmdld gdldiyi müdyydn edilmi§dir. 5-Siano-2-hidroksi-2-metil-6-okso-4-fenilpiperidin-3-karboksil tur§usunun etil efirinin 4 saat etil spirtindd qaynadilmasindan 5-siano-2-metil-6-okso-4-fenil-1,6-dihidropiridin-3-karboksil
turgusunun etil efiri этэ1э galmigdir. Eyni reaksiya garaitinda 4-brombenzoilasetonitrilin 2-siano-3-(2-flüorfenil)akrilamida Mixael birlagma reaksiyasindan müvafiq piridon töramasi al-inmigdir. Hamginin, eyni reaksiya garaitinda 2-siano-3-(4-nitrofenil)akrilamid ila 4-xlorasetoase-tat turgusunun etil efirinin qargiliqli tasir reaksiyasindan uygun piridon töramasi sintez edilmigdir. Sintez edilmig bütün birlagmalarin quruluglari NMR spektroskopiyasinin kömayila tasdiq edilmigdir.
Agar sözldr: 2-siano-3-(4-piridil)akrilamid, flüorbenzilidensianoasetamid, 4-xlorasetoasetat efiri, 4-brombenzoilasetonitril
СИНТЕЗ ПРОИЗВОДНЫХ НЕКОТОРЫХ ФУНКЦИОНАЛИЗИРОВАННЫХ
ПИРИДОНОВ
Ф.Н. Нагиев
Бакинский государственный университет AZ1148 Баку, ул. З.Халилова, 23; e-mail: [email protected]
Выявлено образование новых производных замещенных пиридонов в условиях реакции присоединения по Михаэлю при участии 2-циано-3-(4-пиридил)акриламида и бензоилацето-на или этилового эфира ацетоуксусной кислоты в присутствии метилпиперазина (MP) в среде метанола. При кипячении в этиловом спирте этилового эфира 5-циано-2-гидрокси-2-метил-6-оксо-4-фенилпиперидин-3-карбоновой кислоты в течение 4 часов образуется этиловый эфир 5-циано-2-метил-6-оксо-4-фенил-1,6-дигидропирид-3-карбоновой кислоты. В аналогичных условиях были синтезированы соответствующие продукты замещенных пиридонов по реакции присоединения Михаэля взаимодействием 4-бромбензоилацетонитрила с 2-циано-3-(2-фторфенил)акриламидом и 2-циано-3-(4-нит-рофенил)акриламида с этилового эфира 4-хлорацетоуксусной кислоты. Структуры всех синтезированных соединений доказаны методом ЯМР-спектроскопии. Ключевые слова: 2-циано-3-(4-пиридил)акриламид, фторбензилиденцианоацетамид, 4-хлорацетоуксусный эфир, 4-бромбензоилацетонитрил