Научная статья на тему 'Synthesis, corrosion, and bioactivity evaluation of the hybrid anodized polycaprolactone fumarate/siliconand magnesium-codoped fluorapatite nanocomposite coating on AZ31 magnesium alloy'

Synthesis, corrosion, and bioactivity evaluation of the hybrid anodized polycaprolactone fumarate/siliconand magnesium-codoped fluorapatite nanocomposite coating on AZ31 magnesium alloy Текст научной статьи по специальности «Биотехнологии в медицине»

CC BY
144
41
i Надоели баннеры? Вы всегда можете отключить рекламу.
Журнал
Физическая мезомеханика
WOS
Scopus
ВАК
RSCI
Ключевые слова
anodizing / dip coating / polycaprolactone fumarate / fluorapatite / AZ31 alloy / bioactivity / corrosion resistance / анодирование / покрытие погружением / поликапролактона фумарат / фторапатит / сплав AZ31 / биоактивность / коррозионная стойкость

Аннотация научной статьи по биотехнологиям в медицине, автор научной работы — Kamran Mohemi, Tahmineh Ahmadi, Aliakbar Jafarzade, Hamid Reza Bakhsheshi-Rad, Majid Taghian Dehaghani

In the present study, a dual composite coating consisted of an anodized layer as the inner layer and PCLF (polycaprolactone fumarate)/siliconand magnesium-codoped fluorapatite (Si-Mg-FA) nanocomposite as the outer layer was fabricated on AZ31 Mg alloy. The thickness of the PCLF/(Si-Mg-FA) nanocomposite coating is 9.72 μm, with the Si-Mg-FA nanoparticles being well distributed in the PCLF matrix. Electrochemical measurements showed that AZ31 with the anodized PCLF/Si-Mg-FA coating has a low corrosion current density (5.137 × 10–6 A/cm2), providing a sufficient protection (Rp = 5888.72 Ω cm2) for Mg alloys. Immersion tests in a simulated body fluid showed that cauliflower-like/cloudy apatite forms on AZ31 with the anodized PCLF/Si-Mg-FA coating and governs good bioactivity. Osteosarcoma cells adhere well to the surface of the coating. Surface modification by the anodized PCLF/Si-Mg-FA coating can be a suitable method for controlling the corrosion degradation and increasing the bioactivity and cell attachment of AZ31 Mg alloy for implant applications.

i Надоели баннеры? Вы всегда можете отключить рекламу.
iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.
i Надоели баннеры? Вы всегда можете отключить рекламу.

Синтез, коррозия и биоактивность гибридного анодированного покрытия из поликапролактона фумарата и фторапатита, легированного Si и Mg, на подложке из магниевого сплава AZ31

В данной работе изготовлено двухслойное композитное покрытие на подложке из магниевого сплава AZ31. Покрытие состоит из внутреннего анодированного слоя и внешнего нанокомпозитного слоя из поликапролактона фумарата (ПКЛФ) и фторапатита (ФА), легированного кремнием и магнием (Si-Mg-ФА). Толщина нанокомпозитного ПКЛФ/Si-Mg-ФА покрытия составляет 9.72 мкм, при этом наночастицы Si-Mg-ФА равномерно распределены в матрице из ПКЛФ. Электрохимические измерения показали, что сплав AZ31 с анодированным ПКЛФ/Si-Mg-ФА покрытием имеет низкую плотность тока коррозии (5.137 × 10–6 А/см2) и достаточную коррозионную стойкость (Rp = 5888.72 Ом см2). Испытания в искусственной биологической жидкости показали, что на сплаве AZ31 с анодированным ПКЛФ/Si-Mg-ФА покрытием образуется пористый апатит, обеспечивающий хорошую биоактивность. Полученное покрытие способствует адгезии клеток остеосаркомы. Модификация поверхности сплава AZ31 анодированным ПКЛФ/Si-Mg-ФА покрытием может быть подходящим методом контроля коррозионного разрушения, увеличения биоактивности и прикрепления клеток, что позволяет использовать сплав AZ31 в имплантологии.

Текст научной работы на тему «Synthesis, corrosion, and bioactivity evaluation of the hybrid anodized polycaprolactone fumarate/siliconand magnesium-codoped fluorapatite nanocomposite coating on AZ31 magnesium alloy»

УДК 621.794, 621.793

Синтез, коррозия и биоактивность гибридного анодированного

покрытия из поликапролактона фумарата и фторапатита, легированного Si и Mg, на подложке из магниевого сплава AZ31

K. Mohemi1, T. Ahmadi1, A. Jafarzadeh1, H.R. Bakhsheshi-Rad2, M. Taghian Dehaghani3, and F. Berto4

1 Исламский университет Азад в Шeхреза, Шехреза, 86145-311, Иран 2 Исследовательский центр перспективных материалов, Исламский университет Азад в Наджафабаде, Наджафабад, Иран

3 Ширазский университет, Абаде, Иран 4 Норвежский университет естественных и технических наук, Тронхейм, 7491, Норвегия

В данной работе изготовлено двухслойное композитное покрытие на подложке из магниевого сплава AZ31. Покрытие состоит из внутреннего анодированного слоя и внешнего нанокомпозитного слоя из поликапролактона фумарата (ПКЛФ) и фторапатита (ФА), легированного кремнием и магнием (Si-Mg-ФА). Толщина нанокомпозитного ПКЛФ/Si-Mg-ФА покрытия составляет 9.72 мкм, при этом наночастицы Si-Mg-ФА равномерно распределены в матрице из ПКЛФ. Электрохимические измерения показали, что сплав AZ31 с анодированным П^Ф^-И^-ФА покрытием имеет низкую плотность тока коррозии (5.137 х 10-6 А/см2) и достаточную коррозионную стойкость (Rp = 5888.72 Ом см2). Испытания в искусственной биологической жидкости показали, что на сплаве AZ31 с анодированным ПКЛФ/Si-Mg-ФА покрытием образуется пористый апатит, обеспечивающий хорошую биоактивность. Полученное покрытие способствует адгезии клеток остеосаркомы. Модификация поверхности сплава AZ31 анодированным ПКЛФ/Si-Mg-ФА покрытием может быть подходящим методом контроля коррозионного разрушения, увеличения биоактивности и прикрепления клеток, что позволяет использовать сплав AZ31 в имплантологии.

Ключевые слова: анодирование, покрытие погружением, поликапролактона фумарат, фторапатит, сплав AZ31, биоактивность, коррозионная стойкость DOI 10.24412/1683-805X-2021-3-82-86

Synthesis, corrosion, and bioactivity evaluation of the hybrid anodized polycaprolactone fumarate/silicon- and magnesium-codoped fluorapatite nanocomposite coating on AZ31 magnesium alloy

K. Mohemi1,2, T. Ahmadi1,2, A. Jafarzadeh1,2, H.R. Bakhsheshi-Rad3, M. Taghian Dehaghani4, and F. Berto5

1 Department of Materials Engineering, Shahreza Branch, Islamic Azad University, Shahreza, 86145-311, Iran 2 Razi Chemistry Research Center (RCRC), Shahreza Branch, Islamic Azad University, Shahreza, Iran 3 Advanced Materials Research Center, Department of Materials Engineering, Najafabad Branch, Islamic Azad University, Najafabad, Iran 4 Shiraz University, Abadeh Center of High Education, Abadeh, Iran 5 Department of Mechanical and Industrial Engineering, Norwegian University of Science and Technology,

Trondheim, 7491, Norway

In the present study, a dual composite coating consisted of an anodized layer as the inner layer and PCLF (polycaprolactone fumarate)/silicon- and magnesium-codoped fluorapatite (Si-Mg-FA) nanocomposite as the outer layer was fabricated on AZ31 Mg alloy. The thickness of the PCLF/(Si-Mg-FA) nanocomposite coating is 9.72 (im, with the Si-Mg-FA nanoparticles being well distributed in the PCLF matrix. Electrochemical measurements showed that AZ31 Mg alloy with the anodized PCLF/Si-Mg-FA coating has a low corrosion current density (5.137 х 10-6 A/cm2), providing a sufficient protection (Rp = 5888.72 Q cm2) for Mg alloys. Immersion tests in a simulated body fluid showed that cauliflower-like/cloudy apatite forms on AZ31 Mg alloy with the anodized PCLF/Si-Mg-FA coating and governs good bioactivity. Osteosarcoma cells adhere well to the surface of the coating. Surface modification by the anodized PCLF/Si-Mg-FA coating can be a suitable method for controlling the corrosion degradation and increasing the bioactivity and cell attachment of AZ31 Mg alloy for implant applications.

Keywords: anodizing, dip coating, polycaprolactone fumarate, fluorapatite, AZ31 alloy, bioactivity, corrosion resistance

© Mohemi K., Ahmadi T., Jafarzade A., Bakhsheshi-Rad H.R., Taghian Dehaghani M., Berto F., 2021

1. Introduction

Magnesium, an essential element for bone metabolism, and its alloys are used for temporary fixing of bones due to degradability and specific mechanical features [1]. Low elastic modulus, high specific strength, and low density of these alloys are of special interest for biomedical application in bone replacement and orthopedic utilizations [1-3]. However, the undesirable property of Mg alloys is that they lose the mechanical integrity before bone healing and also the collection of hydrogen gas around the Mg implants [4, 5]. These crucial problems are due to the highly negative equilibrium potential, leading to a rapid corrosion rate [6]. Thus, many efforts have been made to improve corrosion resistance and slow down Mg alloys' biodegradation rate [7-9]. Surface modification or formation of a coating on the substrate as a solution to these problems can provide a layer to separate the substrate from contacting with corrosion mediums [10]. A bioactive surface can be achieved by using a bioactive coating.

Among different surface modification methods [11-18], micro-arc oxidation is also called microplasma oxidation, is one of the most efficient techniques to fabricate the corrosion protection layer on light metals such as magnesium and its alloy for biomedical applications [19-21]. During this technique, discharge occurs above the dielectric breakdown voltage, and a porous layer consisting of magnesium oxides (ceramic coating) can be in situ formed on the surface [22]. The coating produced by this technique can substantially improve some surface properties of the magnesium substrate, such as resistance to wear, corrosion resistance, and hardness [21]. Nevertheless, as ceramic coating fabricated by this method is usually porous and includes many microcracks, flaws, and defects, the enhanced corrosion resistance of this coating by itself may be insufficient [23-25]. Thus, subsequent coating as a post-treatment for improving corrosion resistance is suggested by researchers [26, 27]. On the other hand, this coating with a special porous structure can act as an intermediate layer to promote next coating adhesion by mechanical interlocking [28]. Dip coating technique possessing some interesting characteristics such as low-temperature processing, simple operation, and low cost can act as a sealing technique for Mg substrate [29, 30]. Polymeric biomaterial layer prepared by the dip-coating technique can increase the corrosion resistance of magnesium alloys substrate by creating a barrier between the metal and corrosion environment [31, 32]. It is worth mentioning that class 0(B), according to

ASTM D3359-09, has been categorized for the adhesion strength of a polymer on the Mg surface, indicating a low bonding strength on the substrate [33].

Polycaprolactone fumarate (PCLF), a synthetic polymer, is a promising material for tissue engineering applications because of its biodegradable, biocompatible, and good mechanical properties [34-36]. Nevertheless, there are some significant drawbacks related to this polymer, including fast degradation, poor cell response, and bioactivity, which makes it desirable to fabricate composite with the incorporation of some bioceramics into the polymer matrix [37-39]. Our previous investigation shows that nano-sized silicon and magnesium co-doped fluorapatite obtained by high energy ball milling possess higher cell response and bioactivity than nanosized fluorapatite [40, 41]. This work aimed to adjust corrosion rate and provide precipitation ability of apatite layer by using a dual composite coating consisting of ano-dized layer as an inner layer and PCLF/Si-Mg-FA nanocomposite as an outer layer on AZ31 Mg alloy. Furthermore, uncoated, anodized, nanocomposite-coated corrosion behavior and anodized-PCLF/Si-Mg-FA coated samples were compared with each other.

2. Materials and methods

2.1. Preparation of PCLF/Si-Mg-FA nanocomposite

Based on previously reported procedure [40], silicon and magnesium co-doped fluorapatite nanopow-der was synthesized by milling of a blend of silicon oxide (SiO2, Sigma-Aldrich), calcium fluoride (CaF2, Merck), magnesium hydroxide (Mg(OH)2, Merck), calcium hydroxide (Ca(OH)2, Merck) and phosphorous pentoxide (P2O5, Merck) in a high energy planetary ball mill (Fretch Pulverisette 5) for 12 h. The details of the experimental procedure are given in our previous study [40]. The obtained powder with Si and Mg co-doped fluorapatite was named Si-Mg-FA. Figure 1 shows the transmission electron microscopy (TEM, CM120, Philips) image of Si-Mg-FA nano-particles, indicating spherical shape morphology with a mean diameter of about 30 nm. In order to prepare PCLF/Si-Mg-FA nanocomposite, firstly, 0.05 g of synthesized Si-Mg-FA nanopowder was mixed with 10 mL of dichloromethane. Then, the slurry was magnetically stirred for 2 h to obtain a homogenous slurry. Finally, 0.5 g of polycaprolactone fumarate (PCLF, Mw = 10000) was added to the slurry, and stirring was further continued for 24 h.

References

1. Wang Y., Guo J., Shao Z., Zhuang J., Jin M., Wu C., Wei D., Zhou Y. A metasilicate-based ceramic coating formed on magnesium alloy by microarc oxidation and its corrosion in simulated body fluid // Surf. Coat. Tech-nol. - 2013. - V. 219. - P. 8-14. - https://doi.org/10. 1016/j. surfcoat.2012.12.040

2. Yang L., Zhang E. Biocorrosion behavior of magnesium alloy in different simulated fluids for biomedical application // Mater. Sci. Eng. C. - 2009. - V. 29. - P. 16911696. - https://doi.org/10.1016/j.msec.2009.01.014

3. Staiger M.P., Pietak A.M., Huadmai J., Dias G. Magnesium and its alloys as orthopedic biomaterials: A review // Biomaterials. - 2006. - V. 27. - P. 1728-1734. -https://doi.org/10.1016/j.biomaterials.2005.10.003

4. Gu X., Zheng Y., Cheng Y., Zhong S., Xi T. In vitro corrosion and biocompatibility of binary magnesium alloys // Biomaterials. - 2009. - V. 30. - P. 484-498. -https://doi.org/10.1016/j.biomaterials.2008.10.021

5. Hiromoto S., Shishido T., Yamamoto A., Maruyama N., Somekawa H., Mukai T. Precipitation control of calcium phosphate on pure magnesium by anodization // Corrosion Sci. - 2008. - V. 50. - P. 2906-2913. -https://doi.org/10.1016/j.corsci.2008.08.013

6. Chai L., Yu X., Yang Z., Wang Y., Okido M. Anodizing of magnesium alloy AZ31 in alkaline solutions with silicate under continuous sparking // Corrosion Sci. - 2008. -V. 50. - P. 3274-3279. - https://doi.org/10.1016/j.corsci. 2008.08.038

7. Jabbarzare S., Bakhsheshi Rad H.R., Nourbakhs A., Ahmadi T., Berto F. Effect of graphene-oxide on corrosion, mechanical and biological properties of Mg-based nanocomposite // Int. J. Mineral. Metallurg. Mater. -2020. - https://doi.org/10.1007/s12613-020-2201-2

8. Zeng R., Dietzel W, Witte F., Hort N., Blawert C. Progress and challenge for magnesium alloys as biomaterials // Adv. Eng. Mater. - 2008. - V. 10. - https://doi.org/ 10.1002/adem.200800035

9. Zreiqat H., Howlett C., Zannettino A., Evans P., Schulze-Tanzil G., Knabe C., Shakibaei M. Mechanisms of magnesium-stimulated adhesion of osteoblastic cells to commonly used orthopaedic implants // J. Biomed. Mater. Res. A. - 2002. - V. 62. - P. 175-184. -https://doi.org/10.1002/jbm. 10270

10. Ali M., Elsherif M., Salih A.E. et al. Surface modification and cytotoxicity of Mg-based bio-alloys: An overview of recent advances // J. Alloys Compounds. - 2020. -V. 825. - P. 154140. - https://doi.org/10.1016/j.jallcom. 2020.154140

11. SedelnikovaM.B., Sharkeev Yu.P., Tolkacheva T.V., Khi-mich M.A., Bakina O.V. et al. Comparative study of the structure, properties, and corrosion behavior of Sr-containing biocoatings on Mg0.8Ca // Materials. -2020. - V. 13. - P. 1942. - https://doi.org/10.3390/ma 13081942

12. Panin A.V., KazachenokM.S., Perevalova O.B., Sinyako-vaE.A., Krukovsky K.V., Martynov S.A. Multiscale deformation of commercial titanium and Ti-6Al-4V alloy subjected to electron beam surface treatment // Phys. Me-

somech. - 2018. - V. 21. - No. 5. - P. 441-451. - https:// doi.org/10.1134/S1029959918050089

13. Panin A.V., Shugurov A.R. Local curvature of internal and external interfaces in mass transfer responsible for thin film degradation // Phys. Mesomech. - 2013. -V. 16. - No. 4. - P. 348-354. - https://doi.org/10.1134/ S1029959913040085

14. Shugurov A.R., Akulinkin A.A., Panin A.V., Sergeev V.P., Kalashnikov M.P., Voronov A.V., Cheng C.-H. Study of crack resistance of TiAlN coatings by scratch testing // Phys. Mesomech. - 2017. - V. 20. - No. 2. - P. 185192. - https://doi.org/10.1134/S1029959917020084

15. Lyukshin P. A., Lyukshin B.A., Matolygina N.Yu., Panin S.V. Stress-strain state in a buckled thermal barrier coating on an elastic substrate // Phys. Mesomech. -2018. - V. 21. - No. 6. - P. 498-507. - https://doi.org/ 10.1134/S1029959918060048

16. Shugurov A.R., Panin A.V. Effect of local curvature of the coating-substrate interface on deformation and fracture of ceramic coatings under uniaxial tension // Phys. Mesomech. - 2017. - V. 20. - No. 4. - P. 472-479. -https://doi.org/10.1134/S1029959917040130

17. Yankovskii A.P. Effect of thermal action on hardening of specimens with thin hard coatings // Phys. Mesomech. -2012. - V. 15. - No. 1-2. - P. 112-121. - https://doi.org/ 10.1134/S1029959912010122

18. Konovalenko Ig.S., Dmitriev A.I., Smolin A.Yu., Psa-khie S.G. On the estimation of strength properties of porous ceramic coatings // Phys. Mesomech. - 2012. -V. 15. - No. 1-2. - P. 88-93. - https://doi.org/10.1134/ S1029959912010092

19. Muhaffel F., Cimenoglu H. Development of corrosion and wear resistant micro-arc oxidation coating on a magnesium alloy // Surf. Coat. Technol. - 2019. - V. 357. -P. 822-832. - https://doi.org/10.1016/j.surfcoat.2018. 10.089

20. Lin X., Tan L., Zhang Q., Yang K., Hu Z., Qiu J., Cai Y. The in vitro degradation process and biocompatibility of a ZK60 magnesium alloy with a forsterite-containing micro-arc oxidation coating // Acta Biomater. - 2013. -V. 9. - P. 8631-8642. - https://doi.org/10.1016/). actbio. 2012.12.016

21. Zhao L., Cui C., Wang Q., Bu S. Growth characteristics and corrosion resistance of micro-arc oxidation coating on pure magnesium for biomedical applications // Corrosion Sci. - 2010. - V. 52. - P. 2228-2234. -https://doi.org/10.1016Zj.corsci.2010.03.008

22. Hornberger H., Virtanen S., Boccaccini A. Biomedical coatings on magnesium alloys—A review // Acta Biomater. - 2012. - V. 8. - P. 2442-2455. - https://doi.org/10. 1016/j.actbio.2012.04.012

23. Shi Z., Song G., Atrens A. The corrosion performance of anodised magnesium alloys // Corrosion Sci. - 2006. -V. 48. - P. 3531-3546. - https://doi.org/10.1016/j.corsci. 2006.02.008

24. Dietzel W., Klapkiv M., Nykyforchyn H., Posuvailo V., Blawert C. Porosity and corrosion properties of electrolyte plasma coatings on magnesium alloys // Mater. Sci. - 2004. - V. 40. - P. 585-590. - https://doi.org/10. 1007/s11003-005-0085-y

25. Shi Z., Song G., Atrens A. Influence of the ß phase on the corrosion performance of anodised coatings on magnesium-aluminium alloys // Corrosion Sci. - 2005. - V. 47. -P. 2760-2777. - https://doi.org/10.1016/j.corsci.2004.11.

004

26. Song G.-L. An irreversible dipping sealing technique for anodized ZE41 Mg alloy // Surf. Coat. Technol. -

2009. - V. 203. - P. 3618-3625. - https://doi.org/10. 1016/j. surfcoat.2009.05.042

27. Razzaghi M., Kasiri-Asgarani M., Bakhsheshi-RadH.R., Ghayour H. In vitro bioactivity and corrosion of PLGA/hardystonite composite-coated magnesium-based nanocomposite for implant applications // Int. J. Mineral. Metallurg. Mater. - 2021. - V. 28(1). - P. 168-178. -https://doi.org/10.1007/s12613-020-2072-6

28. Wu C., Wen Z., Dai C., Lu Y., Yang F. Fabrication of calcium phosphate/chitosan coatings on AZ91D magnesium alloy with a novel method // Surf. Coat. Technol. -

2010. - V. 204. - P. 3336-3347. - https://doi.org/10. 1016/j.surfcoat.2010.03.045

29. Gao Y., Yerokhin A., Matthews A. Mechanical behaviour of cp-magnesium with duplex hydroxyapatite and PEO coatings // Mater. Sci. Eng. C. - 2015. - V. 49. - P. 190200. - https://doi.org/10.1016/j.msec.2014.12.081

30. Jia Z., Li M., Liu Q., Xu X., Cheng Y., Zheng Y., Xi T., Wei S. Micro-arc oxidization of a novel Mg-1Ca alloy in three alkaline KF electrolytes: Corrosion resistance and cytotoxicity // Appl. Surf. Sci. - 2014. - V. 292. -P. 1030-1039.

31. Jafarzadeh A., Ahmadi T., Taghian Dehaghani M., Mohemi K. Synthesis, corrosion and bioactivity evaluation of gelatin/silicon and magnesium co-doped fluorapatite nanocomposite coating applied on AZ31 Mg alloy // Russ. J. Non-Ferr. Met. - 2018. - V. 59. - No. 4. -P. 458-464.

32. Razavi M., Fathi M., Savabi O., Tayebi L., Vashaee D. Biodegradable magnesium bone implants coated with a novel bioceramic nanocomposite // Materials. - 2020. -V. 13. - No. 6. - P. 1315. - https://doi.org/10.3390/ma 13061315

33. Materials, A.S.F.T. Standard Test Methods for Measuring Adhesion by Tape. Test D3359-09. - USA: ASTM,

2011.

34. Runge M.B., Wang H., Spinner R.J., WindebankA.J., Ya-szemski M.J. Reformulating polycaprolactone fumarate to eliminate toxic diethylene glycol: Effects of polymeric branching and autoclave sterilization on material properties // Acta Biomater. - 2012. - V. 8. - P. 133-143. -https://doi.org/10.1016/j.actbio.2011.08.023

35. Ahmadi T., Monshi A., Mortazavi V., Fathi M. et al. Fabrication and characterization of polycaprolactone fu-marate/gelatin-based nanocomposite incorporated with silicon and magnesium co-doped fluorapatite nanoparti-cles using electrospinning method // J. Mater. Sci. Eng. C. - 2020. - V. 106. - P. 110172. - https://doi.org/10. 1016/j.msec.2019.110172

36. Golafshan N., Gharibi H., Kharaziha M., Fathi M. A facile one-step strategy for development of a double network fibrous scaffold for nerve tissue engineering // Bio-

fabrication. - 2017. - V. 9. - P. 025008. - https://doi.org/ 10.1088/1758-5090/aa68ed

37. Bottino M.C., Thomas V., Janowski G.M. A novel spatially designed and functionally graded electrospun membrane for periodontal regeneration // Acta Biomater. - 2011. - V. 7. - P. 216-224. - https://doi.org/10. 1016/j.actbio.2010.08.019

38. Yang F, Both S.K., Yang X., Walboomers X.F., Jansen J.A. Development of an electrospun nano-apatite/PCL composite membrane for GTR/GBR application // Acta Biomater. - 2009. - V. 5. - P. 3295-3304. -https://doi.org/10.1016/). actbio.2009.05.023

39. Kharaziha M., Nikkhah M., Shin S.-R., Annabi N. et al. PGS: Gelatin nanofibrous scaffolds with tunable mechanical and structural properties for engineering cardiac tissues // Biomaterials. - 2013. - V. 34. - P. 63556366. - https://doi.org/10.1016/j.biomaterials.2013.04. 045

40. Ahmadi T., Monshi A., Mortazavi V., Fathi M. et al. Synthesis and dissolution behavior of nanosized silicon and magnesium co-doped fluorapatite obtained by high energy ball milling // Ceramics Int. - 2014. - V. 40. -P. 8341-8349. - https://doi.org/10.1016/). ceramint.2014. 01.040

41. Golafshan N., Alehosseini M., Ahmadi T. et al. Combinatorial fluorapatite-based scaffolds substituted with strontium, magnesium and silicon ions for mending bone defects // Mater. Sci. Eng. C. - 2021. - V. 120. -P. 111611. - https://doi.org/10.1016/j.msec.2020.111611

42. Kokubo T., Takadama H. How useful is SBF in predicting in vivo bone bioactivity? // Biomaterials. - 2006. -V. 27. - P. 2907-2915. - https://doi.org/10.1016/j.bio materials.2006.01.017

43. Yahalom J., Zahavi J. Experimental evaluation of some electrolytic breakdown hypotheses // Electrochim. Acta. - 1971. - V. 16. - P. 603-607. - https://doi.org/10. 1016/0013-4686(71)85169-1

44. Krishna L.R., Somaraju K., Sundararajan G. The tri-bological performance of ultra-hard ceramic composite coatings obtained through microarc oxidation // Surf. Coat. Technol. - 2003. - V. 163. - P. 484-490. -https://doi.org/10.1016/S0257-8972(02)00646-1

45. Zhang Y., Yan C. Development of anodic film on Mg alloy AZ91D // Surf. Coat. Technol. - 2006. - V. 201. -P. 2381-2386. - https://doi.org/10.1016/).surfcoat.2006. 04.015

46. Kharaziha M., Fathi M. Synthesis and characterization of bioactive forsterite nanopowder // Ceramics Int. - 2009. -V. 35. - P. 2449-2454. - https://doi.org/10.1016/j.ceramint. 2009.02.001

47. Zhang Y., Yan C., Wang F., Li W. Electrochemical behavior of anodized Mg alloy AZ91D in chloride containing aqueous solution // Corrosion Sci. - 2005. - V. 47. -P. 2816-2831. - https://doi.org/10.1016/). corsci.2005.01.

010

48. Johari N., Fathi M., Golozar M. Fabrication, characterization and evaluation of the mechanical properties of poly (s-caprolactone)/nano-fluoridated hydroxyapatite caffold for bone tissue engineering // Composites. B.

Eng. - 2012. - V. 43. - P. 1671-1675. - https://doi.org/ 10.1016/j.compositesb.2012.01.013

49. Goodhew P.J., Humphreys J. Electron microscopy and analysis. - New York: Taylor and Francis, 2001.

50. Evis Z., Webster T. Nanosize hydroxy apatite: Doping with various ions // Adv. Appl. Ceram. - 2011. -V. 110. - P. 311-321.

51. Xu L., Zhang E., Yin D., Zeng S., Yang K. In vitro corrosion behaviour of Mg alloys in a phosphate buffered solution for bone implant application // J. Mater. Sci. Mater. Med. - 2008. - V. 19. - P. 1017-1025. - https://doi. org/10.1007/s10856-007-3219-y

52. Saberi A., Bakhsheshi-Rad H.R., Karamian E., Kasiri-Asgarani M., Ghomi H. A study on the corrosion behavior and biological properties of polycaprolactone/ bre-digite composite coating on biodegradable Mg-Zn-Ca-GNP nanocomposite // Progr. Organ. Coat. - 2020. -V. 147. - P. 105822. - https://doi.org/10.1016Zj.porgcoat. 2020.105822

53. Fathi M., Meratian M., Razavi M. Novel magnesium-nanofluorapatite metal matrix nanocomposite with improved biodegradation behavior // J. Biomed. Nanotech-nol. - 2011. - V. 7. - P. 441-445. - https://doi.org/ 10.1166/jbn.2011.1310

54. Razavi M., Fathi M., Savabi O., Vashaee D., Tayebi L. Micro-arc oxidation and electrophoretic deposition of nanograin merwinite (Ca3MgSi2O8) surface coating on magnesium alloy as biodegradable metallic implant // Surf. Interface Analys. - 2014. - V. 46. - P. 387-392. -https://doi.org/10.1002/sia.5465

55. Jones D. Principles and Prevention of Corrosion. - Upper Saddle River, NJ: Prentice Hall, 1996.

56. Stern M., Geary A.L. Electrochemical polarization. I. A theoretical analysis of the shape of polarization curves // J. Electrochem. Soc. - 1957. - V. 104. - P. 56-63.

57. Stern M. Electrochemical polarization. II. Ferrous-ferric electrode kinetics on stainless steel // J. Electrochem. Soc. - 1957. - V. 104. - P. 559-563.

58. Cui X., Li Y., Li Q., Jin G., Ding M., Wang F. Influence of phytic acid concentration on performance of phytic acid conversion coatings on the AZ91D magnesium alloy // Mater. Chem. Phys. - 2008. - V. 111. - P. 503-507. -https://doi.org/10.1016/j.matchemphys.2008.05.009

59. Razavi M., Fathi M., Savabi O., Beni B.H., Vashaee D., Tayebi L. Surface microstructure and in vitro analysis of nanostructured akermanite (Ca2MgSi2O7) coating on biodegradable magnesium alloy for biomedical applications // Colloid. Surf. B. Biointerface. - 2014. - V. 117. -P. 432-440. - https://doi.org/10.1016/j.colsurfb.2013.12. 011

60. Udhayan R., Bhatt D.P. On the corrosion behaviour of magnesium and its alloys using electrochemical techniques // J. Power Source. - 1996. - V. 63. - P. 103107. - https://doi.org/10.1016/S0378-7753(96)02456-1

Received 09.03.2021, revised 18.05.2021, accepted 18.05.2021

This is an excerpt of the article "Synthesis, Corrosion, and Bioactivity Evaluation of the Hybrid Anodized Poly-caprolactone Fumarate/Silicon- and Magnesium-Codoped Fluorapatite Nanocomposite Coating on AZ31 Magnesium Alloy". Full text of the paper is published in Physical Mesomechanics Journal. DOI: 10.1134/ S1029959922010106

Сведения об авторах

Kamran Mohemi, Master's degree, Islamic Azad University, Iran, kamranmohemmi94@gmail.com

Tahmineh Ahmadi, Dr., Islamic Azad University, Iran, tahmadi56@yahoo.com, tahmineh.ahmadi@iaush.ac.ir

Aliakbar Jafarzade, Master's degree, Islamic Azad University, Iran, a.a.jafarzadeh.sh@gmail.com

Hamid Reza Bakhsheshi-Rad, Dr., Najafabad Branch, Islamic Azad University, Iran, rezabakhsheshi@gmail.com

Majid Taghian Dehaghani, PhD degree, Dr., Shiraz University, Iran, majid.taghian@yahoo.com

Filippo Berto, Prof., Norwegian University of Science and Technology, Norway, filippo.berto@ntnu.no

iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.
i Надоели баннеры? Вы всегда можете отключить рекламу.