Научная статья на тему 'Synthesis and study of properties of elastomer-containing compositions based on cooligomers of polyoxypropylene glycol and 4,4'-diphenyl-methane diisocyanate'

Synthesis and study of properties of elastomer-containing compositions based on cooligomers of polyoxypropylene glycol and 4,4'-diphenyl-methane diisocyanate Текст научной статьи по специальности «Химические науки»

CC BY
43
15
i Надоели баннеры? Вы всегда можете отключить рекламу.
Ключевые слова
CHEMICAL RESISTANCE / POLYURETHANE COOLIGOMER / BUTYL RUBBER / POLYMERIZATION / HEAT RESISTANCE / ХИМИЧЕСКАЯ СТОЙКОСТЬ / ПОЛИУРЕТАНОВЫЙ СООЛИГОМЕР / БУТИЛКАУЧУК / ПОЛИМЕРИЗАЦИЯ / ТЕПЛОСТОЙКОСТЬ

Аннотация научной статьи по химическим наукам, автор научной работы — Mustafayeva Rena E.

A study was conducted in order to obtain a highly adhesive and highly elastic coating of the adhesive and sealing composition. Cooligomers of polyoxypropylene glycol and 4,4'-diphenyl-methane diisocyanate were obtained and their copolycondensation kinetics was studied. It has been established that the urethane formation reaction proceeds through a migration polymerization based on the addition of mobile hydrogen atoms of the polyester to the nitrogen atom. The morphology of the synthesized cooligomers was studied by IR spectroscopy. It was shown that the combination of cooligomer with butyl rubber (a copolymer of isobutylene and isoprene) increases the elasticity of the system, relieves shrinkage and increases the thermal and chemical resistance. In order to obtain an adhesive and highly elastic composite material, we studied mixtures of polyurethane cooligomer with butyl rubber (BK), which has high rates of heat resistance, elasticity and chemical resistance in aggressive environments. It was shown that when polyurethane copolymer is mixed with butyl rubber, a polymer system is formed, the macromolecules of which mechanically interact with each other to form so-called interpenetrating grids. This composition is also the very stable in aggressive environments, which makes its application promising. Comparison of the data of differential thermal analysis of the cooligomer and the composition of cooligomer + butyl rubber shows that the resulting composition is thermally more stable than the cooligomer. An important scientific and technical problem of improving the quality of adhesive compositions has been solved. Because of the study, recommendations have been developed for improving the properties of adhesive compositions that are competitive with existing analogues, according to the formulation of the structure, technology for the preparation and use of adhesive compositions. The compositions obtained in this way can be used in the production of polymer products for the petroleum and engineering industries.

i Надоели баннеры? Вы всегда можете отключить рекламу.
iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.
i Надоели баннеры? Вы всегда можете отключить рекламу.

СИНТЕЗ И ИССЛЕДОВАНИЕ СВОЙСТВ ЭЛАСТОМЕРСОДЕРЖАЩИХ КОМПОЗИЦИЙ НА ОСНОВЕ СООЛИГОМЕРОВ ПОЛИОКСИПРОПИЛЕНГЛИКОЛЯ И 4,4'-ДИФЕНИЛ-МЕТАНДИИЗОЦИАНАТА

Проведено исследование в целях получения высокоадгезионного и высокоэластичного покрытия клеящей и уплотняющей композиции. Получены соолигомеры полиоксипропиленгликоля и 4,4'-дифенил-метандиизоционата, изучена кинетика сополиконденсации. Установлено, что реакция уретанообразования протекает по миграционной полимеризации, основанной на присоединении к атому азота подвижных водородных атомов полиэфира. Методом ИК-спектроскопии исследована морфология синтезированных соолигомеров. Показано, что совмещение соолигомера с бутилкаучуком (сополимером изобутилена и изопрена) увеличивает эластичность системы, снимает усадку и повышает термо-, химическую стойкость. С целью получения адгезионного и высокоэластичного композиционного материала изучены смеси полиуретанового соолигомера с бутилкаучуком (БК), имеющего высокие показатели теплостойкости, эластичности, химической стойкости в агрессивных средах. Показано, что при смешении полиуретанового сополимера с бутил каучуком происходит образование полимерной системы, макромолекулы которой, механически взаимодействуя между собой, образуют так называемые взаимопроникающие сетки. Указанная композиция также наиболее устойчива в агрессивных средах, что делает ее применение перспективным. Сравнение данных дифференциально-термического анализа соолигомера и композиции соолигомер+бутил каучука показывает, что полученная композиция термически более устойчива, чем соолигомер. В работе решена важная научно-техническая проблема повышения качества адгезионных композиций. В результате проведенного исследования разработаны рекомендации по улучшению свойств адгезионных композиций, конкурентоспособных по отношению к существующим аналогам, по рецептуре строения, технологии получения и использования адгезионных композиций. Полученные указанным путем композиции могут быть использованы в производстве полимерных изделий для нефтяной, машиностроительной промышленности.

Текст научной работы на тему «Synthesis and study of properties of elastomer-containing compositions based on cooligomers of polyoxypropylene glycol and 4,4'-diphenyl-methane diisocyanate»

DOI: 10.6060/ivkkt.20196202.5764

УДК: 678.762.3

СИНТЕЗ И ИССЛЕДОВАНИЕ СВОЙСТВ ЭЛАСТОМЕРСОДЕРЖАЩИХ КОМПОЗИЦИЙ НА ОСНОВЕ СООЛИГОМЕРОВ ПОЛИОКСИПРОПИЛЕНГЛИКОЛЯ И 4,4'-ДИФЕНИЛ-МЕТАНДИИЗОЦИАНАТА

Р.Э. Мустафаева

Рена Эльдаровна Мустафаева

Научно-исследовательская лаборатория «Новые химические материалы и технологии», Азербайджанский государственный университет нефти и промышленности, пр. Азадлыг, 20, Баку, Азербайджан, АZ 1010 E-mail: rena-babaeva0@rambler.ru

Проведено исследование в целях получения высокоадгезионного и высокоэластичного покрытия клеящей и уплотняющей композиции. Получены соолигомеры полиокси-пропиленгликоля и 4,4'-дифенил-метандиизоционата, изучена кинетика сополиконденса-ции. Установлено, что реакция уретанообразования протекает по миграционной полимеризации, основанной на присоединении к атому азота подвижных водородных атомов полиэфира. Методом ИК-спектроскопии исследована морфология синтезированных сооли-гомеров. Показано, что совмещение соолигомера с бутилкаучуком (сополимером изобути-лена и изопрена) увеличивает эластичность системы, снимает усадку и повышает термо-, химическую стойкость. С целью получения адгезионного и высокоэластичного композиционного материала изучены смеси полиуретанового соолигомера с бутилкаучу-ком (БК), имеющего высокие показатели теплостойкости, эластичности, химической стойкости в агрессивных средах. Показано, что при смешении полиуретанового сополимера с бутил каучуком происходит образование полимерной системы, макромолекулы которой, механически взаимодействуя между собой, образуют так называемые взаимопроникающие сетки. Указанная композиция также наиболее устойчива в агрессивных средах, что делает ее применение перспективным. Сравнение данных дифференциально-термического анализа соолигомера и композиции соолигомер+бутил каучука показывает, что полученная композиция термически более устойчива, чем соолигомер. В работе решена важная научно-техническая проблема повышения качества адгезионных композиций. В результате проведенного исследования разработаны рекомендации по улучшению свойств адгезионных композиций, конкурентоспособных по отношению к существующим аналогам, по рецептуре строения, технологии получения и использования адгезионных композиций. Полученные указанным путем композиции могут быть использованы в производстве полимерных изделий для нефтяной, машиностроительной промышленности.

Ключевые слова: химическая стойкость, полиуретановый соолигомер, бутилкаучук, полимеризация, теплостойкость

SYNTHESIS AND STUDY OF PROPERTIES OF ELASTOMER-CONTAINING COMPOSITIONS BASED ON COOLIGOMERS OF POLYOXYPROPYLENE GLYCOL AND 4,4'-DIPHENYL-METHANE DIISOCYANATE

R.E. Mustafayeva

Rena E. Mustafaeva

Scientific-research laboratory «New chemical materials and technologies», Azerbaijan State Oil and IndustryUniversity, Azadlig ave., 20, Baku, AZ-1010, Azerbaijan Е-mail: rena-babaeva0@rambler.ru

A study was conducted in order to obtain a highly adhesive and highly elastic coating of the adhesive and sealing composition. Cooligomers of polyoxypropylene glycol and 4,4'-diphenyl-methane diisocyanate were obtained and their copolycondensation kinetics was studied. It has been established that the urethane formation reaction proceeds through a migration polymerization

based on the addition of mobile hydrogen atoms of the polyester to the nitrogen atom. The morphology of the synthesized cooligomers was studied by IR spectroscopy. It was shown that the combination of cooligomer with butyl rubber (a copolymer of isobutylene and isoprene) increases the elasticity of the system, relieves shrinkage and increases the thermal and chemical resistance. In order to obtain an adhesive and highly elastic composite material, we studied mixtures of polyurethane cooligomer with butyl rubber (BK), which has high rates of heat resistance, elasticity and chemical resistance in aggressive environments. It was shown that when polyurethane copolymer is mixed with butyl rubber, a polymer system is formed, the macromolecules of which mechanically interact with each other to form so-called interpenetrating grids. This composition is also the very stable in aggressive environments, which makes its application promising. Comparison of the data of differential thermal analysis of the cooligomer and the composition of cooligomer + butyl rubber shows that the resulting composition is thermally more stable than the cooligomer. An important scientific and technical problem of improving the quality of adhesive compositions has been solved. Because of the study, recommendations have been developed for improving the properties of adhesive compositions that are competitive with existing analogues, according to the formulation of the structure, technology for the preparation and use of adhesive compositions. The compositions obtained in this way can be used in the production of polymer products for the petroleum and engineering industries.

Key words: chemical resistance, polyurethane cooligomer, butyl rubber, polymerization, heat resistance Для цитирования:

Мустафаева Р.Э. Синтез и исследование свойств эластомерсодержащих композиций на основе соолигомеров по-лиоксипропиленгликоля и 4,4'-дифенил-метандиизоцианата. Изв. вузов. Химия и хим. технология. 2019. Т. 62. Вып. 2. С. 94-100

For citation:

Mustafayeva R.E. Synthesis and study of properties of elastomer-containing compositions based on cooligomers of pol-yoxypropylene glycol and 4,4'-diphenyl-methane diisocyanate. Izv. Vyssh. Uchebn. Zaved. Khim. Khim. Tekhnol. 2019. V. 62. N 2. P. 94-100

INTRODUCTION

The chemical and physic-mechanical properties of polyurethane are largely determined by the variety of chemical bonds of various types in its structure, and in fact constitute a block of copolymers in which the chain alternates between sections of different chemical nature. This feature of the chemical structure of polyu-rethanes helps to obtain materials on their basis with a wide range of physical and mechanical properties [1-14].

However, narrow temperature ranges of use and relatively high cost characterize products based on polyurethane, along with high strength and excellent wear resistance. The elimination of these drawbacks can be achieved by combining polyurethane with other polymers and, thus, significantly expand their field of application [15-24].

The object of this study was the preparation of an adhesive polymer composition based on industrial polyether - polyoxidepropylene glycol, combined at room temperature with 4,4'-diphenyl-methane diisocya-nates and 5% butyl rubber in toluene solution. It is known that the structure and properties of polyurethanes can vary widely by choosing suitable initial raw materials. They are one of the few polymers that can be purposefully regulated by the number of cross-links, the

flexibility of polymer molecules, and the nature of intermolecular interactions. Polyurethanes can be obtained by the interaction of compounds containing iso-cyanate groups with polyfunctional hydroxyl-contain-ing derivatives. As isocyanate, we used 4,4'-diphenyl-methane diisocyanate, widely used in the production of flexible polyurethanes. Polyhydroxypropylene glycol was used as a hydroxyl-containing compound, which served as a good hydrophobic component. Thus, poly-oxidepropylene glycol mainly determines the complex of physic-mechanical properties of obtained polyurethane materials.

The creation of these polyurethane materials was carried out in order to obtain promising polymers characterizing the complex of valuable operational properties, namely: a high rate of heat resistance, elasticity, chemical resistance in aggressive media and water resistance. To obtain coatings based on them, film materials are used practically in all industries.

EXPERIMENTAL METHOD

In work the following materials were used:

The industrial polyester of Laprol brand 2502 (TU-2226-026-10488-57-98) having the following physical and chemical characteristics: acid number, 0.1 mg KOH/g; molecular mass of 2500; the maintenance of OH-group, 6.7%; pH (a methanol: water -

70:30) - 6.1; the moisture content, 0.1%; viscosity kinematic at 30 °C, 540 mm2/s. 4,4'-diphenyl-me-thanediisocyanate (MDI): melting temperature 40.5 °C; d504 = 1.8 5 0; n50d = 1.5906. Butyl rubber (copolymer of isobutylene with isoprene) the BK-2045 brands (TU 38003169-74): viscosity according to Mooney at 100 °C, 8 min. - 45 ±4; not limitation - 2 ±0.2% mol.; p = 865kg/m3.

The combination of polyoxypropyleneglycol (PUR) with 4,4'-diphenyl-methanediisocyanate (MDI) was performed by mixing at room temperature. When polyglycolsare mixed with isocyanate type hardeners, the reaction of urethane formation proceeds according to the mechanism of migration polymerization, based on the ability to attach a polyether hydrogen atom to the nitrogen atom.

CH2 CH2 CH2

I 2 , I 2 ч I 2

HO -CH-CH2O-(-CH-CH2-O -\-CHCH OCH + O = C = N -(( ))-CH2-(( ))-N =C = O ^

^■-C - NH -II

O

-CH-

CH 2 CH 2 CH 2

-NH - C - O-CH -CH-O-(- CH2-CH - O CH -CH- - O O

From the experimental results, it was revealed that the process of interaction of the components of the mixture is accompanied by an increase in viscosity with an increase in the concentration of 4,4'-diphenyl-methanediisocyanate in Table 1.

Table 1

The effect of the content of isocyanates groups on the viscosity of the reaction mixture Таблица 1. Влияние содержания изоцианатных групп на вязкость реакционной смеси

It is shown that after 60 min the quantities of isocyanates groups' decreases to zero, which proves the course of chemical interaction due to the isocyanate groups. The copolycondensation process ends when they are fully consumed.

The viscosity of the reaction mass also increases with an increase in the copolycondensation time from zero to 60 minutes, and the time of complete consumption of the isocyanates groups coincides with the point of maximum viscosity of the cooligomer.

By extraction of the hinge plate of cooligomer with acetone in the Soxhlet apparatus we determined

ttie degree Hf interaction, i.e. the output; of polyurethane cooligomer (PUR), obtained with different ratios of the initial components.

Table 2

Effects of the ratio of POPG: MDI on the output of polyurethane cooligomer Таблица 2. Влияния соотношения ПОПГ : ДМДИЦ на выход полиуретанового соолигомера

Name The reaction mixture

1 2 3 4 5

POPG: MDI, mass of the part 100:10 100:15 100:20 100:30 100:40

Output of PUR, % of mass 90.5 92.5 95.6 95.0 94.8

As it can be seen from Table 2, the PURG:MDI ratio has a significant effect on the PUR output. The optimal ratio of POPG to MDI, which provides the highest yield of PUR (95.6% of possible), is 100:20.

The increase in the content of MDI in the reaction mixture to 30-40 parts by weight does not increases the yield of PUR. After depletion of OH groups, MDI remains an independent component in the system and, because of self-structuring, leads to a decrease in the elasticity of PUR.

PUR, along with high rates of physic-mechanical characteristics, possesses high chemical resistance. The thermal stability of PUR at elevated temperatures was studied using differential thermogravimetry (DTG) and differential thermal analysis (DTA) using a Paulik-Erdei system derivatograph with a temperature increase from 20 to 500 °C at a rate of 5 °C per minute.

Indicator Time of interaction, min Molecular mass of mix, Mn Dynamic viscosity, Pas

Maintenance of

DMDIT, %:

30 60 800 20.0

20 60 500 15.0

15 60 300 13.0

A12O3 was used as an inert substance; the sample weight was 200 mg (Fig. 1). Judging from the DTG curve, from a mark of 120 °C on the sample, unachieved POPG and MDI can diffuse with a weight loss of 5%. At around 340 °C, the destruction of the sample is fixed, and the mass loss in general is 84%.

Fig. 1. DTA curves of a polyurethane cooligomer (1) and butyl rubber(2)

Рис. 1. Кривые ДТА полиуретанового соолигомера(1) и бутил каучука (2)

Judging from the DTG curve, from the 120 °C mark on the sample, unbound POPG and MDI can diffuse with a weight loss of 5%. At around 340 °C, the destruction of the sample is fixed, and the mass loss in general is 84%. To obtain a highly adhesive and highly elastic composite, we studied mixtures of polyurethane cooligomer with butyl rubber (VK), which have high heat resistance, elasticity, chemical resistance in aggressive media, and weather resistance and water resistance. It is shown that when PUR is mixed with BC, a polymer system is formed, the macromolecules of which mechanically interact, forming the so-called interpenetrating networks.

The crushed, suspended BC was placed in a laboratory reactor (V = 2.0 L) with toluene (or xylene) and stirred at 40-50 °C for 2-3 h until completely dissolved. After BK was completely dissolved in the solution, 4,4'-diphenyl-methane diisocyanate was added at a certain ratio of components and stirred for 1.5-2 h, after which the mixture was added to the mixture and stirred for another 50-60 min at room temperature. Compositions of prepared compositions with different component ratios are given in Table 3.

Of greatest interest was the compositional mixture 3. The IR-spectra of the POPG and MDI cooligomer (Fig. 2) was obtained by pressing it together with KBr (IR spectrophotometer Specord-75 JR). The

Table 3

Compositions of prepared compositions based on mixtures of a solution Таблица. Составы композиций на основе смесей

Name Composition of mixtures

1 2 3

Components, parts by weight: 5% solution of BK in:

toluene 100 100 100

POPG 100 100 100

MDI 10 15 20

%

40 35 30 25 20 15 10 5 v-100 sm1 Fig. 2. IR spectra of polyurethane cooligomer (1), butyl rubber (2)

and mixtures of PUR with BK (3) Рис. 2. ИК спектры полиуретанового соолигомера (1), бутил-каучука (2) и смеси ПУСО с БК (3)

components were taken in a ratio of 300 mg of salt and 2 mg of the test sample of cooligomer. The tablets were pressed at a pressure of 0.8 MPa. In the region of 1660 cm-1, the absorption of C=O and C=N bonds is manifested. The frequency C=N band (1700 cm-1) is shifted to the frequency range of the fluid due to conjugation of the C-NH group. In the spectrum of the mixture cooligomer and butyl rubber (Fig. 2, cf. 3), the absorption is 2900 cm-1, 1400-1300 cm-1. A 1710 cm-1 band appeared, corresponding to a C=O group not related to the NH group. The absorption of 930 cm-1 associated with NH2 deformation vibrations increased. In all likelihood, during the formation of the composition, the CN bond is broken and the butyl rubber links are joined at the points where the bond is broken.

The thermal characteristics of the compositions are shown in a derivatogram (Fig. 3.). Two endothermic effects were recorded on the DTG curve: one at 150 °C, followed by a weight loss of 7.1%. Obviously, the solvent diffuses from the composition. The second peak ofthe DTG curve corresponds to a temperature of362 °C, which probably indicates the beginning of the destruction of the composition, the mass loss is about 80%.

A m. %

j

1, С

Fig. 3. Differential thermal analysis curves for thermooxidative degradation of the composition of polyurethane cooligomer (1) and a mixture of polyurethane cooligomer with butyl rubber (2) Рис. 3. Кривые дифференциально-термического анализа при термоокислительной деструкции композиции полиуретоно-вой соолигомера(1) и смеси полиуретоновой соолигомера с бутилкаучуком(2)

Table 4

Physical-mechanical properties of compositions of cooligomer + BK

Таблица 4. Физико-механические свойства композиций полиуретанового соолигомера с бутилкаучуком

Composition

Indicators 1 2 3

Tensile strength, MPa 24.0 25.0 26.0

Conditional voltage, MPa:

at 100% elongation 11.0 11.7 12.5

at 300% elongation 17.0 18.1 22.5

Relative elongation,% 500 340 350

Residual elongation,% 40 45 20

Tear resistance, N/mm 41 54 60

Adhesive strength, kN/m 6.0 7.4 8.0

Shorehardness, usl. units 83 87 90

Chemical resistance:

In H2SO4 (5%) + + +

In HNO3 (10%) + + +

In HCl (30%) - - +

ЛИТЕРАТУРА

iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.

1. Маслюк А. Ф., Сонина Н.И. Синтез и свойства статических полимеризационно способных многофункциональных оли-гоуретанов и полимеры на их основе. Пластич. массы. 1990. № 8. С. 17.

2. Билалов Я.М., Шихалиев К.С. Получение клеевых композиций на основе полимеров. Баку: Изд. АзГНА. 2010. 185 с.

3. Аскадский А.А. Влияние сильных межмолекулярных и химических взаимодействий на совместимость полимеров. Усп. химии. 1999. № 4. С. 349-364.

4. Билалов Я.М., Аббасов А.М., Сафаров М.А. Получение термостойких композиций на основе модифицированных

Comparison of the differential thermal analysis data of the co-oligomer and the cooligomer + BK composition shows that the resulting composition is thermally more stable than the initial cooligomer. The physic-mechanical properties of the obtained compositions have been studied, the results of which are presented in the Table 4.

Taking into account the values of IR, DTA, TGA and the results of the Table, it is clear that composition 3 based on a mixture of BK + POPG + MDI (100 + 100 + 20 parts by weight) is a highly adhesive polymer composition that has improved physical and mechanical properties.

RESULTS AND DISCUSSION

Combining the cooligomer with butyl rubber (a copolymer of isobutylene and isoprene) increases the elasticity of the system, eliminates shrinkage and improves thermal and chemical resistance. A mixture of cooligomer with butyl rubber is recommended as a highly adhesive and highly elastic coating, adhesive and sealing composition. This composition is also the most stable in aggressive environments, which makes its application promising. The compositions thus obtained can be used in the manufacture of polymer products for the petroleum and engineering industries. The co-poly-condensation kinetics was studied, poly-oxide propylene glycol cooligomers and 4,4'-diphenyl-me-thanediisocyanate were obtained. It was found that the urethane formation reaction proceeds in accordance with migration polymerization, based on the addition of mobile hydrogen atoms of the polyester to the nitrogen atom. The morphology of the synthesized cooligomers was studied by IR spectroscopy. It has been shown that combining a cooligomer with butyl rubber (a copoly-mer of isobutylene and isoprene) increases the elasticity of the system, eliminates shrinkage and improves thermal and chemical resistance. A mixture of cooligomer with butyl rubber is recommended as a highly adhesive and highly elastic coating, adhesive and sealing composition.

REFERENCES

1. Maslyuk A.F., Sonina N.I. Synthesis and properties of static polymerizable multifunctional oligourethanes and polymers based on them. Plastich. Massy. 1990. N 8. P. 17 (in Russian).

2. Bilalov Y.M., Shykhaliev K.S. Preparation of adhesive compositions based on polymers. Baku: Publish. AzGNA. 2010. 185 p. (in Azerbaijan).

3. Askadsky A.A. The influence of strong intermolecular and chemical interactions on the compatibility of polymers. Usp. Khim. 1999. N 4. P. 349-364 (in Russian).

4. Bilalov Y.M., Abbasov A.M, Safarov M.A. Preparation of heat-resistant compositions based on modified mixtures of elastomers. In book: Modification of polymers and composite materials based

смесей эластомеров. В кн.: Модификация полимеров и композиционных материалов на их основе для нефтяной и нефтехимической отраслей. Баку: Изд. АНХ. 2002. С. 84-93.

5. Курбанова Н.И., Сеидов Н.М. Новые композиционные материалы на основе модифицированных бинарных смесей эластомеров. Азерб. хим. журн. 2008. № 2. С. 112-116.

6. Курбанова Н.И. Композиционные материалы на основе модифицированных ненасыщенных эластомеров. Азерб. хим. журн. 2006. № 3. С. 52-57.

7. Семчиков Ю.Д. Высокомолекулярные соединения. М.: Академия. 2008. 368 с.

8. Мустафаева Р.Э. Получение термостойких резин на основе смесей эластомеров. Тез. докл. науч. конф., посв. 100-летнему юб. Акад. М.Ф. Нагаева. Баку: АзНЕФТЕ-ХИМ. 2008. С. 224-225.

9. Мусаева Э.Э., Билалов Я.М., Алиева С.Ф. Атмо-сферно-защитные покрытия для эластичных поверхностей на основе смесей эластомеров. Промышл. про-во и использ. эластомеров. 2009. № 1. С. 15-20.

10. Мовлаев И.Г., Ибрагимова С.М., Бабаева Р. Э. Озоностой-кие резины на основе смеси эластомеров. VIII науч.-практ. конф. «Резиновая промышленность. Сырьё, материалы, технологии». Тез. докл. 14-18 мая 2001. М.: С. 256-257.

11. Макарова Д.Н., Макаров Т.В. Влияние технологических добавок на вязкость композиций на основе бутил-каучука. Каучук и резина. 2008. № 2. С. 20-22.

12. Куренков В.Ф. Химия высокомолекулярных соединений. Казань: Изд-во "Бутлеровские сообщения". 2004. 146 с.

13. Курбанова Н.И., Сеидов Н.М. Новые композиционные материалы на основе модифицированных бинарных смесей эластомеров. Азерб. хим. журн. 2008. № 2. С. 112-116.

14. Курбанова Н.И. Модификация ненасыщенных эластомеров функционально-замещенными карбоновыми кислотами. Процессы нефтехимии и нефтепереработки. 2004. № 4. С. 64-68.

15. Кулезнев В.Н., Шершнев В.А. Химия и физика полимеров. М.: Высш. шк. 2007. 367 с.

16. Кулезнев В.Н Смеси и сплавы полимеров. М.: Химия. 2013. 304 с.

17. Кудрявцев Я.В., Платэ Н.А., Литманович А.Д. Макро-молекулярные реакции в расплавах и смесях полимеров. Теория и эксперимент М.: Наука. 2008. 380 с.

18. Крыжановский В.К., Кербер М.Л., Бурлов В.В. Производство изделий из полимерных материалов. СПб: Профессия. 2011. 460 с.

19. Кахраманлы Ю.Н., Билалов Я.М. Исследование свойств несовместимых полимерных смесей, модифицированных компатибилизатором. Пластич. массы. 2011. № 6. С. 53-58.

20. Ибрагимова М.Д. Полифункциональные мономеры, макро-мономеры и продукты их превращений. Процессы нефтехимии и нефтепереработки. 2008. № 4. С. 98-111.

21. Ермаков С.Н., Кравченко Т.П. Молекулярные полимер-полимерные композиции. Некоторые аспекты получения. Пластич. массы. 2003. № 12. С. 21-26.

on them for the oil and petrochemical industries. Baku: Publish. ANKh. 2002. P. 84-93 (in Azerbaijan).

5. Kurbanova N.I, Seidov N.M. New composite materials based on modified binary mixtures of elastomers. Azerb. Khim. Zhurn. 2008. N 2. P. 112-116 (in Azerbaijan).

6. Kurbanova N.I Composite materials based on modified unsatu-rated elastomers. Azerb. Khim. Zhurn. 2006. N 3. P. 52-57 (in Azerbaijan).

7. Zemchikov Yu.D. High-molecular compounds. M.: Academiya. 2008. 368 p. (in Russian).

8. Mustafaeva R.E. Preparation of heat-resistant rubbers based on mixtures of elastomers. Abstracts of the scientific conference devoted to the 100th anniversary of Academician M.F. Nagiyev. Baku: AzNEFTEKHM. 2008. P. 224-225 (in Azerbaijan).

9. Musaeva E.E, Bilalov Y.M., Alieva S.F. Atmosphere-protective coatings for elastic surfaces based on elastomer mixtures. Promysh Proizv. Isp. Elastomer. 2009. N 1. P.15-20 (in Russian).

10. Movlaev I.G, Ibragimova S.M., Babaeva R.E. Ozone resistant rubber based on a mixture of elastomers. The eighth scientific-practical conference "Rubber industry. Raw materials, materials, technologies". Abstracts. May 14-18. 2001. M.: P. 256-257 (in Russian).

11. Makarova D.N., Makarov T.V. Effect of technological additives on the viscosity of compositions based on butyl rubber. Kauchuk i Resina. 2008. N 2. P. 20-22 (in Russian).

12. Kurenkov V.F. Chemistry of macromolecular compounds. Kazan: Izd-vo Butlerovskie Soobscheniya. 2004. 146 p. (in Russian).

13. Kurbanova N.I, Seidov N.M. New composite materials based on modified binary mixtures of elastomers. Azerb. Khim. Zhurn. 2008. N 2. P. 112-116 (in Azerbaijan).

14. Kurbanova N.I Modification of unsaturated elastomers by functionally substituted carboxylic acids. Protsessy Neftekhim. Neftepererab. 2004. N 4. P. 64-68 (in Russian).

15. Kuleznev V.N, Shershnev V.A. Chemistry and physics of polymers. Recycling and additional. M.: Vyssh. Shk. 2007. 367 p. (in Russian).

16. Kuleznev V.N. Mixtures and alloys of polymers. M.: Khimiya. 2013. 304 p. (in Russian).

17. Kudryavtsev Y.V., Plate N.A., Litmanovich A.D. Macromolec-ular reactions in melts and polymer mixtures. Theory and Experiment. M.: Nauka. 2008. 380 p. (in Russian).

18. Kryzhanovskiy V.K., Kerber M.L, Burlov V.V. Manufacture of plastic products. SPb.: Publishing profession. 2011. 460 p. (in Russian).

19. Kahramanly Y.N., Bilalov Yu.M. Investigation of the properties of incompatible polymer mixtures modified with a compatibilizer. Plastich massy. 2011. N 6. P. 53-58 (in Russian).

20. Ibragimova M.D. Polyfunctional monomers, macro-monomers and products of their transformations. Protsessy Neftekhim. Neftepererab. 2008. N 4. P. 98-111 (in Russian).

21. Ermakov S.N., Kravchenko T.P. Molecular polymer-polymer compositions. Some aspects of getting. Plastich. massy. 2003. N 12. P. 21-26 (in Russian).

22. Билалов Я.М., Агакишиева М.А, Алиева С.Ф. Химия и физика высокомолекулярных соединений. Баку: Изд. АзГНА. 2012. 141 с.

23. Кияненко Е.А., Зенитова Л.А. Физико-механические свойства полиуретановых покрытий, наполненных твердыми неорганическими отходами. Вестн. Казан. технол. ун-та. 2011. С. 92-96.

24. Ковалевская И.В. Модификация полиуретановых герметикой дисперсными неорганическими наполнителями. Вестн. Казан. технол. ун-та. 2010. № 1. С. 13-19.

22. Bilalov Y.M., Agakishieva M.A., Alieva S.F. Chemistry and physics of high-molecular compounds. Baku: AzGNA. 2012. 141 p. (in Azerbaijan).

23. Kiyanenko E.A., Zenitova L.A. Physical and mechanical properties of polyurethane coatings filled with solid inorganic wastes. Vestn. Kazan. tekhnol. un-ta. 2011. P. 92-96 (in Russian).

24. Kovalevskaya I.V. Modification of polyurethane sealants with dispersed inorganic fillers. Vestn. Kazan. tekhnol. univ. 2010. N 1. P. 13-19 (in Russian).

Поступила в редакцию 28.02.2018 Принята к опубликованию 17.12.2018

Received 28.02.2018 Accepted 17.12.2018

i Надоели баннеры? Вы всегда можете отключить рекламу.