Научная статья на тему 'SYNTHESIS AND STUDIES OF Cu(II),Ni(II),Co(II) COMPLEXES WITH bis(SALICILIDEN)HYDRAZON'

SYNTHESIS AND STUDIES OF Cu(II),Ni(II),Co(II) COMPLEXES WITH bis(SALICILIDEN)HYDRAZON Текст научной статьи по специальности «Химические науки»

CC BY
43
11
i Надоели баннеры? Вы всегда можете отключить рекламу.
Журнал
Azerbaijan Chemical Journal
Область наук
Ключевые слова
bis(saliciliden)hydrazon / Cu(II) / Ni(II) / Co(II) complexes / thermal analysis / бис(салицилиден)гидразон / комплексы Cu(II) / Ni(II) / Со(II) / термический анализ / bis(salisiliden)hidrazon / Cu(II) / Ni(II) / Co(II) kompleksləri / termal analiz

Аннотация научной статьи по химическим наукам, автор научной работы — E.A. Guliyeva, P.A. Fatullayeva, T.M. Hagverdiyeva

New complexes of Cu(II), Co(II), and Ni(II) with bis(salicylidene)hydrazone have been obtained. It has been shown that bis(salicylidene)hydrazone forms bi-nuclear complexes with the ions of these metals. The structure and physicochemical properties of these complexes have been studied by IR, UV spectroscopy, EPR and thermogravimetric analysis. IR spectra show that coordination of ligand with metal ion is carried out through oxygen atom of phenolic group and nitrogen atom of C=N group. In the electronic spectra of the ligand there are absorption bands of the aromatic ring transition at ~240 and 290 nm (related to π→π* and nπ transitions). The absorption bands at 340 and 380 nm can be attributed to the absorption of the azomethine group conjugated to the benzene ring. On the basis of thermogravimetric analysis the stages of thermal decomposition of synthesized complexes and the composition of solid reaction products obtained at these stages have been determined. It has been shown that the final products of thermal decomposition consist of Co, Ni, Cu oxides. In the EPR spectrum of the copper complex a very weakly asymmetric signal with g=2.10 is observed, which may indicate a tetrahedral (pseudotetrahedral) structure of the complex.

i Надоели баннеры? Вы всегда можете отключить рекламу.
iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.
i Надоели баннеры? Вы всегда можете отключить рекламу.

СИНТЕЗ И ИССЛЕДОВАНИЕ КОМПЛЕКСОВ Cu (II),Ni(II),Сo(II) C бис(САЛИЦИЛИДЕН)ГИДРАЗОНОМ

Получены новые комплексы Cu(II), Cо(II), Ni(II) с бис(салицилиден)гидразоном. Показано, что бис(салицилиден)гидразон образует с ионами указанных металлов биядерные комплексы. Строение и физико-химические свойства этих комплексных соединений изучены методами ИК-, УФ-спектроскопии, ЭПР и термогравиметрического анализа. ИК-спектры показывают, что координация лиганда с ионом металла осуществляется через атом кислорода фенольной группы и атомом азота группы C=N. В электронных спектрах лиганда имеются полосы поглощения перехода ароматического кольца при ~240 и 290 нм(относящиеся к π→π*и nπ переходам). Полосы поглощения при 340 и 380 нм могут быть отнесены к поглощению азометиновой группы, сопряженной с бензольным кольцом. На основании термогравиметрического анализа определены стадии термического разложения синтезированных комплексных соединений, и состав твердых продуктов реакции, полученных на этих стадиях. Показано, что конечные продукты термического разложения состоят из оксидов Co, Ni, Cu. В спектре ЭПР медного комплекса наблюдается очень слабо асимметричный сигнал с g=2.10, что может указывать на тетраэдрическое (псевдотетраэдрическое) строение комплекса.

Текст научной работы на тему «SYNTHESIS AND STUDIES OF Cu(II),Ni(II),Co(II) COMPLEXES WITH bis(SALICILIDEN)HYDRAZON»

116

AZERBAIJAN CHEMICAL JOURNAL № 2 2023

ISSN 2522-1841 (Online) ISSN 0005-2531 (Print)

UDC 541.49+546.562

SYNTHESIS AND STUDIES OF Cu(II),Ni(H),Co(H) COMPLEXES WITH

bis(SALICILIDEN)HYDRAZON

E.A.Guliyeva, P.A.Fatullayeva, T.M.Hagverdiyeva

M.Nagiyev Institute of Catalysis and Inorganic Chemistry, Ministry of Science and Education

of the Republic of Azerbaijan

esmira.quliyeva68@mail.ru

Received 04.10.2022 Accepted 18.01.2023

New complexes of Cu(II), Co(II), and Ni(II) with bis(salicylidene)hydrazone have been obtained. It has been shown that bis(salicylidene)hydrazone forms bi-nuclear complexes with the ions of these metals. The structure and physicochemical properties of these complexes have been studied by IR, UV spec-troscopy, EPR and thermogravimetric analysis. IR spectra show that coordination of ligand with metal ion is carried out through oxygen atom of phenolic group and nitrogen atom of C=N group. In the electronic spectra of the ligand there are absorption bands of the aromatic ring transition at ~240 and 290 nm (related to rc^rc* and n- n transitions). The absorption bands at 340 and 380 nm can be attributed to the absorption of the azomethine group conjugated to the benzene ring. On the basis of thermogravimetric analysis the stages of thermal decomposition of synthesized complexes and the composition of solid reaction products obtained at these stages have been determined. It has been shown that the final products of thermal decomposition consist of Co, Ni, Cu oxides. In the EPR spectrum of the copper complex a very weakly asymmetric signal with g=2.10 is observed, which may indicate a tetrahedral (pseudotetra-hedral) structure of the complex

Keywords: bis(saliciliden)hydrazon, Cu(II),Ni(II),Co(II) complexes, thermal analysis.

doi.org/10.32737/0005-2531-2023-2-116-122 Introduction

Hydrazones and their complexes play an important role in many areas of chemistry due to their antibacterial, antioxidant, fungicidal, pharmacological, and antimalarial properties [1-4]. The antibacterial and fungicidal properties of cobalt, nickel, and copper complexes obtained from hydrazones containing heteroatoms such as nitrogen, oxygen, and sulfur have also been studied in the literature [5-7]. In these compounds, a possible relationship between chemical structure and biological activity has been shown, which makes it possible to obtain new effective drugs.

The inherent grouping of -CH=N-NH-C=O hydrozones exhibits the properties of a polynuclear ligand. These compounds exhibit keto-enol tautomerism and can coordinate with transition metal ions in neutral [8-10], monan-ionic or dianionic forms.

In addition, the presence of metal ions systematically increases the activity of hydra-zones and helps reduce the harmful effects of

organic compounds [11-13]. The sequence of anticancer studies and discoveries includes ribonucleotide reductase (RR) inhibition, reactive oxygen species (ROS), poisomerase II inhibition, mitochondrial degradation [14-17].

A number of copper (II) complexes containing acylhydrazones and azomethines of sa-licylaldehyde derivatives containing a large number of tert-butyl substituents has been synthesized. It has been shown that the targeted dimerization of the monomeric fragments of the complexes under the action of steric factors predetermines their magnetochemical behavior [18-20].

The aim of this work is to synthesize new biologically active complexes of Cu(II), Ni(II), and Co(II) with bis(salicylidene)hydrazone.

Experimental part

All chemicals used in the synthesis are analytically pure and have been used in the form in which they were obtained. IR spectra were recorded in the range of 4000-400 cm-1 in

vaseline using a Nicolet IS10 spectrophotometer. Electronic absorption spectra were taken on a UV-VIS Evolution 60S spectrophotometer in ethanol solutions in the range of 200-400 nm. EPR spectra were taken on a Bruker BioSpin GmbH instrument. Magnetic measurements were carried out on a facility using, as a balance, the VL0-20g-2-M microanalytical scales and the [HgCo(SCN)4] reference by the Faraday method.

Thermogravimetric analysis was performed using a NETZSCH STA 449F3 deri-vatograph in an inert atmosphere, elemental analysis was performed in the analytical laboratory of Tubitak, Ankara, on a LECOCHNS 932 analyzer.

Preparation of 6is(salicylidene)hydr-azone(LHd)

To 1 mole (0.965 mg) of monochloroacetic acid dissolved in alcohol, 30 ml of hydrazine hydrate was added through a drop funnel. Then 1 mole of NaOH was added to the reaction mixture and heated under reflux for 2 hours. Afterwards, 1.303 mL (0.01 mol) of salicylic aldehyde in 8 mL of ethyl alcohol was added. The mixture was stirred with the use of a magnetic stirrer at 30-350C for 30 minutes. The resulting yellow precipitate was filtered off, dried and recrystallized from a mixture of dioxane and ethyl alcohol (Tmelt= 2150C). The yield is 0.80g (85%). For C16H14O4N2: calculated: C 70.58 H 4.20 N 11.77; found: C 70.50 H 4.28 N 11.68.

Synthesis of Cu2L2 (L- LHd)

To 0.001 mole (120 mg) of fe(sali-cylidene)hydrazone dissolved in dioxane-ethanol solution, (taken in a 1:1 ratio) was added 0.001 mole (100 mg) of Cu(CHsCOO)2 H2O acetate dissolved in 5 ml of methyl alcohol. The solutions were mixed and stirred with the use of a magnetic stirrer at 30-400C. After 2 days dark brown crystals were formed, which were separated and dried in air at Tmelt >2500C. The crystals are soluble in toluene, THF and pyridine. The yield is.0.70 g (75%). For Cu2(C16H14O4N2)2: calculated: C 53.03 H 3.87 N 7.74; found: C 53.06 H 3.84 N 7.77. Co2L2(L- LHd) and Ni2L2 (L-LHd) complexes were obtained using the above methodology.

For Co2(C16H14O4N2)2: calculated: C 53.85 H 3.92 N 7.85; found: C 53.82 H 3.95 N 7.86. Tmelt >2500C. The yield is 0.68 g (72%).

For Ni2 (C16H14O4N2)2: calculated: C 53.78 H 3.92 N 7.85; found: C 53.81 H 3.89 N 7.87. Tmelt >2500C. The yield is 0.71 g (74%).

Results and discussion

New complexes of Cu(II), Co(II) Ni(II), with ¿/'^(salicylidene)hydrazone have been synthesized. It has been shown that bis(salicylidene)hydrazone forms bidentate complexes with the above metal ions. IR, UV-spectroscopy, EPR, and thermogravimetric methods of analysis were used to identify the obtained complexes.

In the infrared spectra of the ligand, the absorption bands of C=N and C=O groups are observed at 1621 cm-1 and 1572 cm-1. However, after the formation of the complex, comparison of the infrared spectrum shows that this absorption band shifts to the low-frequency region of the spectrum. IR spectra show that the coordination of the ligand is coordinated with the metal ion through the oxygen atom of the phenolic group and the nitrogen atom of the C=N group. Two new absorption bands of v (M-N) and v (M-O) groups 685 cm-1 and 665 cm-1 are observed in the IR spectrum of the Ni(II) complex (Figure1). In the IR spectrum of the Co(II) complex, a shift of the C=N and C=O bands towards lower frequency 1614 cm-1 and 1539 cm-1, and the v(M-N) and v(M-O) bands towards 688 and 667 cm-1 is observed (Figure 2). In the Cu(II) complex, the C=N and C=O absorption bands are observed in the region of 1609 cm-1 and 1536 cm-1 (Figure 3). The absorption band in the region of 1571 cm-1 is related to the acetate anion. The bands characteristic of the carboxylate ion, for asymmetric vibrations are in the range of 1536, 1609 cm-1. Thermogravimetric analysis of the Cu2L2 complex was carried out in the temperature range of 25-9800C (Figure 4). The decomposition process was carried out in 3 stages in the range of 100-9800C. In the first two stages, the decomposition of the organic part of the ligand in the temperature range of 180-9800C and the presence of a residue in the form of metal oxides indicates the end of the process.

a H

S

H

40

35:

20 L5: 10: 5. 01 -J: -10

4000

3500

3000

2S00 2000

wave number (cm-1)

L500

1000

500

Fig. 1. IR spectrum of Ni2L2(L-LHd).

24 j

71

20'

15 .

16 1M n\

io i s

4 i : o -2

I E

moo isuo joooo 2500 2000 1500

wws number (em-1)

iuoo

500

2000 iSOO

wave number ( cm-1)

Fig. 3. IR spectrum of Cu2L2(L- LHd).

25.3

100

200

300

400

500

600

700

800

100.07

19.76

900 979.3

Temperature (0C)

Fig. 4. Derivatogram of the complex Cu2(L)2.

In the first stage (100-400°C) 59.101% of weight loss occurs due to the loss of the organic part of the ligand.

The decomposition of the organic part of the ligand in the temperature range of 180-9800C and the presence of a precipitate in the form of metal oxides indicates the end of the process. The total weight loss is 79.98%.

Thermogravimetric analysis of Co2L2 complex was carried out in 4 stages in the temperature range of 25-9900C. In the first stage, a carboxylate ion loss of 12.639 (theoretically calculated as 11.962%) was observed (Figure 5).

In the following stages the decomposition of the organic part of the ligand in the temperature range of 350-9900C and the presence of a precipitate in the form of metal oxides indicate the end of the process. The total weight loss was 53.222%. 12.626% of the percentage of cobalt oxide in the starting material corresponds to 13.140% of the percentage of residual cobalt oxide in the sample. In the case of the Ni2L2 complex, the decomposition also occurs in 4 stages. At temperatures above 8000C its decom-

position begins with subsequent oxidation to NiO. The total weight loss was 68.933%.

In the electronic spectra of the ligand there are absorption bands of the aromatic ring transition at ~240 and 290 nm (related to n—n* and n- n transitions). The absorption bands at 340 and 380 nm can be attributed to the absorption of the azomethine group conjugated to the benzene ring. In the electronic spectrum of the Cu(II) complex the band observed at 285 nm shifts to the short-wave region and is observed at 265 nm. The weak band at 310 nm refers to the n—»n* transition in the Ni(II) and Co(II) complexes.

In the EPR spectrum of the copper complex a very weakly asymmetric signal with g=2.10 is observed, which may indicate the tet-rahedral (pseudotetrahedral) structure of the complex (Figure 6).

Taking into account the data of elemental analysis, IR and UV-spectroscopy, thermograv-imetric analysis, and EPR data we may suggest the structure of the complexes.

Temperature (0C)

Fig. 5. Derivatogram of the complex Co2L2.

[•ICC*]

[0]

Fig. 6. EPR of the complex Cu2(L)2.

Conclusions

New complexes of Cu(II), Co(II), Ni(II) with bis(salicylidene)hydrazone have been obtained. It has been shown that bis(Sali-cylidene)hydrazone forms bidentate complexes with the ions of the above metals.

On the basis of thermogravimetric analysis the stages of thermal decomposition of synthesized complexes and the composition of solid reaction products obtained at these stages have been determined. It is shown that the final products of thermal decomposition consist of Co, Ni, Cu oxides. In the EPR spectrum of the copper complex a very weakly asymmetric signal with g=2.10 is observed, which may indicate a tetrahedral (pseudotetrahedral) structure of the complex.

References

1. El-Taras A.A., EL-Mehasseb I.M, Ramadan A.M. Synthesis, characterization, magnetic, thermal and electrochemical studies of oxidovanadium (IV) picolyl hydrazones as functional catecholoxidase models. C. R. Chimie. 2012. V. 15. P. 298-310.

2. Akbar Ali M, Mirza A.H, Hjh Junaidah Hj, Bakar Abu, Bernhardt Paul V.Preparation and structural characterization of nickel(II), cobalt(II), zinc(II) and tin(IV) complexes of the isatin Schiff bases of S-methyl and Sbenzyldithiocarbazates. Polyhedron. 2011. V. 30. P. 556-564.

3. Shebl M. Coordination behavior of new bis(tridentate ONO, ONS and ONN) donor hydra-zones towards some transition metal ions: synthesis, spectral, thermal, antimicrobial ananti-tumorstudies. J. Mol. Struct. V. 1128. 2017. P. 7993. doi: 10.1016/j.molstruc. 2016.08.056

4. Shebl M., Saleh A., Khalil A, Saied M.E., Magdah D., Amira Ali A. M. Synthesis, spectral, magnetic, DFT calculations, antimicrobial studies and phe-noxazinone synthase biomimetic catalytic activity of new binary and ternary Cu(II), Ni(II) and Co(II) complexes of a tridentate ONO hydrazone ligand. Inorganic and Nano-Metal Chemistry, 2020. P. 195-209. doi:10.1080/24701556.2020.1770794

5. Seleem H.S, Mostafa M, Hanafy F.I. Stability of transition metal complexes involving three iso-meric quinolyl hydrazones. Spectrochim Acta (A). 2011. 78. P. 1560-1566.

6. Seleem H.S, El-Inany G.A, Eid M.F, Mousa M, Hanafy F.I. Complexation of some hydrazones bearing the quinoline ring. Potentiometric studies. J. Barz Chem. Soc. 2006. V. 17. P. 723-729.

iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.

7. Ismail TMA: Synthesis, characterization and biological activities of mononuclear and binuclear

Fe(III) complexes with some symmetric and un-symmetric Schiff-Base ligands. J. Coord Chem 2006. V. 59. P. 255-270.

8. Gupta L.K, Bansal U, Chandra S. Spectroscopic and physicochemicalstudies on nickel(II) complexes of isatin-3,2'-quinolyl-hydrazones andtheir adducts. Spectrochim Acta (A) 2007. V. 66. P. 972-975.

9. Emara A.A, El-Sayed B.A, Ahmed A.E. Syntheses, spectroscopic characterization and thermal behavior on novel binuclear transition metal complexes of hydrazones derived from 4,6-diacetylresorcinol and oxalyldihydrazine. Spectro-chim Acta (A) 2008. V. 69. P. 757-769.

10. Taha A, Mageed Kiwan A.Preferential solvation and molecular orbitalcalculation studies of solva-tochromic mesoionic 2.3-diaryl-2Htetrazolium-5-thiolate. New J. Chem. 2001. V. 25. P. 502-508.

11. Jain VK, Jain L: The chemistry of binuclear palla-dium(II) and platinum(II) complexes. Coordination Chemistry Reviews. 2005. V. 249. P. 30753197.

12. Terzioglu N., GursoyA. Synthesis and anticancer evaluation of some new hydrazone derivatives of 2.6-dimethylimidazo[2.1-b]-[1,3,4]thiadiazole-5-carbohydrazide.Eur. J. Med. Chem. 2003. V. 38. P. 781-790.

13. Govindan P., Muthukumaran N., Rangasamy R., Periasamy V., Grzegorz M. Jan, Jesus S. Heteroleptic binuclear copper(I) complexes bearing è/'s(salicylidene)hydrazone ligands: Synthesis, crystal structure and application in catalytic N-alkylation of amines. 2015. Polyhedron. V. 89. P. 62-69. doi:10.1016/j.poly. 2014.12.015

14. Premkumar T., Govindarajan S. Thermoanalytical and spectroscopic studies on hydrazinium lighter lanthanide complexes of 2-pyrazinecarboxylic acid. J. Therm. Anal. Calorim. 100. 2010. P. 725732.

15. Gawande P.U., Mandlik P.R., Aswa, A.S. 2015. Synthesis and characterization of Cr(III), Mn(III), Fe(III), VO(IV), Zr(IV) and UO2CVI) complexes of Schiff base derived from isonicotinoyl hydrazone. Indian J. Pharm. Sci. V. 77. No 4. P. 376381.

16. Cindric M., Bjelopetrovic A., Pavlovic G., Damjanovic V., Lovric J., Matkovic-Calogovic D., Vrdoljak V. Copper(II) complexes with ben-zhydrazone-related ligands: synthesis, structural studies and cytotoxicity assay. New J. Chem. 2017. V. 41. P. 2425-2435.

17. Raman N., Johnson S., Sakthivel A. Transition metal complexes with Schiffbase ligands: 4-aminoantipyrine based derivatives-a review. J. Coordination Chem. 2009. V. 62. P. 691-709.

18. Singh V.P., Singh S., Singh D.P., Singh P, Tiwari K., Mishra M., Butcher R.J. Synthesis, spectral and single crystal X-ray diffraction studies on

Co(II), Ni(II), Cu(II) and Zn(II) complexes with o-amino acetophenone benzoyl hydrazone. Polyhedron. 2013. V. 56. P. 71-81.

19. Banerjee S., Mondal S., Sen S., Das S., Hughes D.L., Rizzoli C., Desplanches C., Mandal C., Mitra S. Four new dinuclear Cu(II) hydrazone complexes using various organic spacers: syntheses, crystal structures, DNA binding and cleavage studies and selective cell inhibitory ef-

fect towards leukemic and normal lymphocytes. Dalton Trans., 2009. V. 34. P. 6849-6860.

20. Kendur U., Chimmalagi G.H., Patil S.M., Gudasi K.B., Frampton C.S., Mangannavar C.V., Muchchandi I.S. Mononuclear late first row transition metal complexes of ONO donor hydrazone ligand: Synthesis, characterization, crystallographic insight, in vivo and in vitro anti-inflammator y activity. J. Mol. Struct., 2018. 1153. P. 299-310.

te(SALISÍLÍDEN)HÍDRAZON ÍLO Cu(II), Ni(II), Co(II) KOMPLEKSLORINÍN SÍNTEZÍ УЭ TODQÍQÍ

E.A.Quliyeva, P.O.Fatullayeva, T.M.Haqverdiyeva

Cu(II), Co(II), Ni(II) ila 6is(salisiliden)hidrazonun yeni komplekslari alinmi§dir. 6is(Salisiliden)hidrazonun bu metallann ionlari ila ikinüvali komplekslar amala gatirdiyi góstarilmi§dir. Bu kompleks birla§malarin strukturu va fizi-ki-kimyavi xassalari ÍQ va UV spektroskopiya, EPR va termoqravimetrik analiz metodlari ila tadqiq edilmi§dir. ÍQ spektrlari gostarir ki, liqandin metal ionu ila koordinasiyasi fenol qrupunun oksigen atomu va C=N qrupunun azot atomu vasitasila ba§ verir. Liqandin elektron spektrlarinda ~240 va 290 nm-da aromatik halqa kegidinin udma zolaqlan var (п^-п* va n-п kegidlari ila baglidir). 340 va 380 nm-da udma zolaqlari benzol halqasina birla§mi§ azometin qrupunun udulmasina aid edila bilar. Termoqravimetrik analiz asasinda sintez edilmi§ kompleks birla§malarin termik pargalanma marhalalari va bu marhalalarda alinan bark reaksiya mahsullannin tarkibi müayyan edilmi§dir. Gostarilir ki, termik pargalanmanin son mahsullan Co, Ni, Cu oksidlarindan ibaratdir. Mis kompleksinin EPR spektrinda g = 2.10 olan gox zaif asimmetrik siqnal mü§ahida edilir ki, bu da kompleksin tetraedral (psevdotetraedral) strukturunu gostara bilar.

Agar sozlzr: bis(salisiliden)hidrazon, Cu(II),Ni(II),Co(II) komplekshri, termal analiz.

СИНТЕЗ И ИССЛЕДОВАНИЕ КОМПЛЕКСОВ Cu (II),Ni(n),Co(n) C 6ис(САЛИЦИЛИДЕН)ГИДРАЗОНОМ

Э.А.Гулиева, П.А.Фатуллаева, Т.М.Ахвердиева

Получены новые комплексы Cu(II), Co(II), Ni(II) с бис(салицилиден)гидразоном. Показано, что бис(салицилиден)гидразон образует с ионами указанных металлов биядерные комплексы. Строение и физико-химические свойства этих комплексных соединений изучены методами ИК-, УФ-спектроскопии, ЭПР и термогравиметрического анализа. ИК-спектры показывают, что координация лиганда с ионом металла осуществляется через атом кислорода фенольной группы и атомом азота группы C=N. В электронных спектрах лиганда имеются полосы поглощения перехода ароматического кольца при ~240 и 290 нм(относящиеся к п^-п и n- п переходам). Полосы поглощения при 340 и 380 нм могут быть отнесены к поглощению азометиновой группы, сопряженной с бензольным кольцом. На основании термогравиметрического анализа определены стадии термического разложения синтезированных комплексных соединений, и состав твердых продуктов реакции, полученных на этих стадиях. Показано, что конечные продукты термического разложения состоят из оксидов Co, Ni, Cu. В спектре ЭПР медного комплекса наблюдается очень слабо асимметричный сигнал с g=2.10, что может указывать на тетраэдрическое (псевдотетраэдрическое) строение комплекса.

Ключевые слова: бис(салицилиден)гидразон, комплексы Cu(II),Ni(II),Co(II), термический анализ.

i Надоели баннеры? Вы всегда можете отключить рекламу.