Научная статья на тему 'SYNTHESIS AND STRUCTURE OF SODIUM 1-ALKOXY-1,4-DIOXO-2-ALKENOLATES AND BIS-(4-ALKYL(ARYL)- 1-OXO-1-ALKOXYALKANE-2,4-DIONATO) METALS (II) BASED ON THEM'

SYNTHESIS AND STRUCTURE OF SODIUM 1-ALKOXY-1,4-DIOXO-2-ALKENOLATES AND BIS-(4-ALKYL(ARYL)- 1-OXO-1-ALKOXYALKANE-2,4-DIONATO) METALS (II) BASED ON THEM Текст научной статьи по специальности «Химические науки»

CC BY
44
16
i Надоели баннеры? Вы всегда можете отключить рекламу.
Ключевые слова
SODIUM OXOENOLATES / METAL COMPLEXES / SYNTHESIS / SPECTRAL ANALYSIS / ОКСОЕНОЛЯТЫ НАТРИЯ / МЕТАЛЛОКОМПЛЕКСЫ / СИНТЕЗ / СПЕКТРАЛЬНЫЙ АНАЛИЗ

Аннотация научной статьи по химическим наукам, автор научной работы — Kunavina Elena A., Peshkov Sergey A., Iskandarov Aybek Yu.

A priority task in contemporary organic chemistry consists in the synthesis of practically useful metal complexes having carbonyl-containing ligands. The present article details the isolation of several new bis-(4-alkyl(aryl)-1-oxo-1-alkoxyalkane-2,4-dionato) metals (II) via complex formation of metal salts of (zinc (II), copper (II) and nickel (II)) with sodium 1-alkoxy-1,4-dioxo-2-alkenolates obtained by condensation of alkyl (aryl) methyl ketones with dialkyl oxalates in the presence of sodium or sodium hydride as a condensing reagent. The structure of the synthesised sodium oxoenolates and metal complexes was confirmed by spectral analysis methods (IR, NMR 1H-, NMR 13C-spectroscopy and mass spectrometry). In the IR spectra of the solid samples of the isolated compounds, stretching vibrations bands of ester carbonyl groups were identified, as well as high-intensity ether bands due to the vibrations of С-О-С bonds. For compounds containing aromatic fragments, bands corresponding to vibrations of monosubstituted benzene rings were found in the IR spectra. The NMR spectra of 1H of sodium oxoenolates and metal complexes recorded in DMSO-d6 demonstrated characteristic signals of ethoxy and n-butoxy fragments, methine protons, as well as protons of aromatic rings. Chemical shifts of carbon atoms in the NMR spectra 13C of sodium oxoenolates cor-respond well to the reference values. In the mass spectra of synthesised compounds recorded in electrospray mode, signals of protonated and cationised molecules were observed [M+H]+, [M+NH4]+, [M+Na]+, [M+K]+. Using quantum chemical methods, the models of the obtained compounds were constructed along with a calculation of the formation energies and dissociation constants. Optimisation of the geometric parameters of the equilibrium states of sodium oxoenolate and metal complexes was carried out using the following two methods: density functional theory (DFT) and self-consistent field (SCF). The relative formation energies indicate high stability of the synthesised substances, while, according to the data obtained, copper complexes are characterised by greater stability in the gas phase as compared to zinc and nickel.

i Надоели баннеры? Вы всегда можете отключить рекламу.
iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.
i Надоели баннеры? Вы всегда можете отключить рекламу.

Текст научной работы на тему «SYNTHESIS AND STRUCTURE OF SODIUM 1-ALKOXY-1,4-DIOXO-2-ALKENOLATES AND BIS-(4-ALKYL(ARYL)- 1-OXO-1-ALKOXYALKANE-2,4-DIONATO) METALS (II) BASED ON THEM»

Original article / Оригинальная статья УДК 541.49; 542.06

DOI: https://doi.org/10.21285/2227-2925-2020-10-2-180-187

Synthesis and structure of sodium 1-alkoxy-1,4-dioxo-2-alkenolates and bis-(4-alkyl(aryl)-1-oxo-1-alkoxyalkane-2,4-dionato) metals (II) based on them

© Elena A. Kunavina*, Sergey A. Peshkov*, Aybek Yu. Iskandarov**

*Orenburg State University, Orenburg, Russian Federation **Tashkent State Pedagogical University, Tashkent, Uzbekistan

Abstract: A priority task in contemporary organic chemistry consists in the synthesis of practically useful metal complexes having carbonyl-containing ligands. The present article details the isolation of several new bis-(4-alkyl(aryl)-1-oxo-1-alkoxyalkane-2,4-dionato) metals (II) via complex formation of metal salts of (zinc (II), copper (II) and nickel (II)) with sodium 1-alkoxy-1,4-dioxo-2-alkenolates obtained by condensation of al-kyl (aryl) methyl ketones with dialkyl oxalates in the presence of sodium or sodium hydride as a condensing reagent. The structure of the synthesised sodium oxoenolates and metal complexes was confirmed by spectral analysis methods (IR, NMR 1H-, NMR 13C-spectroscopy and mass spectrometry). In the IR spectra of the solid samples of the isolated compounds, stretching vibrations bands of ester carbonyl groups were identified, as well as high-intensity ether bands due to the vibrations of С-О-С bonds. For compounds containing aromatic fragments, bands corresponding to vibrations of monosubstituted benzene rings were found in the IR spectra. The NMR spectra of 1H of sodium oxoenolates and metal complexes recorded in DMSO-d6 demonstrated characteristic signals of ethoxy and n-butoxy fragments, methine protons, as well as protons of aromatic rings. Chemical shifts of carbon atoms in the NMR spectra 13C of sodium oxoenolates correspond well to the reference values. In the mass spectra of synthesised compounds recorded in elec-trospray mode, signals of protonated and cationised molecules were observed [M+H]+, [M+NH4f, [M+Naf, [M+Kf. Using quantum chemical methods, the models of the obtained compounds were constructed along with a calculation of the formation energies and dissociation constants. Optimisation of the geometric parameters of the equilibrium states of sodium oxoenolate and metal complexes was carried out using the following two methods: density functional theory (DFT) and self-consistent field (SCF). The relative formation energies indicate high stability of the synthesised substances, while, according to the data obtained, copper complexes are characterised by greater stability in the gas phase as compared to zinc and nickel.

Keywords: sodium oxoenolates, metal complexes, synthesis, spectral analysis

Information about the article: Received January 23, 2020; accepted for publication May 29, 2020; available online June 30, 2020.

For citation: Kunavina EA, Peshkov SA, Iskandarov AYu. Synthesis and structure of sodium 1-alkoxy-1,4-dioxo-2-alkenolates and bis-(4-alkyl(aryl)-1-oxo-1-alkoxyalkane-2,4-dionato) metals (II) based on them. Izvestiya Vuzov. Prikladnaya Khimiya i Biotekhnologiya = Proceedings of Universities. Applied Chemistry and Biotechnology. 2020;10(2):180-187. (In English) https://doi.org/10.21285/2227-2925-2020-10-2-180-187

Синтез и CTpoe^e 1-алкокси-1,4-диоксо-2-алкенолятов натрия и бис-(4-алкил(арил)-1-оксо-1-алкоксиалкан-2,4-дионато)металлов(П) на их основе

Е.А. Кунавина*, С.А. Пешков*, А.Ю. Искандаров**

*Оренбургский государственный университет, г. Оренбург, Российская Федерация

**Ташкентский государственный педагогический университет, г. Ташкент, Узбекистан

Резюме: Синтез практически значимых металлокомплексов с карбонилсодержащими лигандами является приоритетной задачей современной органической химии. Комплексообразованием

1-алкокси-1,4-диоксо-2-алкенолятов натрия, полученных конденсацией алкил(арил)метилкетонов с диалкилоксалатами в присутствии в качестве конденсирующего реагента натрия или гидрида натрия, с солями металлов (цинка(Н), меди(Н) и никеля(Й)) выделены новые бис-(4-алкил(арил)-1-оксо-1-алкоксиалкан-2,4-дионато)металлы(11). Строение синтезированных оксоенолятов натрия и металлокомплексов подтверждено спектральными методами анализа (ИК-, ЯМР 1Н-, ЯМР 13С-спектроскопии и масс-спектрометрии). В ИК-спектрах твердых образцов выделенных соединений обнаружены полосы валентных колебаний сложноэфирных карбонильных групп, а также эфирные полосы высокой интенсивности, обусловленные колебаниями связей С-О-С. Для соединений, содержащих ароматические фрагменты в ИК-спектрах, найдены полосы, отвечающие колебаниям монозамещенных бензольных колец. В спектрах ЯМР 1Н оксоенолятов натрия и ме-талло-комплексов, записанных в ДМСО-d6, присутствуют классические сигналы этокси- и н-бутоксифрагментов, метиновых протонов, а также протонов ароматических колец. Химические сдвиги углеродных атомов в спектрах ЯМР 13С окоенолятов натрия хорошо сопоставимы со справочными значениями. В масс-спектрах синтезированных соединений, зарегистрированных в режиме электрораспыления, наблюдаются сигналы протонированных и катионированных молекул [M+Hf, [M+NH4]+, [M+Na]+, [M+K]+. С использованием квантово-химических методов построены модели полученных соединений и рассчитаны энергии образования и константы диссоциации. Оптимизация геометрических параметров равновесных состояний оксоенолятов натрия и металло-комплексов произведена в рамках двух методов: теории функционала плотности (DFT) и самосогласованного поля (SCF). Относительные величины энергий образования свидетельствуют о высокой стабильности синтезированных веществ, при этом, согласно полученным данным, большей устойчивостью в газовой фазе характеризуются медные комплексы.

Ключевые слова: оксоеноляты натрия, металлокомплексы, синтез, спектральный анализ

Информация о статье: Дата поступления 23 января 2020 г.; дата принятия к печати 29 мая 2020 г.; дата онлайн-размещения 30 июня 2020 г.

Для цитирования: Кунавина Е.А., Пешков С.А., Искандаров А.Ю. Синтез и строениe 1-алкокси-1,4-диоксо-2-алкенолятов натрия и бис-(4-алкил(арил)-1-оксо-1-алкоксиалкан-2,4-дионато)металлов(П) на их основе. Известия вузов. Прикладная химия и биотехнология. 2020. Т. 10. N 2. С. 180-187. https://doi.org/10.21285/2227-2925-2020-10-2-180-187

INTRODUCTION

The chemistry of metal complexes is an extensive and rapidly developing field due to the multifunctionality and practical significance of these materials. Among the interesting properties of metal-complex compounds are included biological, pharmacological, photochemical and photo-physical attributes [1-15]. Additional some metal complexes have been successfully used in the development of novel nanoscale structures [16]. Among metal complexes having organic ligands, the least studied are those based on polycarbonyl systems with conjugated a- and p-dioxo links. In order to expand the number of available metal complexes having carbonyl-containing ligands, the present study set out to synthesise new representative compounds and evaluate their stability using quantum chemical methods.

EXPERIMENTAL

Synthesis of 4-alkyl(aryl)-1-alkoxy-1,4-dioxo-

2-sodium alkenolates (1). General procedure. 0.58 g (25 mmol) of sodium was gradually added with stirring to a mixture of 25 mmol of the corresponding methyl ketones (3-methylbutanone-2 or acetophenone), 25 mmol of dialkyl oxalates (di-n-butyloxalate or diethyl oxalate) and

50-100 ml of benzene or toluene. The reagent mixture was boiled for 1.5-2 h (TLC control) in a round bottom flask with reflux condenser. Following evaporation of solvent, the obtained oxoeno-lates were washed with ether.

1-Butoxy-5-methyl-1,4-dioxo-2-hexene-2-so-dium-olate (1a). Yield 84 %, melting point (tmeit) -118-122 °C. IR spectrum, v, cm-1: 2959 vas (CH3), 2931 vas (CH2), 1698 (C1=O), 1625 (C4=0, C=C), 1379 8 (CH3), 1267 v (C-O-C) 951, 770 8 (CH). NMR spectrum 1H, 8, ppm (DMSO-d6): 0,91 t (3H, O(CH2)3CH3, JHH 7,7 Hz), 0,98 d (6H, (CH3)2CH), 1,35 m (2H, OCH2CH2CH2CH3), 1,60 m (2H, OCH2CH2CH2CH3), 2,40 m (1H, (CH3)2CH), 4,05 t (4H, 2OCH2CH2CH2CH3, Jhh 7,2 Hz), 5,65 s (1H, CH). NMR spectrum 13C, 8C, ppm (DMSO-d6): 13,5 (OCH2CH2CH2CH3), 18,6 (OCH2CH2CH2CH3), 19,8 (CH3)2CH), 20,0 (OCH2CH2CH2CH3), 30,1 (CH3)2CH), 63,7 (OCH2CH2CH2CH3), 93,6 (CH), 167,0 (CONa), 168,7 (COOC4H9), 199,4 ((CH3)2CHCO). Mass spectrum (ESI-TOF), m/z (I rel,%): 237.1099 (62) [M+H]+, 259.0914 (47) [M+Na]+. Calculated: for CnH^Na -237.1097; for CnH^Naz - 259.0917.

Sodium 1,4-dioxo-4-phenyl-1-ethoxy-2-buten-2-olate (1b). Yield - 85 %, W - 156-160 °C. IR spectrum, v, cm-1: 3060 v (C-H, Ar), 2979 vas

(CH3), 2929 vas (CH2), 2871 vs (CH2), 1687 v (C1=O), 1623 v (C4=O), 1575 v (C=C), 1505 v (C=C, Ar), 1390, 1364 8 (CH3), 1231 v (C-O-C), 1097 8 (CH, Ar), 950-753 (CH). NMR spectrum 1H, 8, ppm (DMSO-d6): 1.26 t (3H, COOCH2CH 3, J hh 7.4 Hz), 4.17 q (2H, COOCH 2CH3, J HH 7.4 Hz), 6.42 s (1H, CH), 7.29-7.51 m (3H, C3 H, C4 H, C5H in C6H5), 7.82 d (2H, C2 H, C6H in C6H5). NMR spectrum 13C, 8C, ppm (DMSO-d6): 14,0 (OCH2CH3), 60,3 (OCH2CH3), 92,0 (CH), 126,4 (C2' and C6' in C6H5), 128,1 (C3' and C5' in C6H5), 129,8 (C4' in C6H5), 142,2 (C1' in C6H5), 167,2 (CONa), 170,6 (COOC2H5), 185,4 (C6H5CO). Mass spectrum (ESI-TOF), m/z (I rel, %): 243.0624 (38) [M+H]+, 265.0443 (82) [M+Na]+. Calculated: for C12H12O4Na - 243.0628; for C12H11O4Na2 -265.0447.

Synthesis of bis-(4-alkyl(aryl)-1-oxo-1-alko-xyalkane-2,4-dionato)-metals (II) (2a-2e). General procedure. A solution of 1.0 mmol (0.18 g) zinc acetate, 1.0 mmol (0.18 g) of copper acetate or 1.0 mmol (0.24 g) of nickel chloride hexahydrate in 30-50 ml of water was added with stirring to a solution of 2.0 mmol of sodium 4-alkyl(aryl)-1-alkoxy-1,4-dioxo-2-alkenolates (1a or 1b) in 30-50 ml of water for preparation of compounds 2a and 2d, 2b and 2e, 2c and 2f, correspondingly. After 30 minutes, the as-formed precipitate was filtered off and recrystallised from ethanol. The yields were not optimised.

Bis-(1-butoxy-5-methyl-1-oxohexane-2,4-dio-nato) zinc (II) (2a). Yield - 47 %, tmelt -102-104 °C. IR spectrum, v, cm-1: 2959 vas (CH3),

2933 vas (CH2), 1725 v (COOC2Ha), 1599 v (C=C),

1455 8as (CH3), 1267 v (C-O-C), 822, 781 8 (CH). NMR spectrum 1H, 8, ppm (DMSO-d6): 0,91 t (6H, 2COOCH2CH3, Jhh 7,6 Hz), 0,98 d (12H, 2(CH)2CH, Jhh 7,7 Hz), 1,35 m (4H, 2OCH2CH2CH2CH), 1,59 m (4H, 2OCH2CH2CH2CH3), 2,40 m (1H, (CH3)2CH), 4,06 t (2H, OCH2CH2CH2CH3, Jhh 7,2 Hz), 5,64 s (2H, 2CH). Mass spectrum (ESI-TOF), m/z (I rel, %): 491.1616 (34) [M+H]+, 508.1887 (38) [M+NH4]+, 513.1436 (64) [M+Na]+. Calculated: for C22H35OaZn+ -491.1618; for C22H38OaNZn+ - 508.1883; for C22H34OaNaZn+ - 513.1437.

Bis-(1-butoxy-5-methyl-1-oxohexane-2,4-dio-nato) copper (II) (2b). Yield - 38 %, tmen -190-192 °C. IR spectrum, v, cm-1: 2961 vas (CH3)

2934 vas (CH2), 1722 v (COOC2Ha), 1582 v (C=C)

1456 8as (CH3), 1317 v (C-O-C), 823, 796 8 (CH) Mass spectrum (ESI-TOF), m/z (I rel, %): 512.1443 (46) [M+Na]+, 528.1182 (34) [M+K]+. Calculated for C22H34O8NaCu+ - 512.1442; for C22H34O8KCu+ - 528.1181.

Bis-(1-butoxy-5-methyl-1-oxohexane-2,4-dio-nato) nickel (II) (2c). Yield - 34 %, tmelt - 98-100 °C. IR spectrum, v, cm-1: 2958 vas (CH3), 2933 vas (CH2), 1724 v (COOC2Ha), 1598 v (C=C), 1454 8as (CH3), 1269 v (C-O-C), 843, 777 8 (CH). Mass

spectrum (ESI-TOF), m/z (I rel, %): 485.1682 (65) [M+H]+, 507.1498 (32) [M+Na]+. Calculated: for C22H35O8Ni+ - 485.1680; for C22H34O8NaNi+ -507.1499.

Bis-(1-oxo-4-phenyl- 1-ethoxybutane-2,4-dio-nato) zinc (II) (2d). Yield 43%, tmelt - 130-131 °C. IR spectrum, v, cm-1: 2971 vas (CH3), 1726 v (COOS2H5), 1597, 1575 v (C=C), 1519, 1464 v (C=C, Ar), 1429 8as (CH3), 1274 v (C-O-C), 1170 8planar (CH, Ar), 770, 752 8non-planar (CH, Ar). NMR spectrum 1H, 8, ppm (DMSO-d6): 1,27 t (6H, 2COOCH2CH3, Jhh 7,4 Hz), 4,18 q (4H, 2COOCH2CH3, Jhh 7,4 Hz), 6,42 s (2H, 2CH), 7,24-7,52 m (6H, C3H, C4H, C5H in 2C6H5), 7,82 d (4H, C2H, C6H in 2C6H5). Mass spectrum (ESI-TOF), m/z (I rel,%): 503.0678 (80) [M+H]+, 520.0945 (53) [M+NH4]+, 525.0497 (100) [M+Na]+, 541.0235 (22) [M+K]+. Calculated: for C24H23O8Zn+ - 503.0679; for C24H26O8NZn+ -520.0944; for C24H22O8NaZn+ - 525.0498; for C24H22O8KZn+ - 541.0238.

Bis-(1-oxo-4-phenyl- 1-ethoxybutane-2,4-dio-nato) copper (II) (2e). Yield - 42 %, tme,t -125-127 °C. IR spectrum, v, cm-1: 2976 vas (CH3),

1728 v (COOC2H5), 1592 v (C=C), 1564, 1514, 1456 v (C=C, Ar), 1434 8as (CH3), 1272 v (C-O-C), 1142 8planar (CH, Ar), 769, 743 8non-planar (CH, Ar). Mass spectrum (ESI-TOF), m/z (I rel,%): 502.0685 (22) [M+H]+, 519.0948 (98) [M+NH4]+, 524.0503 (100) [M+Na]+, 540.0243 (48) [M+K]+. Calculated: for C24H23O8Cu+ - 502.0683; for C24H26O8NCu+ -519.0949; for C24H22O8NaCu+ - 524.0503; for C24H22O8KCu+ - 540.0242.

Bis-(1-oxo-4-phenyl- 1-ethoxybutane-2,4-dio-nato) nickel (II) (2f).Yield - 38 %, tmelt -140-143 °C. IR spectrum, v, cm-1: 2954 vas (CH3),

1729 v (COOC2Ha), 1595, 1572 v (C=C), 1519, 1456 v (C=C, Ar), 1422 8as (CH3), 1269 v (C-O-C), 1146 8planar (CH, Ar), 771, 745 8non-planar (CH, Ar). Mass spectrum (ESI-TOF), m/z (I rel,%): 497.0745 (56) [M+H]+, 519.0561 (42) [M+Na]+. Calculated: for C24H23O8Ni+ - 497.0741; for C24H22O8NaNi+ -519.0560.

IR spectra of compounds 1a, 1b were recorded on a Bruker Alpha FTIR spectrometer; ATR mode, ZnSe crystal IR spectra of compounds 2a-2e were recorded on a Vertex 70 IR Fourier spectrometer (Bruker, Germany): range -400-4000 cm-1, resolution - 2 cm-1, number of scans of the background and sample - 32, ATR mode, diamond crystal. NMR spectra1H of the compounds 1a, 1b, 2a and 2d and NMR 13C of the compounds 1a and 1b in DMSO-d6 were obtained using NMR Fourier spectrometer Bruker AVANCE II (400 MHz), internal standard -TMS. Mass spectra of the compounds 1, 2 were recorded on a quadrupole-time-of-flight ultra-highresolution mass spectrometer Orbitrap Elite, Mi-croTof Bruker Daltonics. Positive ions were de-

tected in the electrospray ionisation (ESI) mode. Samples dissolved in DMSO diluted with acetoni-trile or methanol were injected with a syringe pump at a flow rate of 240 ^l/h.

The individuality of the obtained substances was confirmed by TLC on Silufol UV-254 plates in the benzene-ether-acetone (10:9:1) system or acetone-hexane (2:3) system; the chroma-tograms were stained using iodine vapour. The initial reagents were purified by distillation before use.

The optimisation of the geometric parameters of the equilibrium states of sodium oxoenolate and metal complexes was carried out using the following two methods: density functional theory (DFT) and self-consistent field (SCF). When calculating using the SCF method, the aug-cc-pVDZ basis was used, while the DFT method used the PBE/DZP approximation. Accounting for solvents was carried out according to the PCM model, in the case of compounds 1a, 1b - benzene and water, for compounds 2a-2f - water. The relative formation energies of the structures 2a-2f were calculated using the following equations

AG°( E) = G°(E)(MeX) - G°(E)(Me2+) + G°(E)(2X-);

R.

Y

о

Me

+

O

AlkO. JL

Nf^ OAlk

O

AG°(E) = G°(E)Zpr - G°(E)Zreag [17].

The calculations were performed in the FireFly 8.1 software package.

RESULTS AND DISCUSSION

The condensation of alkyl(aryl)methyl-keto-nes(3-methylbutanone-2 and acetophenone) with dialkyl oxalates (diethyl oxalate and di-n-butyl-oxalate) in the presence of sodium or sodium hydride in benzene or toluene at a ratio of the starting reagents 1:1:1 yielded sodium 1-alkoxy-1,4-dioxo-2-alkenolates (1) (Fig. 1).

New bis-(4-alkyl(aryl)-1-oxo-1-alkoxyalkane -2,4-dionato)-metals (II) (2) were synthesised by complex formation of sodium oxoenolates (1) with salts of zinc (II), copper (II) and nickel (II) in an aqueous medium with the initial ratio of reagents of 2:1 (Fig. 2).

The structure of the obtained sodium oxoeno-lates (1) and metal (II) complexes (2) based on them was confirmed by means of IR, NMR1H-,

13

NMR H-spectroscopy, as well as mass spec-

trometry1,2.

O

Na(NaH)

1 : 1 : 1 - EtOH

R

OAlk

OO

^ /

Na

1

r = i-Pr (1a), Ph (1b); Alk = n-Bu (1a), Et (1b) Fig. 1. Scheme of the synthesis of 1-alkoxy-1,4-dioxo-2-sodium alkenolates (1) Рис. 1. Схема синтеза 1-алкокси-1,4-диоксо-2-алкенолятов натрия (1)

о

R.

O

OAlk

R.

+ Met2+

OAlk

O

O

2 : 1

- Na+

OO \ / Met

'' \

OO

Na

AlkO.

R

O

R = i-Pr (2a, 2b, 2c), Ph (2d, 2e, 2f); Alk = n-Bu (2a, 2b, 2c), Et (2d, 2e, 2f) Met = Zn (II) (2a, d), Cu (II) (2b, e), Ni (II) (2c, f)

Fig. 2. Scheme of synthesis of bis-[4-alkyl(aryl)-1-oxo-1-alkoxyalkane-2,4-dionato] metals (II) (2)

Рис. 2. Схема синтеза бис-(4-алкил(арил)-1-оксо-1-алкоксиалкан-2,4-дионато)металлов(Н) (2)

1Pretsch E, Bühlmann P, Affolter C. Structure Determination of Organic Compounds. Tables of spectral data (translated from English by B.N. Tarasevich). Moscow: Mir; BINOM. Laboratorya Znanii, 2006. 438 p.

2Silverstein R, Webster F, Kiemle D. Spectrometric identification of organic compounds (translated from English by N.M. Sergeev, B.N. Tarasevich). Moscow: BINOM. Laboratorya Znanii, 2012. 557 p.

1

2

IR spectra of solid samples of sodium 1-alkoxy-1,4-dioxo-2-alkenolates (1) and bis-(4-alkyl(aryl)-1-oxo-1-alkoxyalkane-2,4-dionato) metals (II) (2) are characterised by the presence of a bright stretching band of the ester carbonyl group in the region of 1698-1687 cm-1 (for compounds 1a and 1b) and 172—1722 cm-1 (for compounds 2a-2f). The bands in the region of 1597-1456 cm-1 are due to vibrations of monosubstituted aromatic rings (for compounds 1b and 2d-2f). The high-frequency ether band arising due to vibrations of the C-O-C fragment appears in the region of 1267-1231 cm-1 (for compounds 1a and 1b) and 1317-1267 cm-1 (for compounds 2a-2f).

In the NMR spectra of 1H sodium oxoenolates (1a and 1b) and zinc complexes (2a and 2d) recorded in DMSO-d6, the characteristic ethoxy fragments signals are observed for 1b and 2d) and n-butoxy fragments signals (for compounds 1a and 2a). Methine protons are identified by singlet signals in the region of 5.65-6.42 ppm. Proton signals of the monosubstituted aromatic rings for compounds 1b and 2d with phenyl fragments were recorded in the range 7.24-7.82 ppm.

iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.

The NMR spectra of 13C sodium oxoenolates (1a and 1b) recorded in DMSO-d6, contain signals of alkyl carbon atoms in the range 13.5-30.1 ppm. The signals of aromatic carbon atoms (for compound 1b) were recorded in the region of 126.4-142.2 ppm. Carbon atoms of carbonyl

groups of ester fragments were detected at 168.7 (for n -butoxycarbonyl group of compound 1a) and 170.6 (for ethoxycarbonyl group of compound 1b).

In the mass spectra of synthesised compounds recorded in the electrospray mode, signals of protonated and cationised molecules are observed [M+H]+, [M+NH4]+, [M+Na]+ [M+K]+.

In order to study the stability of the synthe-sised compounds, quantum-chemical calculations of their formation energies were carried out (Table 1). The calculations demon-strate the best convergence under the HF / aug-cc-pVDZ approximation. The solvation effects were considered only in the PBE / DZP approximation; in view of the complexity of the calculation, the solvation correction for the aug-cc-pVDZ basis was not considered in the SCF method. According to the obtained data, copper complexes have the greatest stability in the gas phase out of all the complexes tested. In general, according to the relative values of the formation energies, all compounds are stable, and metal complexes (2) are characterised by greater stability compared to sodium oxoenolates (1).

The values of the theoretically calculated dissociation constants of the obtained compounds are provided in Table 2. The obtained values indicate that zinc complexes (2a, 2d) possess the highest electrolytic dissociation capacity of all obtained metal complexes, while the compounds 1a, 1b are relatively similar in terms of electrolyte strength.

Table 1

Absolute (E0, G0) and relative (AE, AG) formation energies of compounds 1a, 1b, 2a-2f

Таблица 1

Абсолютные (E0, G0) и относительные (AE, AG) энергии образования

соединений 1а, 1b, 2а-2f

Compound HF / aug-cc-pVDZ PBE/DZP PBE / DZP + PCM

E0, Hartree AE, kJ/mol G0 , Hartree AE, kJ/mol G0, Hartree AE, kJ/mol

1а -887,923168 -143,3 -891,566532 -161,5 -891,584457 -137,6

1b -922,301360 -145,2 -926,104389 -157,3 -926,125552 -139,0

2а -3229,962850 -1315,8 -3237,721356 -1435,8 -3237,765320 -79,6

2b -3091,107386 -1354,0 -3098,915975 -1556,8 -3098,947774 -922,5

2c -2959,021762 -1270,8 -2966,768176 -1509,1 -2966,787241 -384,2

2d -3298,717676 -1311,7 -3306,801958 -1448,6 -3306,847853 -80,5

2e -3159,861688 -1348,6 -3167,994962 -1565,4 -3168,030201 -923,1

2f -3027,776747 -1267,1 -3035,849309 -1523,3 -3035,872814 -393,1

Table 2

Dissociation constants of compounds 1a, 1b, 2a, 2c, 2d, 2f

Таблица 2

Константы диссоциации соединений 1а, 1b, 2а, 2c, 2d, 2f

Compound PBE / DZP + PCM

Stage I Stage II

1а 9,5-10"a9 -

1b 4,5-10-38 -

2a 1,7-10-42 1,4-10-28

2c 7,3-10-96 6,0-10-82

2d 8,0-10-41 7,9-10-28

2f 1,4-10-95 1,4-10-82

CONCLUSIONS

During the study, potentially valuable sodium 1-alkoxy-1,4-dioxo-2-alkenolates and complexes of zinc (II), copper (II) and nickel (II) with carbonyl-containing ligands were successfully synthesised.

1. Popov LD, Morozov AN, Shcherbakov IN, Tupolova YuP, Lukov VV, Kogan VA. Metal complexes with polyfunctional ligands based of bis(hydrazones) of dicarbonyl compounds. Russian Chemical Reviews. 2009;78(7):643-658. https://doi.org/10.1070/RC2009v078n07ABEH003 890

2. Levchenkov SI, Shcherbakov IN, Popov LD, Lyubchenko SN, Tsaturyan AA, Belobo-rodov SS, et al. Transition metal complexes with 2,6-di-tert-butyl-p-quinone 1'-phthalazinylhydra-zone. Russian Journal of General Chemistry. 2013;83(10):1928-1936. https://doi.org/10.1134/ S1070363213100216

3. Burlov AS, Zaichenko SB, Popov LD, Vlasenko VG, Borodkin GS, Makarova NI, et al. Synthesis, Structure, and spectral properties of 3,5-di-tert-butyl-1,2-benzoquinone 3-hydroxy-naphthoylhydrazone and Its complexes with Zn(II), Cd(II), Ni(II), Co(II). Russian Journal of General Chemistry. 2019;89(4):727-735. https:// doi.org/10.1134/S1070363219040157

4. Popov LD, Shcherbakov IN, Tupolova YP, Etmetchenko LN, Kogan VA, Levchenkov SI, et al. Copper(II) complexes with N-(phenyl)alkylthiose-micarbazones of 3,5-dichloro- and 3,5-diiodosali-cylic aldehydes. Russian Journal of General Chemistry. 2016;86(2):344-348. https://doi.org/ 10.1134/S1070363216020249

5. Shcherbakov KV, Burgart YaV, Saloutin VI. Metal complexes based on functionalized 4-hydroxypolyfluorocoumarins. Russian Journal of Organic Chemistry. 2014;50(6):815-821. https:// doi.org/10.1134/S1070428014060104

6. Melkozerov SA, Pervova IG, Lipunov IN, Dvoskin EA, Lipunova GN, Barachevskii VA. Synthesis and photoluminescence properties of zinc(II) complexes with salicylaldehyde hetaryl-hydrazones. Russian Journal of General Chemistry. 2013;83(4):646-651. https://doi.org/10.11 34/S1070363213040063

7. Kudyakova YuS, Goryaeva MV, Burgart YaV, Saloutin VI. Asymmetric azomethine ligands based on 2-[(2-aminophenyl)amino-methylidene]-3-oxo-3-polyfluoroalkylpropionates and aldehydes. Russian Chemical Bulletin. 2010;59(9):1753-1760. https://doi.org/10.1007/ s11172-010-0308-8

8. Metelitsa AV, Burlov AS, Borodkina IG, Bren VA, Garnovskii AD, Minkin VI, et al. Luminescent complexes with ligands containing C=N bond. Russian Journal of Coordination

Their structure was established using IR, NMR

1 13

1H-, NMR 13C-spectroscopy and high-resolution mass spectrometry methods. Quantum-chemical calculations of the formation energies and dissociation constants were carried out.

Chemistry. 2006;32(12):858-868. https://doi.org/ 10.1134/S1070328406120025

9. Blokhin YI, Lyubimov IA, Bagautdinov AM, Abramov IA, Khotina IA, Karnoukhova VA. Copper(I) complexes with phenylphosphonous acid diamide. Russian Journal of Coordination Chemistry. 2016;42(6):372-377. https://doi.org/ 10.1134/S1070328416060014

10. Yang T, Niu F, Li LX, Xia ZN, Zhang Y, You ZL. Synthesis, characterization, crystal structures, and antimicrobial activity of cobalt(II) and iron(III) complexes derived from n-(2-hydroxybenzylidene)-3-methylbenzohydrazide. Russian Journal of Coordination Chemistry. 2016;42(6): 402-409. https://doi.org/10.1134/S10 70328416050109

11. Kuvshinova EM, Bykova MA, Vershinina IA, Gornukhina OV, Lyubimova TV, Semeykin AS. Synthesis and coordination properties of cobalt complexes of 5-phenyl-2,3,7,8,12,18-hexamethyl-13,17-diethylporphine and its nitrosubstituted in organic solvents. Izvestiya Vysshikh Uchebnykh Zavedenii. Khimiya i Khimicheskaya Tekhnologiya = Russian Journal of Chemistry and Chemical Technology. 2018;61(7):44-49. (in Russian) https:// doi.org/ 10.6060/ivkkt.20186107.5843

12. Kudayarova T.V., Tyutina M.A., Dani-lova E.A. Complexes of izothiadiazole-containing bromonitrosubstituted three units product with d-metals (Ni, Co, Zn). Izvestiya Vysshikh Uchebnykh Zavedenii. Khimiya i Khimicheskaya Tekhnologiya = Russian Journal of Chemistry and Chemical Technology. 2018;61(12):68-73. https:// doi.org/10.6060/ivkkt.20186112.5799

13. Chizhova NV, Ivanova YuB, Mamardash-vili NZ, Rusanov AI, Khrushkova YV. Synthesis and spectral and fluorescent properties of metal complexes of octakis(4-flurophenyl)tetraazaporphy-rins. Russian Journal of Organic Chemistry. 2019; 55(5):655-661. https://doi.org/10.1134/S107042801905 0129

14. Seifullina II, Martsinko EÉ, Chebanen-ko EA, Gridina TL, Mudrik LM, Fedchuk AS. Antiviral properties of the new coordination compound silver bis(citrato)germanate. Pharmaceutical Chemistry Journal. 2019;53(4):318-321. https://doi.org/10.1007/s11094-019-01999-w

15. Mustafina AR, Skripacheva VV, Konovalov AI. Outer-sphere association of cali-xarenes and other macrocyclic ligands with metal complexes as the basis for the design of molecular devices. Russian Chemical Reviews.

2007; 76(10): 917-930. http://dx.doi.org/10.1070/ RC2007v076n10ABEH003727

16. Amerkhanova ShK, Nurkenov OA, Uali AS, Satpaeva ZhB, Abdiken FS. And complex formation ability of n-2-(2-ydroxyben-zoyl)hydra-zinocarbonotioilbenzamide towards to La3+, Y3+, Nd3+ ions in binary mixture "water-1,4-dioxane". Izvestiya Vuzov. Prikladnaya Khimiya i Biotekhno-logiya = Proceedings of Universities. Applied Che-

1. Popov L.D., Morozov A.N., Shcherba-kov I.N., Tupolova Yu.P., Lukov V.V., Kogan V.A. Metal complexes with polyfunctional ligands based of bis(hydrazones) of dicarbonyl compounds // Russian Chemical Reviews. 2009. Vol. 78. Issue 7. P. 643-658. https://doi.org/ 10.1070/RC2009v078n07ABEH003890

2. Levchenkov S.I., Shcherbakov I.N., Popov L.D., Lyubchenko S.N., Tsaturyan A.A., Belo-borodov S.S., et al. Transition metal comple-xes with 2,6-di-tert-butyl-p-quinone 1'-phthalazi-nylhydrazone // Russian Journal of General Chemistry. 2013. Vol. 83. Issue 10. P. 1928-1936. https://doi.org/10.1134/S10703632 13100216

3. Burlov A.S., Zaichenko S.B., Popov L.D., Vlasenko V.G., Borodkin G.S., Makarova N.I., et al. Synthesis, structure, and spectral properties of 3,5-di-tert-butyl-1,2-benzoquinone 3-hydroxy-naphthoylhydrazone and Its complexes with Zn(II), Cd(II), Ni(II), Co(II) // Russian Journal of General Chemistry. 2019. Vol. 89. Issue 4. P. 727735. https://doi.org/10.1134/S1070363219040157

4. Popov L.D., Shcherbakov I.N., Tupolova Y.P., Etmetchenko L.N., Kogan V.A., Levchenkov S.I., et al. Copper(II) complexes with N-(phenyl)alkylthiose-micarbazones of 3,5-dichlo-ro- and 3,5-diiodosalicylic aldehydes // Russian Journal of General Chemistry. 2016. Vol. 86. Issue 2. P. 344-348. https:// doi.org/10.1134/ S1070363216020249

5. Shcherbakov K.V., Burgart Ya.V., Sa-loutin V.I. Metal complexes based on functionalized 4-hydroxypolyfluorocoumarins // Russian Journal of Organic Chemistry. 2014. Vol. 50. Issue 6. P. 815-821. https://doi.org/ 10.1134/S1070428014060104

6. Melkozerov S.A., Pervova I.G., Lipu-nov I.N., Dvoskin E.A., Lipunova G.N., Barachevskii V.A. Synthesis and photoluminescence properties of zinc(II) complexes with salicylaldehyde hetarylhydrazones // Russian Journal of General Chemistry. 2013. Vol. 83. Issue 4. P. 646-651. https://doi.org/10.1134/ S1070363213040063

7. Kudyakova Yu.S., Goryaeva M.V., Burgart Ya.V., Saloutin V.I. Asymmetric azomethine ligands based on 2-[(2-aminophenyl)amino-methylidene]-3-oxo-3-polyfluoroalkylpropionates and aldehydes // Russian Chemical Bulletin. 2010.

mistry and Biotechnology. 2016;6(4):9-14. (In Russian) https://doi.org/10.21285/2227-2925- 2016-6-4-914

17. Peshkov SA, Khursan SL. Complexation of the Zn, Co, Cd, and Pb ions by metallothio-neins: A QM/MM simulation. Computational and Theoretical Chemistry. 2017;1106:1-6. http:// doi.org/10.1016/j.comptc. 2017.02.029

(ИЙ СПИСОК

Vol. 59. Issue 9. P. 1753-1760. https://doi.org/ 10.1007/s11172-010-0308-8

8. Metelitsa A.V., Burlov A.S., Borodkina I.G., Bren V.A., Garnovskii A.D., Minkin V.I., et al. Luminescent complexes with ligands containing C=N bond // Russian Journal of Coordination Chemistry. 2006. Vol. 32. Issue 12. P. 858-868. https://doi.org/10.1134/S1070328406120025

9. Blokhin Y.I., Lyubimov I.A., Bagautdi-nov A.M., Abramov I.A., Khotina I.A., Karnou-khova V.A. Copper(I) complexes with phenylpho-sphonous acid diamide // Russian Journal of Coordination Chemistry. 2016. Vol. 42. Issue 6. P. 372-377. https://doi.org/10.1134/S10703284160 60014

10. Yang T., Niu F., Li L.X., Xia Z.N., Zhang Y., You Z.L. Synthesis, characterization, crystal structures, and antimicrobial activity of cobalt(II) and iron(III) complexes derived from n-(2-hydroxyben-zylidene)-3-methylbenzohydrazide // Russian Journal of Coordination Chemistry. 2016. Vol. 42. Issue 6. P. 402-409. https://doi.org/10.1134/S107032841 6050109

11. Кувшинова Е.М., Быкова М.А., Вершинина И.А., Горнухина О.В., Любимова Т.В., Се-мейкин А.С. Синтез и координационные свойства кобальтовых комплексов 5-фенил-2,3,7,8,12,18-гексаметил-13,17-диэтилпорфина и его нитрозамещенных в органических растворителях // Известия высших учебных заведений. Серия: Химия и химическая технология. 2018. Т. 61. N 7. С. 44-49. https: //doi.org/10.6060/ ivkkt.20186107.5843

12. Kudayarova T.V., Tyutina M.A., Danilova Е.А. ^mplexes of izothiadiazole-containing bro-monitrosubstituted three units product with d-metals (Ni, Co, Zn) // Известия высших учебных заведений. Серия: Химия и химическая технология. 2018. Т. 61. N 12. С. 68-73. https:// doi.org/10.6060/ivkkt.20186112. 5799

13. Chizhova N.V., Ivanova Yu.B., Mamardashvili N.Z., Rusanov A.I., Khrushko-va Y.V. Synthesis and spectral and fluorescent properties of metal complexes of octakis(4-flurophenyl)tetraazaporphyrins // Russian Journal of Organic Chemistry. 2019. Vol. 55. Issue 5. P. 655-661. https://doi.org/10.1134/S10704280 19050129

14. Seifullina I.I., Martsinko E.E., Chebanenko E.A., Gridina T.L., Mudrik L.M., Fedchuk A.S. Antiviral properties of the new coordination compound silver bis(citrato)ger-manate // Pharmaceutical Chemistry Journal. 2019. Vol. 53. Issue 4. P. 318-321. https://doi.org/ 10.1007/s11094-019-01999-w

15. Mustafina A.R., Skripacheva V.V., Konovalov A.I. Outer-sphere association of calixarenes and other macrocyclic ligands with metal complexes as the basis for the design of molecular devices // Russian Chemical Reviews. 2007. Vol. 76. Issue 10. P. 917-930. http://doi.org/ 10.1070/RC2007v076n10ABEH003727

Критерии авторства

Elena A. Kunavina, Sergey A. Peshkov, Aybek Yu. Iskandarov carried out the experimental work. The authors on the basis of the results summarized the material and wrote the manuscript. All authors have equal author's rights and bear equal responsibility for plagiarism.

Conflict interests

The authors declare no conflict of interests regarding the publication of this article.

The final manuscript has been read and approved by all the co-authors.

INFORMATION ABOUT THE AUTHORS Elena A. Kunavina,

Cand. Sci. (Chemistry), Associate Professor,

Orenburg State University,

13, Pobedy Ave., Orenburg, 460018,

Russian Federation,

e-mail: kea20072007@yandex.ru

Sergey A. Peshkov,

Cand. Sci. (Chemistry), Associate Professor, Orenburg State University, 13, Pobedy Ave., Orenburg, 460018, Russian Federation, e-mail: darvin156@mail.ru

Aybek Yu. Iskandarov,

Associate Professor,

Department of Chemistry and Methodology of Teaching Chemistry, Tashkent State Pedagogical University, 27, Bunyodkor Ave., Tashkent, 100183, Uzbekistan,

e-mail: oybekiskandarov@mail.ru

16. Амерханова Ш.К., Нуркенов О.А., Уали А.С., Сатпаева Ж.Б., Абдикен Ф.С. Синтез и комплексообразующая способность п-2-(2-гидроксибензоил)-гидразинокарбоно-тиоилбензамида (II) по отношению к ионам La3+, Y3+, Nd3+ в бинарной смеси «вода-1,4-диоксан» // Известия вузов. Прикладная химия и биотехнология. 2016. Т. 6. N 4. С. 9-14. https://doi.org/10.21285/2227-2925-2016-6-4-9-14

17. Peshkov S.A., Khursan S.L. Complexation of the Zn, Co, Cd, and Pb ions by metallothioneins: A QM/MM simulation // Computational and Theoretical Chemistry. 2017. Vol. 1106. P. 1-6. http: //doi.org/10.1016/ j.comptc.2017.02.029

Contribution

Кунавина Е.А., Пешков С.А., Искандаров А.Ю. выполнили экспериментальную работу. Авторы совместно обобщили результаты, написали рукопись, имеют на статью равные авторские права и несут равную ответственность за плагиат.

Конфликт интересов

Авторы заявляют об отсутствии конфликта интересов.

Все авторы прочитали и одобрили окончательный вариант рукописи.

СВЕДЕНИЯ ОБ АВТОРАХ

Кунавина Елена Александровна,

iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.

к.х.н., доцент,

Оренбургский государственный университет, 460018, г. Оренбург, пр-т Победы, 13, Российская Федерация, е-mail: kea20072007@yandex.ru

Пешков Сергей Алексеевич,

к.х.н., доцент,

Оренбургский государственный университет, 460018, г. Оренбург, пр-т Победы, 13, Российская Федерация, е-mail: darvin156@mail.ru

Искандаров Айбек Юлдашевич,

доцент, заведующий кафедрой химии и методики ее преподавания, Ташкентский государственный педагогический университет, 100183, г. Ташкент, пр-т Бунедкор, 27, Узбекистан,

е-mail: oybekiskandarov@mail.ru

i Надоели баннеры? Вы всегда можете отключить рекламу.