DOI: 10.6060/ivkkt.20196204.6000 УДК: 547.792.1:548-1
СИНТЕЗ И СТРУКТУРА ТЕТРАХЛОР-ГАЛЛАТ 3,5-ДИАМИНО-1,2,4-ТРИАЗОЛИЯ Т.В. Кудаярова, Е.А. Данилова, Ю.А. Питева, К.Е. Мочалина, М.В. Дмитриев
Татьяна Владимировна Кудаярова *, Елена Адольфовна Данилова, Юлия Алексеевна Питева, Кристина Евгеньевна Мочалина
Ивановский государственный химико-технологический университет, НИИ Макрогетероциклических соединений, Шереметевский проспект, 7, Иваново, Российская Федерация, 153000 E-mail: [email protected] *, [email protected]
Максим Викторович Дмитриев
Пермский государственный национальный исследовательский университет, ул Букирева, 15, Пермь, Российская Федерация, 614990 E-mail: [email protected]
В работе обсуждается синтез и структура комплексного соединения на основе 3,5-диамино-Ш-1,2,4-триазола (гуаназола) с ионами галлия, образующегося при взаимодействии безводного хлорида галлия (III) и гуаназола в среде осушенного метанола. После отгонки растворителя под вакуумом образовавшийся продукт промывали гексаном, ацетоном, целевое соединение экстрагировали ацетонитрилом, и медленным испарением последнего при комнатной температуре в течение трех дней получили кристаллы бежевого цвета, которые были охарактеризованы методами ИК спектроскопии, элементного анализа, масс-спектро-метрии и данными рентгеноструктурного анализа. Комплексный галлат состава -CHNt^GaCh]- существует в виде двух кристаллографически независимых катионов и двух анионов. Комплексное соединение кристаллизуется в центросимметричной пространственной группе моноклинной сингонии. Тетрахлорогаллат-анион представляет собой слегка искаженный тетраэдр, что характерно для структур этого типа. Катионы 1,2,4-триазолия селективно протонированы по атомам N4 и N4A, однако местом преимущественной локализации положительного заряда являются атомы N2 и N2A. Помимо электростатического взаимодействия разноименно заряженных ионов важную роль в стабилизации кристаллической упаковки играет развитая система водородных связей: практически все атомы водорода и хлора задействованы в ее образовании. Каждый из кристаллографически независимых катионов образует центросимметричный димер за счет межмолекулярной водородной связи N2-H2- ••N3 и N2A—H2A^"N3A. Полный набор рентгеноструктурных данных депонирован в Кембриджский банк структурных данных соединений - Cambridge Structural Database (депонент CCDC1894815) и может быть свободно получен по запросу на сайте www.ccdc.cam.ac.uk/data_re-quest/cif.
Ключевые слова: 3,5-диамино-1Н-1,2,4-триазол, гуаназол, хлорид галлия, комплексное соединение, рентгеноструктурный анализ
SYNTHESIS AND STRUCTURE OF 3,5-DIAMINO-1,2,4-TRIAZOLIUM TETRACHLORO-GALLATE Т-V. Kudayarova, Е.А. Danilova, Yu.A. Piteva, К.Е. Mochalina, М-V. Dmitriev
Tatyana V. Kudayarova*, Elena A. Danilova, Yuliya A. Piteva, Kristina E. Mochalina
Research Institute of Macroheterocycles, Ivanovo State University of Chemistry and Technology, Sheremetievskiy ave.,
7, Ivanovo, 153000, Russia
E-mail: [email protected]*, [email protected]
Maxim V. Dmitriev
Department of Organic Chemistry, Perm State University, Bukireva st., 15, Perm, 614990, Russia E-mail: [email protected]
This paper discusses the synthesis and structure of a complex compound based on 3,5-diamino-1H-1,2,4-triazole (guanazole) with gallium ions, formed by the interaction of anhydrous gallium (III) chloride and guanazole in dried methanol. After distilling off the solvent under vacuum, the resulting product was washed with hexane, acetone. The target compound was extracted with acetonitrile, and slow evaporation of the latter at room temperature for three days resulted in beige-colored crystals, which were characterized by IR spectroscopy, elemental analysis, mass-spectrometry and X-ray diffraction analysis. The complex composition of gallate, CHNs+^GaCh], exists as two crystallographically independent cations and two anions. The complex compound crystallizes in the centrosymmetric space group of the monoclinic syngony. The tetrachlorogal-late anion is a slightly distorted tetrahedron, which is typical of structures of this type. 1,2,4-triazolium cations are selectively protonated on the N4 and N4A atoms, however, the site of the preferential localization of the positive charge is the N2 and N2A atoms. In addition to the electrostatic interaction of oppositely charged ions, a developed system of hydrogen bonds plays an important role in the stabilization of the crystal packing: almost all hydrogen and chlorine atoms are involved in its formation. Each of the crystallographically independent cations forms a centrosymmetric dimer due to the intermolecular hydrogen bond N2 - H2"N and N2A - H2A^^^N3A. A full set of X-ray data is deposited into the Cambridge Structural Database of Compounds - the Cambridge Structural Database (Contributor CCDC 1894815) and it can be gotten from the site www.ccdc.cam.ac.uk/data_request/cif.
Key words: 3,5-diamino-1H-1,2,4-triazole, guanazole, gallium chloride, complex compound, X-ray diffraction analysis
Для цитирования:
Кудаярова Т.В., Данилова Е.А., Питева Ю.А., Мочалина К.Е., Дмитриев М.В. Синтез и структура тетрахлор -галлат 3,5-диамино-1,2,4-триазолия. Изв. вузов. Химия и хим. технология. 2019. Т. 62. Вып. 4. С. 121-127
For citation:
Kudayarova Т.У., Danilova Е.А., Piteva Yu.A., Mochalina К.Е., Dmitriev М.У. Synthesis and structure of 3,5-diamino-1,2,4-triazolium tetrachloro-gallate. Izv. Vyssh. Uchebn. Zaved. Khim. Khim. Tekhnol. 2019. V. 62. N 4. P. 121-127
INTRODUCTION
For 1,2,4-triazole two tautomeric forms (1H) -form (1) and (4H) - form (2) are known [1]:
NH,
N-(3 HN--- 3
H 1
1 2
Due to the rapid movement of the proton between N1 and N2, positions 3 and 5 become equivalent in the form 1.
Measuring dipole moments has shown that the preferred tautomeric form is 1 [1].
1,2,4-triazoles unsubstituted at the nitrogen atom exhibit amphoteric properties and, depending on the pH of the medium, can donate or attach a proton. In N-unsubstituted triazoles, when interacting with metals, substitution of both hydrogen and the formation of complexes can occur. The latter largely depends on the reaction conditions and the ratio of reagents. It is known that guanazole derivatives exist in several tautomeric forms (a-d), the state of which in crystalline form often differs from that in solution.
N-N N-NH M-ГШ
.AX МЫ. Ы-М Л.Х H.N^L'VI
NH-NH NH-NH
NH HN
« 9
An analysis of foreign and domestic literature data [2-9] shows that guanazole contains several reaction centers in its structure that can be used to introduce additional groups (substitutes or metal ions) into the guanazole structure, which offer the prospect of increasing bioavailability, selectivity of accumulation and increase the effectiveness of chemotherapy. In addition, guanazole, as a ligand, binds to inorganic or organic anions, forming complexes of various structures, which leads to interesting physical properties, such as photoluminescence and magnetic ones [9, 10].
It should be noted that among coordination compounds, a special place is occupied by complexes obtained on the basis of biogenic metals. This is due to the fact that they play an important role in many biochemical processes and therefore are widely used in plant growing, animal husbandry and pharmacology [11, 12].
On the other hand, complex compounds of many transition elements, including gallium or manganese, can have a wide range of useful properties for which the chemistry of complex compounds is not well understood [13, 14].
So, the author [14] considers the synthesis, structural characteristics and antimicrobial activity of azo dye-based complexes of triazole with Mn (II), Co (II), Ni (II), Cu (II) h Zn (II). Five, of the ten obtained complexes, established biological activity against gram-positive and gram-negative bacteria.
At present, the gallium (III) complexes of N-heterocycles (Fig. 1) are presented in the literature, the structure of which was established only on the basis of the data of IR, UV-spectroscopy and elemental analysis data [15].
>G4
l-Г ^L,
GaCL,
I- [(L^GaCy GaCl4; = pyrazole, 5-methylpyrazole, 4-methylpyrazole,
indazole, 1,2,3-benzotriazole
II. I(L2)4 GaCl2] CI, L2 = imidazole, benzimidazole
Cl\ Л
Cl^ L3
IV
CI.
Cl^'
.4
'Ga'
Ш. [(L3)2 GaCl2] GaCl4, L3 = 1,10-phenanthroline, 2,2-dipyridyl IV. [(L4)2 GaCl2] CI, L4 = 1,10-phenanthroline
Fig. 1. Possible structures of gallium (III) complexes with N-het-erocycles [15]
Рис. 1. Возможное строение комплексов галлия (III) c N- гете-роциклами [15]
In [16], it was shown that gallium (III) salts have pronounced toxicity with respect to a number of tumor cells. For gallium chloride and nitrate [17, 18], the first and second stages of clinical trials were conducted, where they in one degree or another retarded the growth of bladder, liver, and lymphatic tumors. Studies have shown, however, that the effectiveness of drugs is not high enough due to the loss of toxicity due to hydrolysis and the difficulties of transmembrane transport inside tumor cells due to high hydrophilicity [19]. It is obvious that the solution of the above problems can significantly enhance the antitumor activity of gallium salts, which should have a good clinical perspective.
The search for new effective drugs for chemotherapy of tumors is extremely relevant and is conducted in different directions [20-24]. In this regard, studies aimed at the development of methods for the
synthesis of gallium complexes with guanazole, which itself has an antitumor effect [25] are scientifically based. The use of such complexes will increase the solubility of guanazole due to complexation, reduce the tendency to associate the metal complex and increase the selectivity of its accumulation in tumor cells through the formation of a molecular complex with polyvinylpyrrolidone, by analogy with how this is achieved with the targeted delivery of the «Fotolon» photosen-sitizer [26].
EXPERIMENTAL PART
The synthesis of guanazole 1 was carried out according to the method [27] by the cyclization reaction of dicyandiamide and hydrazine hydrate.
IR spectra were measured using the AVATAR 360 FT-IR spectrometer. X-ray diffraction analysis (XRD) was performed on a single-crystal Xcalibur Ruby diffractometer with a CCD detector using the standard procedure (MoKa-radiation, 295(2) K, scanning step 1°). Absorption is taken into account empirically using an algorithm SCALE3 ABSPACK [28]. Crystal syngony ^ftNs-CUGa, MM = 311.64) mon-oclinic, space group P21/n, a 17.358(3), b 6.4407(11), c 18.421(3) A, P 92.119(18)°, V 2058.1(7) A3, Z 8, dcalk 2.012 g/cm3; ^ 3.668 mm-1. The structure was deciphered using the SHELXS [29] program and refined with the full-matrix MNK by F2 in the aniso-tropic approximation for all non-hydrogen atoms using the program SHELXL [30] with graphic interface OLEX2 [31]. Hydrogen atoms were refined independently in the isotropic approximation with normalization of the N-H bond lengths by soft constraints DFIX. Final refinement parameters: R1 0.0376, wR2 0.0682 [for 3574 reflections with I > 2o(I)], R1 0.0613, wR2 0.0769 (for all 4829 independent reflections), S 1.025.
Complex compound with gallium was synthesized by the method [13].
A mixture consisting of guanazole 1 (1 g, 2.52 mmol) and gallium (III) chloride (0.89 g, 2.52 mmol) in dried methanol (30 ml) was stirred under heating to 60 °C for 2 h. The solvent was distilled off in vacuum, the precipitate formed was washed with hexane, acetone, and the target compound was extracted with ace-tonitrile. Slow evaporation of the solvent at room temperature for three days gave beige crystals, well soluble in water, in alcohols, DMSO.
Yield = 0.58 r (74%). Tm*. = 190-192 °C. IR: v (KBr)/cm-1: 3455 (NH2, vas), 3357 (NH2, vs), 2920, 2853, 1691 (C=N), 1658 (NH2, d), 1527, 1464, 1332, 1159. (C-N, alif), 1065, 1010, 798, 687, 632. Found, %: C 7.68, H 1.98, N 22,44, Cl 45.48, Ga 22.34 C2H6N5GaCl4. Calculated, %: C 7.71, H 1.94, N 22.47, Ga 22.37, Cl 45.51. MM 308.86.
RESULTS AND DISCUSSION
The single crystal obtained as a result of slow evaporation from a solution of acetonitrile single crystal represents XRD the complex compound 3 of tetra-chlorogallate with an organic ligand 3,5-diamino-1,2,4-triazolium cation of composition - CHNs[GaCU].
Gallium (III) chloride, which was used in the synthesis, is a typical molecular compound resembling aluminum chloride in properties. It is well soluble in organic solvents and water, while it is hydrolyzed. Gallium is not a typical complexing agent, however, many organometallic complex compounds of gallium chloride with various ligands have been obtained. Thus, the simplest complex can be obtained by direct interaction of chloride with ammonia [32, 33]:
GaCl3 + NH3 = [GaChNft]
It is known that gallium chloride forms adducts with other nitrogen-containing compounds: pyridine, di-pyridyl, trimentylamine, etc. The compound [GaCh PPh3], which is obtained by interaction with triphenylphosphine, similar in structure can be obtained with trimethylar-sine [34].
Based on the literature data [32-34], it can be assumed that the residual water in the reaction mass contributed to the partial hydrolysis of gallium chloride and the formation of HCl, resulting in protonation 1 with the formation of the triazolium cation, the counter-ion of which was the tetrachlorogallate anion.
GaCl3 + HCl ^ H[GaCl4]
H,N
N-NH
AX
GaCI3 MeOH
H,N
N—NH
AX,
. j^GaClJ
N _
H
1 3
Scheme. Synthesis of 3,5-diamino-1,2,4-triazolium tetrachloro-gallate Схема. Синтез тетрахлор-галлата 3,5-диамино-1,2,4-триазолия
According to the data of X-ray structural analysis, two crystallographically independent cations and two anions in compound 3 crystallize in the centrosym-metric space group of the monoclinic syngony (Fig. 2).
The unit cell of the crystal of compound 3 is shown in Fig. 3 The tetrachloro-gallate anion is a slightly distorted tetrahedron, which is typical of structures of this type.
Fig. 3. Unit cell in crystal 3 Рис. 3. Элементарная ячейка в кристалле 3
Triazolium cations are selectively protonated on the N4 and N4A atoms, however, the site of the predominant positive charge localization is the N2 and N2A atoms. The latter fact is confirmed by the distribution of bond lengths in the triazole cycle (Table). So, communication C1=N2, C1A=N2A, C2=N3 and C2A=N3A can only be considered partially delocalized doubles, and C1-N4, C1A-N4A, C2-N4 and C2A-N4A - single bond. A similar distribution of bond lengths in the triazole cycle was observed in other triazole salts [35, 36].
Table
Selected bond lengths for 3
Bond length, Â bond length, Â
C1-N1 1.330(5) C1A-N1A 1.323(5)
C1-N2 1.290(4) C1A-N2A 1.298(4)
C1-N4 1.356(4) C1A-N4A 1.351(4)
C2-N3 1.293(4) C2A-N3A 1.293(4)
C2-N4 1.361(4) C2A-N4A 1.362(4)
C2-N5 1.335(5) C2A-N5A 1.337(4)
N2-N3 1.390(3) n2a-n3a 1.388(3)
Fig. 2. Independent element of the unit cell 3 Рис. 2. Независимый элемент элементарной ячейки 3
In addition to the electrostatic interaction of oppositely charged ions, an developed system of hydrogen bonds plays an important role in the stabilization of the crystal packing: almost all hydrogen and chlorine atoms are involved in its formation. Each of the crystallographically independent cations forms a
centrosymmetric dimer due to the intermolecular hydrogen bond N2-H2- • N3 and N2A-H2A-N3A.
Crystal data were obtained using computer programs: CrysAlis PRO [17], SHELXS97 [18, 19], Mercury [37], pubCIF [38]. A complete set of X-ray diffraction data has been placed in the database Cambridge Structural Database (Deposit CCDC 1894815).
CONCLUSIONS
Thus, we obtained a new complex compound with gallium - tetrachloro-gallate of 3,5-diamino-1,2,4-tri-azolium, which is characterized by physico-chemical methods of analysis. The obtained results of X-ray
ЛИТЕРАТУРА
1. Balabin R.M Tautomeric equilibrium and hydrogen shifts in te-trazole and triazoles: focal-point analysis and ab initio limit. J. Chem. Phys. 2009. V. 131. P. 154307. DOI: 10.1063/1.3249968.
2. Bayrak H., Demirbas A., Demirbas N., Karaoglu S.A. Synthesis of some new 1,2,4-triazoles starting from isonico-tinic acid hydrazide and evaluation of their antimicrobial activities. Eur. J. Med. Chem. 2009. V. 44. P. 4362-4366.
3. Joule J.A., Mills K. Heterocyclic chemistry. 5th ed: Wiley-Blackwel. 2010. 689 p. DOI: 10.1016/j.ejmech.2009.05.022.
4. Islyaikin MK, Rodríguez-Morgade S.M., Torres T. Tria-zoleporphyrazines: a new class ofintrinsically unsymmetrical aza-porphyrins. Eur. J. Org. Chem. 2002. V. 2002. N 15. P. 24602464. DOI: 10.1002/1099-0690(200208)2002:15<2421 :AID-EJOC2421>3.0.CO;2-J.
5. Gema de la Torre, Torres T. Stepwise synthesis of substituted dicyanotriazolehemiporphyrazines. a regioselective approach to unsymmetrically substituted hemiporphyrazines. J. Org. Chem. 1996. V. 61. N 18. P. 6446-6449. DOI: 10.1021/jo960704k.
6. Суханов Г.Т., Суханова А.Г., Филиппова Ю.В., Григорьев Ю.В. Комплексообразование №алкил-3-нитро-1,2,4-триазолов с дигидратом хлорида меди (II). Ползу-новский вестн. 2013. № 3. C. 61.
7. Бумагин Н.А., Петкевич С.К., Клецков А.В., Ливанцов М.В., Голанцов Н.Е., Поткин В.И. Изоксазол-3-ил(изо-тиаол-3-ил)-1,2,4-триазол^1, тетразолы и 1,3,4-оксадиазолы: синтез, комплексы с палладием, использование в катализе. Химия гетероцикп. соедин. 2013. № 10. С. 1633-1649.
8. Карцев В.Г., Толстиков Г.А. Азотистые гетероциклы и алкалоиды. Материалы I Межд. конф. "Химия и биологическая активность азотистых гетероциклов и алкалоидов". T. 1. М.: 2001. 601 с.
9. Burke H.M, Gallagher J.F, Indelli M.T, Vos J.G. The synthesis and characterisation of Rh(III) complexes with pyridyl triazole lig-ands. Inorg. Chim. Acta. 2004. V. 357. N 10. P. 2989-3000. DOI: 10.1016/j.ica.2004.03.003.
10. Rui-Bo Zhang, Jian Zhang, Zhao-Ji Li, Jian-Kai Cheng, Ye-Yan Qin, Yuan-Gen Yao. Novel copper(I)- and copper(Il)-gua-nazolate complexes: structure, network topologies, photoluminescence, and magnetic properties. Cryst. Growth Des. 2008. V. 8. N 10. P. 3735-3744. DOI: 10.1021/cg800378c.
11. Каграманова Ш.И., Кулиева Э.А., Азизов И.В. Влияние новосинтезированных комплексов цинка с аминокислотами на морфофизиологические показатели проростков пшеницы. Академ. журн. Запад. Сибири. 2014. T. 10. № 5. С. 94-95.
crystallographic analysis of a complex compound crystal are deposited in the Cambridge Structural Database of Compounds and can be freely obtained on request at the site www.ccdc.cam.ac.uk/data_request/cif.
ACKNOWLEDGEMENTS
The research was performed using resources of the Center for Collective Use, Ivanovo State University of Chemical Technology "ISUCT".
This work has been made by Financial support from Russian Scientific Foundation, grant No. 18-7300217.
REFERENCES
1. Balabin R.M Tautomeric equilibrium and hydrogen shifts in te-trazole and triazoles: focal-point analysis and ab initio limit. J. Chem. Phys. 2009. V. 131. P. 154307. DOI: 10.1063/1.3249968.
2. Bayrak H., Demirbas A., Demirbas N., Karaoglu S.A. Synthesis of some new 1,2,4-triazoles starting from isonico-tinic acid hydrazide and evaluation of their antimicrobial activities. Eur. J. Med. Chem. 2009. V. 44. P. 4362-4366.
3. Joule J.A., Mills K. Heterocyclic chemistry. 5th ed: Wiley-Blackwel. 2010. 689 p. DOI: 10.1016/j.ejmech.2009.05.022.
4. Islyaikin MK, Rodriguez-Morgade S.M., Torres T. Tria-zoleporphyrazines: a new class of intrinsically unsymmetrical aza-porphyrins. Eur. J. Org. Chem. 2002. V. 2002. N 15. P. 24602464. DOI: 10.1002/1099-0690(200208)2002:15<2421::AID-EJ0C2421>3.0.C0;2-J.
5. Gema de la Torre, Torres T. Stepwise synthesis of substituted dicyanotriazolehemiporphyrazines. a regioselective approach to unsymmetrically substituted hemiporphyrazines. J. Org. Chem. 1996. V. 61. N 18. P. 6446-6449. DOI: 10.1021/jo960704k.
6. Sukhanov G.T., Sukhanova A.G., Filippova Yu.V., Grigoriev Yu.V. Complexation of N-alkyl-3-nitro-1,2,4-tri-azoles with copper (II) chloride dihydrate. Polzunovsky Vest. 2013. N 3. P. 61 (in Rusasian).
7. Bumagin N.A., Petkevich S.K., Kletskov A.V., Livantsov M.V., Golantsov N.E., Potkin V.I. Isoxazol-3-yl (isothiaol-3-yl) -1,2,4-triazoles, tetrazoles and 1,3,4-oxadiazoles: synthesis, complexes with palladium, use in catalysis. Khim. Geterocycl. Soed. 2013. N 10. P. 1633-1649 (in Russian).
8. Kartsev V.G., Tolstikov G.A. Nitrogen heterocycles and alkaloids. Materials of I Int. conf. "Chemistry and biological activity of nitrogenous heterocycles and alkaloids". V. 1. M.: 2001. 601 p. (in Russian).
9. Burke H.M, Gallagher J.F, Indelli M.T, Vos J.G. The synthesis and characterisation of Rh(III) complexes with pyridyl triazole lig-ands. Inorg. Chim. Acta. 2004. V. 357. N 10. P. 2989-3000. DOI: 10.1016/j.ica.2004.03.003.
10. Rui-Bo Zhang, Jian Zhang, Zhao-Ji Li, Jian-Kai Cheng, Ye-Yan Qin, Yuan-Gen Yao. Novel copper(I)- and copper(H)-gua-nazolate complexes: structure, network topologies, photoluminescence, and magnetic properties. Cryst. Growth Des. 2008. V. 8. N 10. P. 3735-3744. DOI: 10.1021/cg800378c.
11. Kahramanova Sh.1, Kuliyeva E.A., Suleymanov G.Z., Az-izov IV. The effect of newly synthesized zinc complexes with amino acids on the morphophysiological indicators of wheat seedlings. Acad. Zhurn. Zapadn. Sib. 2014. V. 10. N 5. P. 94-95 (in Russian).
12. Kahramanova Sh.1, Kuliyeva E.A., Suleymanov G.Z., Azizov I.V. InHuence newly syntesized manganese complexes with amino asids on morphophysiological chracteristics wheat. germ. Am. Internal J. Contemp. Res. 2014. V. 4. N 12. P. 58-60.
13. Кахраманова Ш.И., Джалаладдинов Ф.Ф., Худавер-диев Р.А., Алиева Ч.Ч., Абасов М.Г., Самадова Р.А., Гахраманов Т.О. Синтез и исследование свойств комплексов марганца (II) и рения (IV) с карбамидами. Молодой ученый. 2017. Т. 30. Вып. 164. С. 1-6.
14. Khedr A.M., Gaber M., Abd El-Zaher E.H Synthesis, structural characterization, and antimicrobial activities of Mn(II), Co(II), Ni(II), Cu(II) and Zn(II) complexes of triazole-based fzo-dyes. Chin. J. Chem. 2011. V. 29. N 6. P. 1124-1132. DOI: 10.1002/cjoc.201190211.
15. Collery P., Keppler B. Patent WO N 9302087. 1993.
16. Jakupec M.A., Keppler B.K. Gallium in cancer treatment. Curr. Top. Med. Chem. 2004. V. 4. N 15. P. 1575-1583. DOI: 10.2174/1568026043387449.
17. Einhorn L. Gallium nitrate in the treatment of bladder cancer. Semin. Oncol. 2003. P. 34-41. DOI: 10.1016/S0093-7754(03)00174-X.
18. Chitambar C.R, Purpi D.P., Woodliff J., Yang M., Wereley J.P. Development of gallium compounds for treatment of lymphoma: gallium maltolate, a novel hydroxypyrone gallium compound, induces apoptosis and circumvents lymphoma cell resistance to gallium nitrate. J. Pharmacol. Exp. Ther. 2007. V. 322. N 3. Р. 1228-1236. DOI: 10.1124/jpet.107.126342.
19. Chitambar C.R. Medical Applications and toxicities of gallium compounds. Int. J. Environ. Res. Public Health. 2010. V. 7. N 5. P. 2337-2361. DOI: 10.3390/ijerph7052337.
20. Kustov A.V., Smirnova N.L., Venediktov E.A., Kruchin S.O., Kudayarova T.V., Berezin D.B., Belykh D.V., Khudyaeva I.S. Synthesis and investigation of water-soluble chlorophyll pigments for antimicrobial photodynamic therapy. Dyes and Pigments. 2018. V. 149. P. 553-559. DOI: 10.1016/j.dyepig.2017.09.073.
21. Лукьянец Е.А. Поиск новых фотосенсибилизаторов для фотодинамической терапии. Фотодинамич. терапия и фотодиагн. 2013. Т. 2. № 3. С. 3-16.
22. Kustov A.V., Smirnova N.L., Berezin D.B., Berezin M.B. Thermodynamics of solution of proto- and mezoporphyrins in N,N-dimethylformamide. J. Chem. Thermodyn. 2015. V. 89. Р. 123-126. DOI: 10.1016/j.jct.2015.05.016.
23. Kustov A.V., Smirnova N.L., Berezin D.B., Berezin M.B. Thermodynamics of solution of hemato- and deuteroporphy-rins in N,N- dimethylformamide. J. Chem. Eng. Data. 2013. V. 58. N 9. P. 2502-2505. DOI: 10.1021/je400388j.
24. ^dayarova ^V., Тyutina М.А., Danilova Е.А. Комплексы изотиадиазолсодежащего бромнитрозамещенного трех-звенного продукта с d-металлами (Ni, Co, Zn). Изв. вузов. Химия и хим. технология. 2018. Т. 61. Вып. 12. С. 68-73. DOI: 10.6060/ivkkt.20186112.5799.
25. Islyaikin M.K., Danilova E.A., Kudrik E.V., Smirnov R.P., Budunova A.P., Kinzirskii A. S. Synthesis and study of antitumor activity of macroheterocyclic compounds and their metallo-complexes. Pharm. Chem. J. 1997. V. 3. N 8. P. 409-412.
26. Трухачева Т.В., Шляхтин С.В., Исаков Г.А., Истомин Ю.П. Фотолон - новое средство для фотодинамической терапии. Минск: РУП «Белмедпрепараты». 2009. 64 с.
27. Данилова Е.А., Кудаярова Т.В., Исляйкин М.К., Койфман О.И Синтонный подход в дизайне макрогете-роциклических соединений с использованием диамино-тиадиазолов и триазолов. Рос. хим. .ж. 2016. Т. LX. № 2. С. 59-72.
12. Kahramanova Sh.I., Kuliyeva E.A., Suleymanov G.Z., Azizov I.V. Influence newly syntesized manganese complexes with amino asids on morphophysiological chracteris-tics wheat. germ. Am. Internat. J. Contemp. Res. 2014. V. 4. N 12. P. 58-60.
13. Kahramanova Sh.1, Dzhalaladdinov F.F., Khudaverdiev R.A., Aliyev Ch.Ch, Abasov M.G., Samadova R.A., Gahramanov T.O. Synthesis and study of properties of complexes of manganese (II) and rhenium (IV) with karbamidami. Molodoiy Uchen. 2017. V. 30. N 164. P. 1-6 (in Russian).
14. Khedr A.M., Gaber M., Abd El-Zaher E.H. Synthesis, structural characterization, and antimicrobial activities of Mn(II), Co(II), Ni(II), Cu(II) and Zn(II) complexes of triazole-based Azodyes. Chin. J. Chem. 2011. V. 29. N 6. P. 1124-1132. DOI: 10.1002/cjoc .201190211.
15. Collery P., Kepaler B. Patent WO N 9302087. 1993.
16. Jakupec M.A., Keppler B.K. Gallium in cancer treatment. Curr. Top. Med. Chem. 2004. V. 4. N 15. P. 1575-1583. DOI: 10.2174/1568026043387449.
17. Einhorn L. Gallium nitrate in the treatment of bladder cancer. Semin. Oncol. 2003. P. 34-41. DOI: 10.1016/S0093-7754(03)00174-X.
18. Chitambar C.R, Purpi D.P., Woodliff J., Yang M., Wereley J.P. Development of gallium compounds for treatment of lymphoma: gallium maltolate, a novel hydroxypyrone gallium compound, induces apoptosis and circumvents lymphoma cell resistance to gallium nitrate. J. Pharmacol. Exp. Ther. 2007. V. 322. N 3. P. 1228-1236. DOI: 10.1124/jpet. 107.126342.
19. Chitambar C.R. Medical Applications and toxicities of gallium compounds. Int. J. Environ. Res. Public Health. 2010. V. 7. N 5. P. 2337-2361. DOI: 10.3390/ijerph7052337.
20. Kustov A.V., Smirnova N.L., Venediktov E.A., Kruchin S.O., Kudayarova T.V., Berezin D.B., Belykh D.V., Khudyaeva IS. Synthesis and investigation of water-soluble chlorophyll pigments for antimicrobial photodynamic therapy. Dyes and Pigments. 2018. V. 149. P. 553-559. DOI: 10.1016/j.dyepig.2017.09.073.
21. Lukiyanets E.A. Search for new photosensitizers in photody-namic therapy. Photodyn. Terap. Fotodiagn. 2013. V. 2. N 3. P. 3-16 (in Russian).
22. Kustov A.V., Smirnova N.L., Berezin D.B., Berezin M.B. Thermodynamics of solution of proto- and mezoporphyrins in N,N-dimethylformamide. J. Chem. Thermodyn. 2015. V. 89. P. 123-126. DOI: 10.1016/j.jct.2015.05.016.
23. Kustov A.V., Smirnova N.L., Berezin D.B., Berezin M.B. Thermodynamics of solution of hemato- and deuteroporphy-rins in N,N- dimethylformamide. J. Chem. Eng. Data. 2013. V. 58. N 9. P. 2502-2505. DOI: 10.1021/je400388j.
24. ^dayarova ^V., Тyutina MA, Danilova Е.А. Complexes of izothiadiazole-containing bromonitrosubstituted three units product with d-metals (Ni, Co, Zn). Izv. Vyssh. Uchebn. Zaved. Khim. Khim. Tekhnol. 2018. V. 61. N 12. P. 68-73 (in Russian). DOI: 10.6060/ivkkt.20186112.5799.
25. Islyaikin M.K., Danilova E.A., Kudrik E.V., Smirnov R.P., Budunova A.P., Kinzirskii A. S. Synthesis and study of antitumor activity of macroheterocyclic compounds and their metallo-complexes. Pharm. Chem. J. 1997. V. 3. N 8. P. 409-412.
26. Truhacheva T.V., Shlyahtin S.V., Isakov G.A., Istomin Y.P. «Fotolon»-a new tool for photodynamic therapy. Minsk. RUP "Belmedpreparaty". 2009. 64 p. (in Russian).
28. CrysAlisPro, Agilent Technologies. Version 1.171.37.33 (release 27-03-2014 CrysAlis171.NET).
29. Sheldrick GM. A short history of SHELX. Acta Cryst. 2008. V. A64. P. 112-122. DOI: 10.1107/S0108767307043930.
30. Sheldrick G.M. Crystal structure refinement with SHELXL. Acta Cryst. 2015. V. C71. P. 3. DOI: 10.1107/S2053229614024218.
31. Dolomanov O.V., Bourhis L.J., Gildea R.J., Howard J.A., Puschmann H. OLEX2: A Complete structure solution, refinement and analysis program. J. Appl. Crystallogr. 2009. V. 42. P. 339-341. DOI: 10.1107/S0021889808042726.
32. Brunetti B., Piacente V., Scardala P. Vapor pressures of gallium trifluoride, trichloride, and triiodide and their standard sublimation enthalpies. J. Chem. Eng. Data. 2010. V. 55. N 1. P. 98-102. DOI: 10.1021/je900276q.
33. Himmel H.-J., Downs A.J., Greene T.M. Thermal and photochemical reactions of aluminum, gallium, and indium atoms (m) in the presence of ammonia: generation and characterization of the species M NH3, HMNH2, MNH2, and H2MNH2. J. Am. Chem. Soc. 2000. V. 122. N 40. P. 9793-9807.
34. Yamaguchi M., Shibasaki M. Gallium trichloride. In Encyclopedia of Reagents for Organic Synthesis. 2005. John Wiley & Sons. DOI: 10.1002/047084289X.rn00118u.
35. Stierstorfer J., Klapoetke T., Martin F., Mayr N. Synthesis and characterization of 3,5-diamino-1,2,4-triazolium dinitramide. J. Inorg. Gen. Chem.. ZAAC. 2010. V. 636. N 15. P. 2555. DOI: 10.1002/zaac.201000298.
36. Jin-Ting Wu, Jian-Guo Zhang, Jian Qin, Xin Yin, Le Wu. Nitrogen-rich amino-triazolium salts based on binary 4,5-di-cyano-1,2,3-triazolate (c^rc-) anion. ZAAC. 2016. V. 642. N 5. P. 409-413. DOI: 10.1002/zaac.201500831.
37. Macrae C.F., Bruno I.J., Chisholm J.A., Edgington P.R., McCabe P., Pidcock E., Rodriguez-Monge L., Taylor R., Streek J., Wood P.A. Mercury CSD 2.0 - new features for the visualization and investigation of crystal structures. J. Appl. Cryst. 2008. V. 41. N 2. P. 466-470. DOI: 10.1107/S0021889807067908.
38. Westrip S.P. PublCIF: software for editing, validating and formatting crystallographic information files. J. Appl. Cryst. 2010. V. 43. N 4. P. 920-925. DOI: 10.1107/S0021889810022120.
27. Danilova E.A., Kudayarova T.V., Islyaikin M.K., Koifman
O.I Synthon-based approach to the design of macroheterocyclic compounds using diaminothiadiazoles and diamonotriazoles. Russ. J. Gen. Chem. 2018. V. 88. N 9. P. 2000-2012 (in Russian). DOI: 10.1134/S1070363218090438.
28. CrysAlisPro, Agilent Technologies. Version 1.171.37.33 (release 27-03-2014 CrysAlis171.NET).
29. Sheldrick G.M. A short history of SHELX. Acta Cryst. 2008. V. A64. P. 112-122. DOI: 10.1107/S0108767307043930.
30. Sheldrick G.M. Crystal structure refinement with SHELXL. Acta Cryst. 2015. V. C71. P. 3. DOI: 10.1107/S2053229614024218.
31. Dolomanov O.V., Bourhis L.J., Gildea R.J., Howard J.A., Puschmann H. OLEX2: A Complete structure solution, refinement and analysis program. J. Appl. Crystallogr. 2009. V. 42. P. 339-341. DOI: 10.1107/S0021889808042726.
32. Brunetti B., Piacente V., Scardala P. Vapor pressures of gallium trifluoride, trichloride, and triiodide and their standard sublimation enthalpies. J. Chem. Eng. Data. 2010. V. 55. N 1. P. 98-102. DOI: 10.1021/je900276q.
33. Himmel H.-J., Downs A.J., Greene T.M. Thermal and photochemical reactions of aluminum, gallium, and indium atoms (m) in the presence of ammonia: generation and characterization of the species M NH3, HMNH2, MNH2, and H2MNH2. J. Am. Chem. Soc. 2000. V. 122. N 40. P. 9793-9807.
34. Yamaguchi M., Shibasaki M. Gallium trichloride. In Encyclopedia of Reagents for Organic Synthesis. 2005. John Wiley & Sons. DOI: 10.1002/047084289X.rn00118u.
35. Stierstorfer J., Klapoetke T., Martin F., Mayr N. Synthesis and characterization of 3,5-diamino-1,2,4-triazolium dinitramide. J. Inorg. Gen. Chem. ZAAC. 2010. V. 636. N 15. P. 2555. DOI: 10.1002/zaac.201000298.
36. Jin-Ting Wu, Jian-Guo Zhang, Jian Qin, Xin Yin, Le Wu. Nitrogen-rich amino-triazolium salts based on binary 4,5-di-cyano-1,2,3-triazolate (cn-) anion. ZAAC. 2016. V. 642. N 5. P. 409-413. DOI: 10.1002/zaac.201500831.
37. Macrae C.F., Bruno I.J., Chisholm J.A., Edgington P.R., McCabe P., Pidcock E., Rodriguez-Monge L., Taylor R., Streek J., Wood P.A. Mercury CSD 2.0 - new features for the visualization and investigation of crystal structures. J. Appl. Cryst. 2008. V. 41. N 2. P. 466-470. DOI: 10.1107/S0021889807067908.
38. Westrip S.P. PublCIF: software for editing, validating and formatting crystallographic information files. J. Appl. Cryst. 2010. V. 43. N 4. P. 920-925. DOI: 10.1107/S0021889810022120.
Поступила в редакцию 11.02.2019 Принята к опубликованию 04.03.2019
Received 11.02.2019 Accepted 04.03.2019