Научная статья на тему 'SYNTHESIS AND STRUCTURAL STUDY OF BIS-(NITROTEREFTALATO)-MONOPYRIDINO Сo (II) HEXAHYDRATE'

SYNTHESIS AND STRUCTURAL STUDY OF BIS-(NITROTEREFTALATO)-MONOPYRIDINO Сo (II) HEXAHYDRATE Текст научной статьи по специальности «Химические науки»

CC BY
21
6
i Надоели баннеры? Вы всегда можете отключить рекламу.
Журнал
Azerbaijan Chemical Journal
Область наук
Ключевые слова
nitroterephthalic acid / Со (II) complex / pyridine adduct / hexahydrate / triclinic syngony / нитротерефталевая кислота / комплекс Со(II) / пиридиновый аддукт / гексагидрат / триклинная сингония / nitrotereftal turşusu / Co (II) kompleksi / piridin adduktu / heksahidrat / triklinik sinqoniya

Аннотация научной статьи по химическим наукам, автор научной работы — G.M. Aliyeva, S.Y. Rakhmanova, F.J. Alakbarova, M.K. Munshieva, E.M. Movsumov

The new complex of Co (II) with 2-nitroterephtalic acid was synthesized and its molecular and crystallic structures were studied. It was found the structure consists of polymeric chains of the dianion of nitroterephtalic acid formed by hydrogen bonds, between which the cobalt hexahydrate cations are located. Including into complex composition pyridine molecule was not coordinate with cobalt (II) ion, but formed an adduct with polyanion of 2-nitroterephthalate through hydrogen bonds.

i Надоели баннеры? Вы всегда можете отключить рекламу.
iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.
i Надоели баннеры? Вы всегда можете отключить рекламу.

СИНТЕЗ И СТРУКТУРНОЕ ИССЛЕДОВАНИЕ БИС-(НИТРОТЕРЕФТАЛАТО-МОНОПИРИДИН Со (II) ГЕКСАГИДРАТА

Синтезирован новый комплекс Co (II) с 2-нитротерефталевой кислоты, изучены его молекулярная и кристаллическая структуры. Найдено, что структура состоит из полимерных цепей дианиона 2-нитротерефталевой кислоты, образованной за счет водородных связей, между которыми располагаются катионы гексагидрата кобальта. Входящая в состав комплекса молекула пиридина не координируется с ионом Со (II), а образует аддукт с полианионом 2-нитротерефталата за счет водородных связей.

Текст научной работы на тему «SYNTHESIS AND STRUCTURAL STUDY OF BIS-(NITROTEREFTALATO)-MONOPYRIDINO Сo (II) HEXAHYDRATE»

ISSN 2522-1841 (Online) ISSN 0005-2531 (Print)

UDC 546.817+547.583+548.737

SYNTHESIS AND STRUCTURAL STUDY OF BIS-(NITROTEREFTALATO)-MONOPYRIDINO Co (II) HEXAHYDRATE

G.M.Aliyeva\ S.Y.Rakhmanova1, F.J.Alakbarova1, M.KMunshieva1, E.M.Movsumov2, N.A.Imanova1, N.A.Mammadova1, H.F.Mammadova1, K.A.Mansurova1

1M.Nagiyev Institute of Catalysis and Inorganic Chemistry, Ministry of Science and Education

of the Republic of Azerbaijan 2Azerbaijan State Agrarian University

qudrataliyeva@gmail.com

Received 15.11.2022 Accepted 11.01.2023

The new complex of Co (II) with 2-nitroterephtalic acid was synthesized and its molecular and crystallic structures were studied. It was found the structure consists of polymeric chains of the dianion of nitro-terephtalic acid formed by hydrogen bonds, between which the cobalt hexahydrate cations are located. Including into complex composition pyridine molecule was not coordinate with cobalt (II) ion, but formed an adduct with polyanion of 2-nitroterephthalate through hydrogen bonds.

Key words: nitroterephthalic acid, Co (II) complex, pyridine adduct, hexahydrate, triclinic syngony.

doi.org/10.32737/0005-2531-2023-2-138-145

Introduction

At the last 25 years, much attention of researchers has been attracted by metal complexes based on dicarboxylic (phthalic) acids in order to study their structural characteristics and various properties. Phthalic acids are widely used to obtain coordination polymers with a given topology; due to their coordination capabilities, they can be donors and acceptors of hydrogen [1-3].

Due to the rigidity of the benzene skeleton and especially the type of bond, terephthalic acid, which has two carboxylate groups in the trans position, can be used in the preparation of coordination polymers through its partial or complete deprotonization.

In addition, it was found that the func-tionalization of organic linkers (binders) with nitro or amino groups can be used to obtain effective semiconductor supramolecular particles

[4].

The synthesis of a trihydrate copper ter-ephthalate complex of the first porous organo-metallic framework was also announced and its conductivity and magnetic properties were investigated, as well as those of the first complex of copper terephthalate with a significant surface [5].

Using by us 2-nitroterephthalic acid as a ligand is a nitro derivative of terephthalic acid and more than twenty complex compounds on its basic with transition elements and lanthanides have been synthesized and studied [6-11].

Experimental part

The new Co(II) adduct complex has been synthesized by following way: 2.55 g (0.01 mol) of NO2-C6H3-(COONa)2 salt is dissolved in 100 ml distilled water, heated up to 50-60°; and warm (50-600) aqueous solution of 2.87 g (0.01 mol) of CoSOW^O salt and distilled water is added to that, then filtered through filter paper and left in the dark to cool at room temperature.

Prismatic crystals precipitate after 4-5 days. The obtained precipitate is filtered and dried with a desiccator over anhydrous CaCl2. The crystalline precipitate is well soluble in pyridine. When the solution is kept, single crystals of chestnut color precipitate after 4-5 days.

The precipitate is filtered off and dried in a desiccator over anhydrous CaCl2 to constant weight. The yield of the product is 78.65%.

The chemical formula has been found by conducting an elemental analysis of the obtained new substance (Costech ECS 4010 CHNSO).

The number of water molecules in the aqua complex has been found by weight analysis.

Analytically calculated %: C - 41.89, N -6.98, H - 3.66.

Found %: C - 41.76, N - 6.81, H - 3.74, C42H44CN6O32.

The composition of a new Co(II) adduct complex compound has been studied by ther-mogravimetric analysis (NETZSCH STA-409 PC/PG derivatograph).

An IR spectrum study of the new complex compound has been conducted (Perkin-Elmer Spectrum 100Ft-IR spectrometer).

Single crystals of the new complex compound have been selected under a microscope, reflexes of the single crystals that are quality for X-ray structure analysis necessary for opening the crystal structure have been collected in XtaLAB ARC 11 (RNC) automated diffractometer operating at the University of Virginia in the United States and the molecular and crystal structure have been opened using a special program [12, 13].

The discussion of the results

As is seen from Figure 1, the thermolysis of the adduct complex compound proceeds in four stages. The first stage takes place at a temperature of 20-2100C. In this stage, 6 water molecules and pyridine leave the structure. This

is observed with mass loss of 31 % and endoef-fect. The second stage corresponds to the temperature range of 210-3 600C and indicates the withdrawal of carboxylic groups.

The third stage occurs in the 360-5200C interval of temperature. In this stage, the molecule decomposed and CoCO3 is formed as a result of burning hydrocarbon residue. This is accompanied by mass loss and endoeffect.

The fourth stage shows the decomposition of carbonate and the formation of metal oxide in the temperature range of 520-7100C.

As is seen from Figure 2, the main changes occur in the absorption frequencies of asymmetric vas (COO-) and symmetric vs(COO-) carboxyl groups. When the complex is formed, the absorption frequency observed in acid in the region of 1711 cm-1 and associated with the asymmetric carboxyl group shifts to the upper region and becomes 1638 cm-1. Also, the absorption frequency of 1524 cm-1, which is observed in acid and corresponds to the symmetrical carboxyl group shifts to the lower region and takes the value of 1509 cm-1 during the formation of the complex.

The absorption frequencies at 568.50 cm-1 and 530.95 cm-1 probably indicate the present of Co-O groups in the cobalt hexahydrate cation with various metal-oxygen bonds length.

Fig. 1. Thermogram of bis-(nitrotereftalato)-monopyridino Co (II) hexsahydrate coordination compound.

Fig. 2. IR spectrum of bis-(nitrotereftalato)-monopyridino Co (II) hexahydrate coordination compound.

Fig. 3. Rentgenogram of bis-(nitrotereftalato)-monopyridino Co (II) tetrahydrate coordination compound.

As is seen from Figure 3, the highest peaks are observed at low values of theta (29=8-18°). This indicates that the complex crystallizes in low - monoclinic or triclinic syngonies and the volume of the crystal lattice is more than 1000A3. This has been confirmed by structure analysis.

The crystallographic parameters of the crystal structure, the coordinates of the atoms in

the lattice and their corresponding temperature factors, the distances between atoms, the valence angles and the coordinates of the hydrogen atoms in the molecule are given in Tables 1-5, respectively.

Figures 4 and 5 show the structure of the molecule and the polymeric form of the structure located in the crystal lattice, respectively.

Table 1. The crystallographic parameters of Co (II) coordination compound

Chemical formula C42H44C0N6O32

Molecular mass 1203.76

Temperature 100.00K

Size of single crystal 0.45 0.33 0.28 mm3

Source of radiation CuKa=1.54184

Minimum value of theta 2.518

Maximum value of theta 74.827

Syngony Triclinic

Space group P-1

Specific weight of the crystal d=1.659 g/cm3

Measured reflexes 20412

Independent reflexes 4758

Lattice parameters a=7.5955Ä, b=9.5927Ä, c=17.6055Ä, a=85.2540Ä, ß=88.8080 Ä, 5=70.4650Ä

Volume of the crystal lattice v=1204.74Ä3

Number of the molecules in the lattice Z=1

Final Rfactor 0.0398

Table 2. The coordinates of the atoms in the lattice (X104) and their corresponding temperature factors (X103)

Atoms a/x b/y c/z Ueq

Co1 0 0 5000 8.01(13)

O4 42.7(17) 9385.8(13) 2168.5(7) 12.4(3)

O13 -893.6(18) 2242.0(14) 4614.4(7) 14.0(3)

O3 2659.1(17) 8317.2(14) 1515.0(8) 12.8(3)

O15 2793.0(18) -296.6(16) 4729.1(8) 13.5(3)

O14 473.0(19) 477.0(15) 6106.4(7) 15.1(3)

O8 3093.1(18) 1833.5(15) 6413.8(8) 15.6(3)

O2 481.9(18) 1780.0(14) 1882.6(7) 13.4(3)

O1 32(2) 2080.7(14) 3121.5(8) 16.4(3)

O7 5710.2(18) 752.2(14) 7101.9(8) 14.4(3)

O5 5613(2) 8206.8(15) 5827.4(8) 17.2(3)

O6 5240(2) 8343.3(15) 7083.4(8) 19.8(3)

N3 4462(2) 10335.9(17) 1180.6(9) 11.1(3)

O16 1345(3) 3590(2) 5149.7(9) 35.6(4)

C13 5137(2) 6180.5(19) 6573.5(10) 9.5(3)

C8 1260(2) 8293.2(19) 1871.0(10) 9.0(3)

C11 4404(2) 4287.3(19) 7350.3(10) 8.7(3)

C5 906(2) 6836.3(18) 2017.0(10) 8.6(3)

C12 4582(2) 56.84.9(19) 7269.5(10) 9.0(3)

C4 901(2) 5936.8(19) 1431.9(10) 9.0(3)

C6 677(2) 6303.9(19) 2758.0(10) 10.1(3)

C10 4770(2) 3349.5(19) 6756.9(10) 9.4(3)

C9 4459(2) 1870(2) 6766.6(10) 11.0(3)

C3 733(2) 4549.9(19) 1561.3(10) 9.8(3)

C7 484(2) 4919.4(19) 2902.3(10) 9.7(3)

C14 5574(2) 5247(2) 5977.2(10) 12.4(3)

C21 6046(3) 10573(2) 1351.6(11) 13.7(4)

C2 528(2) 4026.9(19) 2311.5(10) 9.1(3)

C1 329(2) 2523.0(19) 2468.9(10) 9.8(3)

C15 5403(2) 3853(2) 6071.8(10) 12.4(4)

C17 3342(2) 11085(2) 597.4(10) 12.3(4)

C18 3805(3) 12152(2) 149.8(10) 14.6(4)

C16 5341(2) 7697.6(19) 6473.2(10) 10.5(3)

C20 6562(3) 11641(2) 922.2(11) 17.1(4)

C19 5420(3) 12445(2) 318.1(12) 17.8(4)

N1 923(2) 6516.9(17) 634.2(9) 12.5(3)

N2 3792(2) 3822.3(16) 8096.5(9) 9.7(3)

O11 3276.4(17) 2730.7(13) 8193.5(7) 12.5(3)

O12 3805(2) 4543.3(15) 8638.0(7) 16.5(3)

iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.

010 142.1(19) 7853.6(15) 479.0(8) 17.3(3)

O9 1662(2) 5641.1(16) 158.7(8) 23.1(3)

Table 3. The distances between atoms, d, Â

Bonds d, Â Bonds d, Â

Col-0131 2.0852(13) C11-N2 1.469(2)

Co1-013 2.0853(13) C5-C4 1.398(2)

Col-0151 2.0942(13) C5-C6 1.390(2)

Co1-015 2.0942(13) C4-C3 1.379(2)

Co1-014 2.1022(13) C4-N1 1.469(2)

Co1-0141 2.1023(13) C6-C7 1.387(2)

04-C8 1.285(2) C10-C9 1.514(2)

03-C8 1.228(2) C10-C15 1.398(3)

08-C9 1.232(2) C3-C2 1.398(2)

02-C1 1.284(2) C7-C2 1.394(2)

01-C1 1.234(2) C14-C15 1.383(3)

07-C9 1.280(2) C21-C20 1.379(3)

05-C16 1.241(2) C2-C1 1.503(2)

06-C16 1.272(2) C17-C18 1.374(3)

N3-C21 1.341(2) C18-C19 1.389(3)

N3-C17 1.342(2) C20-C19 1.390(3)

C13-C12 1.386(2) N1-010 1.229(2)

C13-C14 1.399(2) N1-09 1.226(2)

C13-C16 1.510(2) N2-011 1.231(2)

C8-C5 1.510(2) N2-012 1.225(2)

C11-C12 1.387(2) - -

C11-C10 1.398(2) - -

Table 4. The valence angles, œ (degree)

Angles œ(degree) Angles œ(degree)

0131 Co1 013 180.0 C6 C5 C4 117.52(16)

013 Co1 015 93.02(5) C13 C12 C11 119.02(16)

0131 Co1 015 86.98(5) C5 C4 N1 119.57(15)

013 Co1 0151 86.98(5) C3 C4 C5 123.07(16)

0131 Co1 0151 93.02(5) C3 C4 N1 117.16(15)

0131 Co1 014 88.18(5) C7 C6 C5 120.49(16)

013 Co1 0141 88.18(5) C11 C10 C9 126.52(16)

013 Co1 014 91.82(5) C15 C10 C11 117.11(16)

0131 Co1 0141 91.82(5) C15 C10 C9 116.30(15)

0151 Co1 015 180.0 08 C9 07 125.95(16)

0151 Co1 0141 89.85(5) 08 C9 C10 117.28(16)

015 Co1 0141 90.15(5) 07 C9 C10 116.61(15)

0151 Co1 014 90.15(5) C4 C3 C2 118.51(16)

015 Co1 014 89.85(5) C6 C7 C2 120.99(16)

014 Co1 0141 180.00(7) C15 C14 C13 120.39(16)

C21 N3 C17 122.88(16) N3 C21 C20 119.57(17)

C12 C13 C14 119.64(16) C3 C2 C1 119.65(15)

C12 C13 C16 119.90(15) C7 C2 C3 119.40(16)

C14 C13 C16 120.42(16) C7 C2 C1 120.94(16)

04 C8 C5 114.02(14) 02 C1 C2 115.01(15)

03 C8 04 127.06(16) 01 C1 02 124.43(16)

03 C8 C5 118.87(15) 01 C1 C2 120.56(16)

C12 C11 C10 122.60(16) C14 C15 C10 121.15(16)

C12 C11 N2 116.85(15) N3 C17 C18 119.65(17)

C10 C11 N2 120.54(15) C17 C18 C19 119.05(17)

C4 C5 C8 122.28(16) 05 C16 06 125.33(17)

C6 C5 C8 120.10(15) 05 C16 C13 119.45(16)

06 C16 C13 115.22(15) 011 N2 C11 117.75(14)

C21 C20 C19 118.84(17) 012 N2 C11 118.58(14)

C18 C19 C20 120.00(18) 012 N2 011 123.66(15)

010 N1 C4 117.72(15) - -

09 N1 C4 118.50(15) - -

09 N1 010 123.74(16) - -

Table 5. Hydrogen bonds in the complex

D-H- A D-H HA DA <(D-H A)0

O1-H1A O4i 0.83 (2) 1.95 (2) 2.7076 (16) 151 (2)

O1-H1B- O5n 0.83 (2) 1.91 (2) 2.7315 (16) 169 (2)

O2-H2A O4m 0.85 (2) 1.90 (2) 2.7504 (16) 177 (2)

O2-H2B- O6iv 0.84 (2) 2.32 (2) 3.0335 (16) 143 (2)

O6-H6A O2n 0.86 (1) 1.85 (1) 2.7005 (16) 177 (2)

C4-H4 O8v 0.95 2.40 3.278 (2) 154

C-O - n C-O O^n Cn <(C-O- A)0

C8-O5- Cg1vi 1.211 (2) 3.0395 (13) 3.3058 (15) 91.73 (9)

Fig. 4. The molecular structure of cobalt hexahydrate 2- nitroterephthalate

Fig. 5. Hydrogen bonds in the complex cobalt 2-nitroterephthalate hexahydrate AZERBAIJAN CHEMICAL JOURNAL № 2 2023

Analysis of the obtained results

The crystal structure of bis-nitrotere-phthalate monopyridine Co (II) hexahydrate consists of the complex cation [Co(H2O)6]2+ and the dianion of nitroterephthalic acid (Figure 4). In the [Co(H2O)6]2+ complex cation in the equatorial plane, the Co-O distances are 2.085 A and 2.0942 A, and the axial oxygen atoms are at a distance of 2.1022 A. Note that these distances are close to the values previously observed for the Co-O bond (2.081 A) in cobalt chloride hexahydrate [15].

The dianion of nitroterephthalate forms a polymer chain through hydrogen bonds. The structure of the complex consists of these polymer chains, between which cobalt hexahydrate cations [Co(H2O)6]2+ are located. Charge compensation is carried out of by carboxylate anions of opposite chains of the nitroterephthalate poly-anion. Including into complex compositon pyri-dine molecule does not enter into coordination with the metal ion, but forms an adduct due to hydrogen bonds (Figure 5) [16].

Conclusion

It was found that at the interaction of 2-nitroterephthalic acid with cobalt sulphate salt similar compound was formed, in which cobalt hexahydrate is the cations, but 2-nitrotere-phthalate is anion. X-ray diffraction analysis showed nitroterephthalate dianion forms polymeric chains through hydrogen bonds. The complex structure consists of these polymeric chains, between which the cobalt hexahydrate cations [Co(H2O)6]2+ are located.

Including into structure pyridine molecules unlike to known pyridine adducts are not coordinated with central atom, but connected with 2-nitro dianions through hydrogen bonds.

References

1. Kermoo M. The crystal structure of p-amino-

phtatalic acid. J. Solid State Chem. 2001. V.159.

P. 343-351.

2. Usubaliyev B.T., Tagiyev D.B., Nurullayev V.X. J.

of Nanomaterials and Molecular Nanotechnology.

2017. V. 6. P.1-5.

3. Usubaliev B.T., Ramazanova E.E., Alieva F.S.

Sposob snizheniya vyazkosti tovarnyh neftej. Patent EAPV. 2018. №14. 030154-14.

4. Usman S., Mendirata K.L. Semiconductor metal-organic frameworks, fature low-bandgap materials. Advanced Materials. 2016. 29(6). P. 701-712.

5. Moo Liang, Dai-Zheng, Zong Hue. Novel two-dimensional Cu (II) complexes containing tetra-cheoro-phtalate dianion. Inorgan. Chem. Commun. 2004. № 2. P.173-176.

6. Shi J., Yin H., Zhang X., Wu C. Poly (2-2-bi-pyridine) Zn (II) (2-nitroterephtalato)-monohydrate. Acta Crystallogr. 2010. Section E. P. 983-994.

7. He H.Y., Zhu L.G., Huang R.B. Catena-(2- nitro-terephtalato)-(4-4-dipyridine) Copper( II). Acta Crystallogr. 2015. Section E. P.601-612.

8. Smith J.A., Smith M.A., Sinqh-Wilmot, Corter K.P. Catena (tris-2- nitroterephtalato) tris akva Nd (III). New J. Chem. London. 2018. №40. P.7338-7342.

9. Smith J.A., Carter K.P., Louqh A.J. Catena-(tris 2-nitroterephtalato)-diaqua-di-europium dihydrat. New J.Chem. London. 2015. №40. P.7338-7343.

10. Panyarel K., Surinwoung S., Prior T.J. Catena-(tris)-(2- nitroterephtalato)-diaqua-di-thulium (III). Microporous materials. Mulheim (Germany). 2017. №251. P.155-159.

11. Panyarel K., Prior T.J., Konno T. Catena-(tris)- (2-nitroterephtalato)-tetra-aqua-di-lantanium (III). Microporous and Mesoporous materials. Mulheim (Germany). 2017. №251. P.213-215.

12. Spackman P.R., Turner M.J., McKinnon J.J., Wolff S.K., Grimwood D.J., Jayatilaka D., Spackman M.A. Crystal Explorer A program for Hirshfeld surface analysis, visualization and quantitative analysis of molecular crystals. J. Appl. Crystallogr. 2021. 54.3. P.1006-1011.

13. Mohan B., Choudhary M., Kumar G., Muhammad S., Das N., Singh K., Al-Sehemi A.G., Kumar S. An experimental and computational study of py-rimidine based bis-uracil derivatives as efficient candidates for optical, nonlinear optical, and drug discovery applications. Synth. Commun. 2020. 50.14. P. 2199-2225.

14. Usubaliev B.T., Shabanov A.L., Alieva F.B., Munshieva M.K., Murvatov F.T., Safarova P.S. Sintez i fiziko-himicheskoe issledovanie tetraakva-tritereftalato-dizheleza (III). Zhurn.obshchej himii. 2015. t.18. v.6. s.1000-1003.

15. Waizimi K., Masuda H., Ohtaki H., Tsukamoto K., Sunagawa I. Bull.Chem.Soc.Jour. 1990. 63. p.3425-2433.

iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.

16. Khan B.A., Ashfaq M., Muhammad S., Munawar K.S., Tahir M.N., Al-Sehemi A.G., Alarfaji S.S. Exploring highly functionalized tetrahydro-pyridine as a dual inhibitor of monoamine oxidase A and B synthesis, structural analysis, single crystal XRD, supramolecular assembly exploration by Hirshfeld Surface Analysis and Computational Studies. ACS Omega. 2022. 7.33. P.29452-29464.

BiS-(NiTROTEREFTALAT)-MONOPiRiDiN KOBALT (II) HEKSAHiDRAT KOMPLEKSiN

SiNTEZi УЭ QURULU§ TODQiQi

Q.M.Oliyeva, S.Y.Rahmanova, F.C.Obkbarova , M.K.Mun$iyeva, E.M.Mövsümov, N.O.imanova, N.O.Mammadova, H.F.Mammadova, K.O.Mansurova

Co (II)-nin 2-nitrotereftal tur§usu ila yeni kompleksi sintez edilmi§, onun molekulyar va kristal qurulu§u tadqiq edilmi§dir. Müayyan edilmi§dir ki, struktur hidrogen rabitasi ila этэ1э galan nitrotereftal tur§u dianionunun polimer zancirlarindan ibaratdir va onlarin arasinda kobalt heksahidrat kationlari yerla§ir. Kompleksa daxil olan piridin molekulu kobalt (II) ionu ila koordinasiya etmir, hidrogen rabitasi ila 2-nitrotereftalat polianionla addukt amala gatirir.

Agar sözlzr: nitrotereftal tur§usu, Co (II) kompleksi, piridin adduktu, heksahidrat, triklinik sinqoniya.

СИНТЕЗ И СТРУКТУРНОЕ ИССЛЕДОВАНИЕ БИС-(НИТРОТЕРЕФТАЛАТО-МОНОПИРИДИН Со

(II) ГЕКСАГИДРАТА

Г.М.Алиева, С.Я.Рахманова, Ф.Дж.Алекперова, М.К.Муншиева, Е.М.Мовсумов, Н.А.Иманова, Н.А.Маммадова, Г.Ф.Маммадова, К.А.Мансурова

Синтезирован новый комплекс Co (II) с 2-нитротерефталевой кислоты, изучены его молекулярная и кристаллическая структуры. Найдено, что структура состоит из полимерных цепей дианиона 2-нитротерефталевой кислоты, образованной за счет водородных связей, между которыми располагаются катионы гексагидрата кобальта. Входящая в состав комплекса молекула пиридина не координируется с ионом Со (II), а образует аддукт с полианионом 2-нитротерефталата за счет водородных связей.

Ключевые слова: нитротерефталевая кислота, комплекс Со(П), пиридиновый аддукт, гексагидрат, триклинная сингония.

i Надоели баннеры? Вы всегда можете отключить рекламу.