Научная статья на тему 'SYNTHESIS AND INVESTIGATION OF PHOTO- AND ELECTRICAL PROPERTIES OF GLASSY ALLOYS OF THE AS3SE3-NDSE SYSTEM'

SYNTHESIS AND INVESTIGATION OF PHOTO- AND ELECTRICAL PROPERTIES OF GLASSY ALLOYS OF THE AS3SE3-NDSE SYSTEM Текст научной статьи по специальности «Химические науки»

CC BY
63
24
i Надоели баннеры? Вы всегда можете отключить рекламу.
Журнал
Azerbaijan Chemical Journal
Область наук
Ключевые слова
SYNTHESIS / GLASS / MICROHARDNESS / SYSTEM / SOLID SOLUTIONS

Аннотация научной статьи по химическим наукам, автор научной работы — Aliyev I.I., Ilyasly T.M., Khudiyeva A.G., Gashimov Kh.M.

Alloys of the As2Se3-NdSe system were synthesized in a wide range of concentrations. The As2Se3-NdSe system was studied by differential thermal (DTA), X-ray diffraction (XRD), microstructural (MSA) analysis, as well as by measuring microhardness and density. The system has small single-phase fields based on primary components. In the As2Se3-NdSe system, the area of the solid solution based on the As2Se3 compound at room temperature is 1.5 mol. %, and the area of the solid solution based on the NdSe compound is 2.0 mol. %. Upon slow cooling in the As2Se3-NdSe system based on As2Se3, the glass formation region reaches 17 mol % NdSe. The photo- and electrical conductivity of glassy alloys of the As2Se3-NdSe system containing (As3Se3)1-x(NdSe)x (x = 0.03; 0.05; 0.07; 0.10) has been studied

i Надоели баннеры? Вы всегда можете отключить рекламу.
iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.
i Надоели баннеры? Вы всегда можете отключить рекламу.

Текст научной работы на тему «SYNTHESIS AND INVESTIGATION OF PHOTO- AND ELECTRICAL PROPERTIES OF GLASSY ALLOYS OF THE AS3SE3-NDSE SYSTEM»

ISSN 2522-1841 (Online) AZERBAIJAN CHEMICAL JOURNAL № 3 2022 ISSN 0005-2531 (Print)

UDC.546. 19.22- 657.24

SYNTHESIS AND INVESTIGATION OF PHOTO- AND ELECTRICAL PROPERTIES OF GLASSY ALLOYS OF THE As3Se3-NdSe SYSTEM

I.LAliyev1, T.M.Ilyasly2, A.G.Khudiyeva2, Kh.M.Gashimov3

M.Nagiyev Institute of Catalysis and Inorganic Chemistry, NAS of Azerbaijan

2Baku State University Azerbaijan State University of Economics

aliyevimir@rambler.ru

Received 07.01.2022 Accepted 25.02.2022

Alloys of the As2Se3-NdSe system were synthesized in a wide range of concentrations. The As2Se3-NdSe system was studied by differential thermal (DTA), X-ray diffraction (XRD), microstructural (MSA) analysis, as well as by measuring microhardness and density. The system has small single-phase fields based on primary components. In the As2Se3-NdSe system, the area of the solid solution based on the As2Se3 compound at room temperature is 1.5 mol. %, and the area of the solid solution based on the NdSe compound is 2.0 mol. %. Upon slow cooling in the As2Se3-NdSe system based on As2Se3, the glass formation region reaches 17 mol % NdSe. The photo- and electrical conductivity of glassy alloys of the As2Se3-NdSe system containing (As3Se3Vx(NdSe)x (x = 0.03; 0.05; 0.07; 0.10) has been studied.

Keywords: synthesis, glass, microhardness, system, solid solutions.

doi.org/10.32737/0005-2531-2022-3-105-109

Introduction

New phases obtained in the triple Nd-As-Se system may allow the acquisition of new semiconductor materials as a result of the study of electrophysical, optical and photoelectric properties of solid solutions and glass. From this point of view, the study of the physical properties of new phases formed by the chemical interaction of chalcogenides with rare earth elements with chalcogenides of arsenic has scientific and practical significance.

Glassy alloys based on arsenic chalcogeni-des are light-sensitive materials [1-9], and their optical properties are widely studied in various areas of the electronics industry, including the use of photocells, photoresistors, and acousto-optic devices [10-12]. Semiconductor alloys based on chalcogenides of rare earth elements are materials with thermoelectric [13, 14], photoelectric [15, 16], magnetic [17-22], and luminescent [23-26] properties and are successfully used in various areas of the electronics industry.

The aim of this research is to study the photoelectric properties of glass alloys of the As2Se3-NdSe system by synthesizing them.

Experimental results and discussion

Samples were synthesized to study the photoelectric properties of glassy alloys con-

taining (As3Se3)1-x(NdSe)x (x = 0.03-0.10). The samples were first synthesized at 700-800°C and then cooled by turning off the oven. The synthesized samples were prepared in the form of a parallelepiped 0.3*1x1.2 cm in size. The dependence of the photoelectric conductivity of glasses containing (As3Se3)1-x(NdSe)x (x = 0.03-0.10) on the wavelength was studied at room temperature. The spectral dependence of the photoconductivity of the samples on the wavelength of light was measured by the compensation method. To isolate the spectral characteristics of the samples, a PMP-3 monochro-mator generating a monochromatic spectrum of 0.25-3 ^m was used. The spectrum is modulated to 40 Hts by a mechanical modulator coming from a monochromator. The modified signal was applied to a TT-1302 selective microvoltmeter.

The maximum photoconductivity of As3Se3 corresponds to the wavelength X = 0.92 |im. The location of the maximum photoconductivity of alloys based on As3Se3 varies very little depending on the composition. As can be seen from the Figure, the photoconductivity maximum shifts to the long wavelength side.

AE = hc/ X = 1.24/A

I, 10 15

1 A

10 -

0.4 0.6 0.8

I

1.0 mkm

1.1 1.2

Fig. 1. Photoelectric conductivity of glass alloys of the As3Se3-NdSe system: 1 - 3, 2 - 5, 3 - 7, 3 - 10 mol % NdSe.

The values are calculated according to the formula AE, following (Table 1).

Table 1. Photoelectric properties of glass alloys containing (As3Se3)1-x(NdSe)x (x = 0.03; 0.05; 0.07; 0.10)

№ Composition, mol % I, 10-10A ^max, mkm AE, eV

As2Se3 NdSe

1 97 3 7,0 0,92 1,35

2 95 5 8,0 0,94 1,32

3 93 7 15,2 0,96 1,29

4 90 10 13,0 0,98 1,27

Photoconductivity of alloys containing 3 and 5 mol % NdSe, is I = 710-10 A, I = 810-10 A, respectively. The maximum value of the photo-current reaches an alloy of 7 mol. % NdSe, which has a relatively high photosensitivity, also occurs at a wavelength of X = 0.96 ^m, and the photocurrent I=15210-10 A.In a sample with an NdSe content of 10 mol % photoelectric conductivity I=1310-10 A, accompanied by a relative decrease. The decrease in photoconductivity after a certain composition dependence can be explained by electric charge compensation. Synthesized alloys such as light-sensitive materials that can be used in optical control devices. For glassy alloys containing (As3Se3)1-x(NdSe)x (x = 0.03; 0.05; 0.07;), the temperature dependence of electrical conductivity was studied.

Glassy alloys based on As2Se3 are highresistance semiconductors. One of the interesting questions is the study of the nature of their

electrical conductivity as a result of the addition of rare earth chalcogenides. To study the electrical properties of glass alloys (As3Se3)1-x(NdSe)x (x = 0.03; 0.05; 0.07) samples were synthesized. The synthesized samples were subjected to heat treatment at 2590C for 300 hours. Then, to measure the electrical conductivity, several samples were prepared in the form of a parallelepiped (1.5x0.5x0.5 cm).

The electrical conductivity of glassy alloys based on As2Se3 was measured in the range of 290-4500C. The results of a study of the temperature dependence of the electrical conductivity of samples containing 3; 5; 7 mol % NdSe, presented graphically in Figure 2.

As can be seen from Figure 2, the temperature dependence of the electrical conductivity of the alloys is linear, which is typical for glassy semiconductors.

With an increase in the number of NdSe compounds in the As2Se3 alloy, the conductivity of the alloy also increases, and the width of the restriction zone also decreases. While As2Se3 has AEg =1.9 eV, samples with 3-7 mol. % NdSe reach AEg = 1.42-1.35 eV.

The reason for the increase in electrical conductivity as the amount of NdSe in the alloy increases is the metallization of the chemical bond as the percentage of Nd in the composition increases. Since the specific conductivity of glassy alloys occurs below room temperature.

5

g, Om-1sm-1

Fig.2. Temperature dependence of the electrical conductivity of glass containing (As2Se3)1-x(NdSe)x (x = 0.03; 0.5; 0.07). 1 - As2Se3, 2 - 3, 3 - 5, 4 - 7 mol % NdSe.

As can be seen from Figure 2, the electrical

conductivity of a pure As2Se3 compound at room

12 1 1

temperature is o = 3.510-12 Om-1 cm-. When adding 3 mol % NdSe, the electrical conductivity increases from room temperature to o=9.210- 2 Om-1cm-1, and at 476 K to o=5.110-8 Om-1cm-1. The electrical conductivity of alloys containing 5 and 7 mol % NdSe, at room temperature, respectively, o=3.810-11 Om-1cm-1, o = 1.810-10 Om-1cm-1 and at 465 K , o = 5.310-7 Om-1cm-1.

From the electrical conductivity plot, the band gap of the samples was calculated from the angle tana divided by the intersection point

"3

plotted on the temperature curve logo~f (10 /T).

Conclusion

Chemical interaction and glass formation in the As2Se3-NdS system were studied by the methods of physicochemical analysis: DTA, XRD, MSA, as well as by measuring micro-hardness and determining density. In the As2Se3-NdSe system, the area of the solid solution based on the As2Se3 compound at room temperature is 1.5 mol. %, and the area of the solid solution based on the NdSe compound is 2.0 mol. %. It has been established that, under normal conditions, on the basis of As2Se3, the glass formation region extends up to 17 mol. % NdSe. The photo- and electrical conductivity of glassy alloys of the As2Se3-NdSe system containing (As3Se3)1-x(NdSe)x (x = 0.03; 0.05; 0.07; 0.10) has been studied.

References

1. Fu L.B., Rochette M., Ta'eed V., Moss D., Eggle-ton B.J. Investigation of self-phase modulation based optical regeneration in single mode As2Se3 Chalcogenide glass fiber. Opt. Express. 2005. V. 13. P. 7637-7642.

2. Miron V. S. Effect of Propylamine Vapor on the Electrical Conductivity of Polycrystalline As4S3 Films. Inorgan. Materials. 2002. V. 38. № 2. P. 95-100.

3. Burdiyan I.I., Feshchenco I.S. Photocurrent and Optical Transmission Spectra of Sn- and Pb-Doped (As2S3)o,3(As2Se3)o,7 Glass Films, Inorgan. Materials. 2005. T. 41. № 9. P. 1013-1016.

4. Churbanov M.F., Shiryaev V.S., Skripachev I.V., Snopatin G.E., Pimenov V.G., Smetanin S.V., Shaposhnikov R.M., Fadin I.E., Pyrkov Yu.N., Plotnichenko V.G. High-Purity As2S1.5Se1.5 Glass Optical Fibers. 2002. V. 39. № 2. P. 193-197.

5. Shiryaev V.S., Smetanin S.V., Ovchinnikov D.K., Churbanov M.F., Kryukova E.B., and Plotnichenko V.G. Effects of Oxygen and Carbon Impurities on the Optical Transmission of As2Se3 Glass. Inorgan. Materials. 2005. V. 41. № 3. P. 308-312.

6. Aliev I.I., Babanly M.B., Farzaliev A.A. Opticheskie i fotoelektricheskie svoistva tonkikh plenok sekol (As2Se3)1-x(TlSe)X (X=0,005-0.01) XI Mezhdunarodnaia konf.po fizike i tekhnologii tonkikh plenok. Ivano- Frankovsk.Ukraina 7-12 maia 2007. C. 86.

7. Dinesh Chandra SATI1, Rajendra KUMAR, Ram Mohan MEHRA Influence of Thickness Oil Optical Properties of a: As2Se3 Thin Films. Turk J Phys. 2006. V.30. P.519-527.

8. Lovu M., Shutov S., Rebeja S., Colomeyco E., Popescu M. Effect of metal additives on photo-darkening kinetics in amorphous As2Se3 films. Journal of Optoelectronics and Advanced Materi-

als. 2000. V. 2. Issue 1. P. 53-58. 9. Hineva T., Petkova T.,Popov C., Pektov P. Reithmaier J. P., Funrmann-Lieker T., Axente E.. Sima F.. Mihailescu C. N., Socol G., Mihailescu I. N. Optical study of thin (As2Se3)1-x(AgI)x films. J. optoelektronics and Advanced Materials. 2007. V. 9. No 2. P. 326-329.

10. Seema Kandpal, Kushwaha R. P. S.. Photoacous-tic spectroscopy of thin films of As2S3, As2Se3 and GeSe2. Indian Academy of Sciences. PRAM ANA J. Physics. 2007. V. 69. No 3. P. 481-484.

11. Babaev A.A., Muradov R., Sultanov S.B., Askhabov A.M. Vliianie uslovii polucheniia na opticheskie i fotoliuminestsentnye svoistva stekloobraznykh As2S3. Neorgan. materialy. 2008. T. 44. № 11. C. 1187-1201.

12. Slusher R.E., Lenz G., Hodelin J., Sanghera J., Shaw L.B., and Aggarwal I.D. Large Raman gain and nonlinear phase shifts in high-purity As2Se3 Chalcogenide fibers. J. Opt. Soc. Am. 2004. V. 21. P. 1146-1155.

13. Nikiforov V. N., Morozkin A. V., Irkhin V. Iu. Termoelektricheskie svoistva redkozemelnykh splavov. Fizika metallov i materialovedenie 2013. T. 114. № 8. S.711-720.

14. Carnall W.T., Fields P.R., Ranjak K. Electronic energy levels of the trivalent lanthanide aquo ions. I. Pr3+, Nd3+, Pm3+, Sm3+, Dy3+, Ho3+, Er3+ and Tm3+. J. Chemical physics. 1968. V. 49. № 10. P. 4424-4442.

15. Gorbachev A.A., Korotaev V.V., Iaryshev S.N. Tverdotelnye matrichnye fotopreobrazovateli i ka-mery na ikh osnove. SPb.: NIUITMO, 2013. 98 s.

16. Skvorniakov G.P., Kamarzin A.A., Malovitskii Iu.N., Astadoeva L.V. Fotoprovodimost polutornogo sulfida lantana. FTT. 1982. T. 24. № 2. S. 647-649.

17. Antonets I., Kotov L., Nekipelov S., Shavrov V., Shcheglov V., Electrodynamic Properties of Thin Metal Films with Different Thicknesses and Morphologies of the Film Surface. J. Commun. Technol. Electron., 2004. V. 49. № 10. P. 1164-1170.

18. Vas'kovskiy V.O., Adanakova O.A., Balymov

K.G., Kulesh N.A., Svalov A.V. Specific features of the formation of atomic magnetic moments in amorphous films RE-Co (RE = La, Gd, Tb). Phys. Solid State. 2015. V.57. № 6. P. 1142-1147.

19. Andreenko A., Nizhankovski V., Mydlarz T., Sala-mova A., Skourski Y., Tristan N., Verbetsky V. Hydrogenation Effect on Magnetic Properties of Rare Earth-FE/Co Amorphous Alloys. Int. J. Hydrog. Energy. 1999. V. 24. № 2-3. P. 221-224.

20. Vas'kovskiy V.O., Svalov A.V., Balymov K.G., Kulesh N.A. Effect of Annealing on the Magnetic Anisotropy and Hysteretic Properties of Film Structures Containing Tb-Co Amorphous Layers. Phys. Metals Metallogr. 2012. V. 113. № 9. P. 862-866.

21. Nikitin S.A. Magnetoelastic and Elastocaloric Effects in Rare-Earth Metals, their Alloys and Compounds in the Region of Magnetic Phase Transitions. Mosc. Univ. Phys. Bull., 2011. V. 66. № 6. P. 519-533.

22. Il'yasov R., Glavatskikh M. Electromagnetic-Acoustic Transformation in the Amorphous FE81B13.5Si3.5C2 Alloy. Phys. Metals Metallogr., 2003. V. 95. № 3. P. 237-241.

23. Chaofeng Zh., Yunxia Y., Xiaoluan L., Shuanglong Y., Guorong Ch. Rare earth ions doped full-color luminescence glasses for white LED. J. Luminescence. 2007. V.126. P. 707-710.

24. Jiajia Zh., Yu T., Song Y., Yixi Zh., Jianrong Q. Enhanced downconversion luminescence by co-doping Ce3+ in Tb3+-Yb3+ doped borate glasses. Chem. Physics Letters. 2010. V. 486. P. 116-118.

25. Zu C.K., Chen J., Zhao H.F., Han B., Zhao Y.H., Wang Y.H. Effect of cerium on luminescence and irradiation resistance of Tb3+ doped silicate glasses. J. Alloys and Compounds. 2009. V. 479. № 1-2. P. 294-298.

26. Chewpraditkul W., Shen Y., Chen D., Yu B., Prusa P., Nikl M., Beiterova A., Wanarak Ch. Luminescence and scintillation of Ce3+-doped high silica glass. Optical Materials. 2012. V. 34. P. 1762-1766.

AssSes-NdSe SiSTEMiNiN §U§OVARI ORiNTiLORiNiN FOTO VO ELEKTRiK XASSOLORiNiN SiNTEZi VO TODQiQi

i.i. Oliyev, T.M. ilyasli, A.Q., Xudiyeva, X.M. Ha^imov

As2Se3-NdSe sisteminin arintilari geni§ qatiliq intervalinda sintez edilmi§dir. As2Se3-NdSe sistemi diferensial-termiki (DTA), rentgenfaza (RFA), mikroqurulu§ (MSA) analizi, hamginin mikrobarkliyin va sixligin olgulmasi ila tadqiq edilmi§dir. Sistemda asas komponentlar asasinda kigik sahada birfazali sahalar muayyan edilmi§dir. As2Se3-NdSe sisteminda otaq temperaturunda As2Se3 birla§masi asasinda bark mahlulun sahasi 1,5 mol % ta§kil edir., NdSe birla§masina asasinda isa bark mahl sahasi isa 2,0 mol % ta§kil edir. As2Se3-NdSe sisteminda yava§ soyudulma zamani As2Se3 birla§masi asasinda 17 mol % NdSe §u§a sahasinin oldugu muayyan edilmi§dir. As2Se3-NdSe sisteminin (As3Se3)i-x(NdSe)x (x = 0,03; 0,05; 0,07; 0,10) tarkibli §u§avan arintilarinin foto- va elektrik kegiriciliyi tadqiq edilmi§dir.

Agar sozlzr: sintez, §u§3, mikrobarklik, sistem, bark mahlul.

СИНТЕЗ И ИССЛЕДОВАНИЕ ФОТО- И ЭЛЕКТРИЧЕСКИХ СВОЙСТВ СТЕКЛО СПЛАВОВ СИСТЕМЫ As3Se3-NdSe

И.И.Алиев, Т.М.Ильяслы, А.Г.Худиева Х.М.Гашимов

Сплавы системы As2Se3-NdSe были синтезированы в широком диапазоне концентраций. Система As2Se3-NdSe исследована методами дифференциально-термического (ДТА), рентгенофазового (РФА), микроструктурного (МСА) анализов, а также измерениями микротвердости. Система имеет небольшие однофазные поля на основе исходных компонентов. В системе As2Se3-NdSe области твердого раствора на основе соединения As2Se3 при комнатной температуре составляет 1.5 мол. %, а на основе соединения NdSe составляет 2.0 мол. %. При медленном охлаждении в системе As2Se3-NdSe на основе As2Se3 область стеклообразования достигает 17 мол. % NdSe. Исследованы фото- и электропроводность стеклообразных сплавов системы As2Se3-NdSe, содержащих (As3Se3)i_x(NdSe)x (x = 0.03; 0.05; 0.07; 0.10).

Ключевые слова: синтез, стекло, микротвердость, система, твердые растворы.

i Надоели баннеры? Вы всегда можете отключить рекламу.