CHEMICAL PROBLEMS 2024 no. 1 (22) ISSN 2221-8688
103
UDC 547.3+615.3.
SYNTHESIS AND CHARACTERIZATION OF NEW Mn(II), Co(II), Ni(II), Cu(II), Zn(II) And Cd(II) COMPLEXES WITH [(z)-3((6-AMINOPYRIDINE-2-yl) IMINO) INDOLIN-2-
ONE] LIGAND
Farah T. Saeed1*, Zeena U. Jasim2
Department of Chemistry, College of Science, University of Mosul, Mosul, Iraq 2Department of Chemistry, College of Education for Girls, University of Mosul, Mosul, Iraq Corresponding author: [email protected] Email.college of since: [email protected]
Received 12.10.2023 Accepted 23.12.2023
Abstract: A Schiff base ligand, 3-((6-amino-1,6-dihydropyridin-2-yl)imino)indolin-2-one, was synthesized by condensing isatin with 2,6-diaminopyridine in this study. Elemental analysis, NMR spectroscopy, and infrared spectroscopy enabled confirmation of the structure of the pyridine-incorporated ligand. Additional coordination compounds of this ligand with Mn(II), Co(II), Ni(II), Cu(II), Zn(II), and Cd(II) metals were synthesized with metal-to-ligand proportions verified through trace elemental examinations using CHN. Various spectroscopic techniques including UV-visible absorption spectrophotometry, IR spectrophotometry, electrical conductivity quantifications, melting point determinations, and magnetic susceptibility analyses facilitated characterization of the produced complexes. The antimicrobial potential of the organic ligand and inorganic complexes was screened against Bacillus subtilis and Staphylococcus aureus bacterial strains through the agar disc diffusion technique. Both the uncoordinated ligand and metal-ligand coordination compounds displayed appreciable antibacterial effects on the tested microorganisms. Tetrahedral configurations were proposed for all prepared complexes based on combined analytical and spectroscopic evidence.
Keywords: Schiff base ligand, Isatin, NMR spectrum, Infrared. DOI: 10.32737/2221-8688-2024-1-103-114
Introduction
Schiff base ligands and their metal coordination complexes with transition metal ions have become an extensively explored research area in coordination chemistry. This can be ascribed to the versatile structural motifs, tunable characteristics, and diverse coordination geometries accessible when transition metals are complexed with Schiff base ligands [1]. Among organic compounds, Schiff bases synthesized from isatin have been one of the most thoroughly explored systems, with comprehensive theoretical and experimental studies [2]. The strong donor atoms like
carbonyl O2 and imine nitrogen found in Schiff bases are essential for structural diversity, catalysis, and several biological applications [3]. The distinctive properties of Schiff bases containing the isatin molecular motif enable their demonstrated antimicrobial, antifungal, antiviral, anti-HIV, antileprotic, anti-leukemia, analgesic and anticancer effects. Isatin-derived Schiff base metal complexes have garnered significant research attention within bioinorganic chemistry applications [4-15].
Since isatin nucleus contains carbonyl groups at position 2 and 3 in the lactam and keto
www.chemprob.org
CHEMICAL PROBLEMS 2024 no. 1 (22)
forms respectively, it can undergo either addition reaction at CO-O bond or condensation reactions eliminating water [16]. Transition metal complexes with polydentate ligands have attracted interest in chemistry owing to the ability of transition metals to exhibit multiple oxidation states [17-19]. Transition metal ions and Schiff base ligands are two pivotal components required to form stable complexes and are essential to the progression of coordination chemistry [20,21].
Novel ligands featuring the isatin scaffold, synthesized recently, were utilized to construct hitherto unknown coordination complexes with copper(II), nickel(II) and cobalt(II). Several spectroscopic methods including Fouriertransform infrared spectroscopy, ultraviolet-visible absorption spectroscopy, and proton nuclear magnetic resonance spectroscopy enabled comprehensive characterization of the synthesized metal-ligand complexes. Spectroscopic investigations intimated octahedral arrangements around cobalt and copper centers whereas a tetrahedral geometry was proposed for nickel based on the recorded spectra [22].
Pyridine and its derivatives have been extensively used to construct macrocyclic Schiff base ligands. Various transition metal complexes containing chromium(III), manganese(II), iron(III), cobalt(II), nickel(II)
and copper(II) have been synthesized by sequential reactions of the metal ions with 2,6-dicetylpyridine and 1,2-di(o-
aminophenyl)thioethane. Additionally, lead(II) complexes containing non-transition metals and pyridine-based Schiff bases have been synthesized, with the formula [Pb=(BT)(BI)2(SCN)2] where BT and BI represent benzotriazole and benzoimidazole units respectively [23, 24].
The molecule 2,6-diaminopyridine (dap) functions as an N-donor ligand possessing characteristics of both a heterocyclic N-terminal group and an aromatic amine. Specific dap complexes, notably [PdCl2(dap)]H2O, [Pt(dap)2]Cl2-2HCl, and RhCl3(dap)2H2O have been explored for the antimutagenic and antiviral properties of 2,6-diaminopyridine. Earlier studies reliant solely on infrared spectroscopy data showed that dap exhibits dimeric ligand tendency with Pd(II), Pt(II) and Rh(III) ions, binding through both pyridine-nitrogen and NH2 nitrogen centers. However with Pt(II) complexes, coordination of HCl molecules to free NH2 groups was noted [25,26]. The current work involves the synthesis and characterization of an isatin-incorporated ligand using 2,6-diaminopyridine and its respective complexes with chosen transition metals including Mn(II), Co(II), Ni(II), Cu(II), Zn(II) and Cd(II).
Materials and Methods
All chemicals utilized were of analytical grade and obtained from either FLUKA or B.D.H. suppliers. Melting point or decomposition temperature was quantified using a digitally-controlled thermoelectric melting point equipment. A Jenway conventional conductivity device (model 4070) facilitated molar conductivity assessments on 10-3M complex DMSO solutions at 25°C. Shimadzu UV 160 instruments for ultraviolet visible and infrared spectroscopy enabled spectral recordings, on KBr pellets (400 to 4000 cm-1 range) and on 10-3M DMSO solutions respectively, employing 1 cm quartz cuvettes at room temperature. The magnetic susceptibility profiles of powdered metal coordination complexes were examined at 25°C employing
the Faraday methodology with a Brucker BM6 superconducting quantum interference device (SQUID) magnetometer.
Elemental composition analyses (CHN) were executed in duplicate at ORDU University deploying conventional microanalytical methods on a Perkin Elmer 2400 (IEES) machine. Metal content quantifications were achieved using a PYEUNI-CAM SPg atomic absorption spectrophotometer. Proton nuclear magnetic resonance (1H NMR) spectral data of synthesized ligands are documented as chemical shifts (ppm) taking tetramethylsilane (TMS) as an internal reference standard.
Ligand Preparation: In a round bottom flask, isatin (0.01 mol, 1.47 g) and 2,6-diaminopyridine (0.01 mol, 1.09 g) were
combined with a few drops of glacial acetic acid. The resultant mixture was refluxed for 6 hours, allowing the volume to reach half of the initial quantity upon evaporation. After cooling
the flask, the brown precipitate obtained was isolated via filtration and washed sequentially with ethanol and diethyl ether prior to vacuum drying for 4 hours (Scheme 1).
Scheme 1: Synthesis of Schiff base ligand.
Preparation of Metal Complexes: The
ligand L (0.01 mol, 2.3 g) was dissolved in 30 mL of hot ethanol. The corresponding metal chloride salts (0.01 mol), namely CuCh^^O, MnCh-4H2O, NiCl2-6H2O, ZnCl2-6H2O, CoCl26H2O and CdCl24H2O, were separately dissolved in 30 mL of hot ethanol and added to the refluxing ligand solution following 3 hours
of heating at room temperature. The products formed were filtered, washed sequentially with ethanol and diethyl ether and then vacuum dried for 4 hours to obtain the anticipated metal-ligand (1:1) chelates. Physical and analytical data for the ligands and their complexes are compiled in Table 1.
Table 1: Ligand and its complexes Physical and analytical data
No. Structure Colour Yield % MP. (C°) The analysis discovered (calc.)%
C. H. N.
L C13H10N4O Light Brown 96 170173 98.20 (97.0) 6.91 (5.80) 3.22 (9.28)
1 [Mn(L)]Cl2 Brown 94 380 85.32 (84.22) 5.46 (4.32) 6.06 (5.72)
2 [Co(L)]Cl2 Dark red 95 300 84.40 (83.30) 5.40 (4.77) 6.02 (5.86)
3 [Ni(L)]Cl2 White 92 290 71.36 (68.87) 5.37 (4.17) 6.01 (5.63)
4 [Cu(L)]Cl2 Dark green 94 310 83.49 (82.76) 5.34 (4.64) 5.92 (4.68)
5 [Zn(L)]Cl2 Dark brown 91 306 83.05 (82.41) 5.31 (4.84) 5.38 (4.82)
6 [Cd(L)]Cl2 Brown 94 295 75.79 (74.32) 4.85 (3.21) 6.98 (5.85)
Results and discussion
Infrared Spectral Analyses of Ligand and Complexes: Infrared spectroscopy was utilized in this work to probe the vibrational fingerprints of the synthesized free ligands and metal coordination assemblies in KBr disc form across the 400-4000 cm-1 region. To verify and validate coordination centers, infrared signals from the metal complexes were compared and contrasted with the unbound ligand spectrum
using the following diagnostic characteristics:
The intense infrared stretch at 1699 cm-1 in the spectrum of the free ligand attributed to the carbonyl stretch (v(C=O)) of the isatin moiety displays shifts to higher or lower wavenumbers in the spectra of complexes, indicating binding of the metal center with the carbonyl oxygen atom.[27]
Two intense infrared bands detected at 1558 cm-1 and 1614 cm-1, representing the azomethine stretching frequencies v(C=N), demonstrate wavenumber shifts in the infrared profiles of the synthesized manganese(II), cobalt(II), nickel(II), copper(II), cadmium(II), and zinc(II) coordination compounds. Such displacements confirm coordination of the ligand framework to the metal ions through the nitrogen atoms of the two imine groups [28,29].
The ligand serves as a neutral tetradentate chelator bonded to the metals via the isatin ring nitrogen, oxygen atoms and two azomethine nitrogen atoms within its structure.
The carbonyl forms a four-membered chelate ring. Distinctive infrared signals for the complexes are compiled in Table 2, further supported by novel bands observed between 480-491 cm-1 attributable to the v(M-N) stretch (Figure 1) [30].
Fig. 1. Infrared spectrum of (A) ligand (B) complexes [Co.(L)]Cl2 (C) complexes [Ni.(L)]Cl2
Table 2: Infrared and electronic spectral c
No. NH2 N.(C=O) N.(C=N) Isatin v(C=N) M-N. M-O.
L 3429s 1699s 1614s 1558s — —
1 3315m 1695s 1613m 1556m 482m 440w
2 3544s 1704s 1614m 1553m 488m 506m
3 3509m 1699s 1614w 1557w 488w 454w
4 3434m 1707s 1616s 1553w 483m 455m
5 3321m 1698m 1615m 1575m 486m 432m
6 3449m 1699s 1615m 1557w 491m 459w
ata for compounc
s and ligand
Electronic Spectral Analyses: The electronic absorption profiles of the synthesized uncoordinated ligand and metal coordination complexes were acquired and the accrued spectroscopic data documented in Table 3.
According to Laporta's rule, high spin Mn(II) complexes are not expected to display dd type transitions in the discernible region owing to parity-forbidden and spin-forbidden nature [31]. As outlined in Table 3, the electronic profile of the manganese(II) complex
shows signature charge transfer bands emanating from metal-ligand interactions along with n^-rc* and tc^-tc* transitions [32].
The electronic spectrum of the cobalt complex displays signature charge transfer bands comprising of an UV peak at 32043 cm-1 and a visible absorption at 15635 cm-1, attributable to the 4A2(F) ^ 4T1(P) (v3) transition, corroborating a tetrahedral geometry around the cobalt(II) metal center [33-36].
Characteristic absorptions detected at
14850 cm 1 and 28843 cm 1 in the electronic spectrum of the nickel analog, attributable to 3T1(F) ^ 3T1(P) (v3) transitions and charge transfer bands respectively, are indicative of a tetrahedral arrangement [37,38].
Copper complexes exhibited an intense band at 10430 cm-1 in their electronic
Table 3: Ligand and its complex's electronic spectra
Complex Transition C.T.
L 3325 23061 n —> n* n —> n* —
[Mn(L)]Cl2 34181 30431 n —> n* n —^ n* 27370 25638
[Co(L)]Cl2 15635 4A2(F) 4T1(P)(V3) 32043
[Ni(L)]Cl2 14850 3T1(F) —> 3T1(p) (V3) —
[Cu(L)]Cl2 10430 2T2 —> 2E
spectra, denoting a tetrahedral configuration [39].
Absence of electronic transitions in d orbitals resulted in no observable absorption bands in the electronic spectra of saturated Cd and Zn complexes [40,41].
Magnetic Analyses: The magnetic moment value of 5.9 B.M. for the manganese(II) complex signifies a tetrahedral environment around the manganese(II) center [42]. A magnetic moment of 4.3 B.M. for the Co(II) complex agrees with three unpaired electrons, indicating a tetrahedral geometry for the Co(II) ion [43]. The Ni(II) complex exhibited a magnetic moment of 3.9 B.M., consistent with a tetrahedral arrangement at room temperature [44]. The copper (II) complex
displayed a magnetic moment of 2.1 B.M., potentially indicating a tetrahedral structure [45].
Conductivity Measurements: All the soluble complexes recorded molar conductivities between 31.9 and 37.4 cm-2mol-1 in DMSO solutions 10 to 3 M at room temperature signifying their high ionic nature (1:1 type) with high conductivity [46]. The conductivity values are given in Table 4.
Table 4:
Magnetic moment p.eff & molar conductivity of the complexes
No. Structure Molar-conductivity (S.c.m2.mol-1) Meff. (B.M.)
1 [Mn(L)]Cl2 34.6 5.9
2 [Co(L)]Cl2 35.8 4.3
3 [Ni(L)]Cl2 37.4 3.9
4 [Cu(L)]Cl2 31.9 2.1
1H-NMR Data: The 1H-NMR chemical shifts (ppm) of synthesized compounds matched well with other reported isatin derivatives providing considerable support for the proposed structures [47]. 1HNMR spectra of ligand L in DMSO showed signals at (7.26) ppm due to aromatic
ring proton [48] and a chemical shift at (10.71)
ppm attributed to N-H proton of isatin ring [49-
54] (Figure 2).
The carboxyl proton in the *H NMR spectra of the prepared M(II) complexes appeared as a sole signal between 2.2-2.3 ppm, signifying the absence of the N-H peak of the isatin ring thus corroborating direct metal-nitrogen bonding as shown in Scheme 2 [5557].
Fig. 2: 'H-NMR spectra of (A) ligand (B) Co(II) compound (C) Ni(II) compound.
Biological activities: The bacterial activity of a synthetic ligand(1) and its metal complexes was studied. Application of biological activity to various species of bacteria detected in the laboratory using biochemical and microscopic tests was included in this study. These isolated bacteria are thought to be the source of many human ailments. The study comprised two types of bacteria that cause human disease, the first of which was negative bacteria (Table 5). Gram-positive bacteria are
represented by Bacillus subtilis, and Gramnegative bacteria are represented by Staphylococcus aureus [58,59].
The ligand (L) inhibited growth of both bacteria after 24 hours with increase in zone of inhibition after 48 hours (Figure 3). Additionally, experimental data revealed immobilized complexes were less active than free ligands against the same bacterial species under comparable conditions.
Fig. 3: The ligands' and complexes' biological functions using staphylococcus aureous and Bacillus
subtilis
Proposed Structure: Considering the the suggested generalized structure for the analytical, spectroscopic, magnetic synthesized coordination complexes is
susceptibility, and conductivity data collected, presented as follows (Scheme 2):
Scheme 2: Proposed structures of coordination complexes, where M = Mn(II), Co(II), Ni(II),
Cu(II), Zn(II), and Cd(II).
Table 5: Shows the effectiveness (area of bacterial inhibition in mm for the prepared compound)
Compounds Inhibition zone diameter (mm)
Bacillus subtilis Staphylococcus aureus
Control 15 23
1 L 14 20
2 [Mn(L)]Cl2 12 18
3 [Co(L)]Cl2 10 14
4 [Ni(L)]Cl2 9 18
5 [Cu(L)]Cl2 8 23
6 [Zn(L)]Cl2 13 14
Conclusion
The present work successfully employed Schiff base ligand as a precursor for synthesizing a novel isatin derivative and extensively characterized its structural and
molecular properties to ascertain efficacy. Antibacterial activity was thoroughly evaluated using bacterial isolate models, providing additional confirmation.
References
1. Tarafder MT, Saravanan N, Crouse KA, Ali AM. Coordination chemistry and biological activity of nickel (II) and copper (II) ion complexes with nitrogen-sulfur donor ligands derived from S-benzyldithiocarbazate (SBDTC). transition metal chemistry. Transition Metal Chemistry.2001, vol. 26, pp. 613±618. https://doi.org/10.1023/A:1012047001167.
2. Asiri AM, Khan SA. Synthesis and antibacterial activities of some novel schiff bases derived from aminophenazone. molecules. Molecules, 2010, vol. 15(10),
pp. 6850-8.
https://doi.org/10.3390/molecules15106850
3. Khandar AA, Hosseini-Yazdi SA, Zarei SA. Synthesis, characterization and X-ray crystal structures of copper (II) and nickel (II) complexes with potentially hexadentate Schiff base ligands. Inorganica chimica acta. 2005, vol.358(11), pp. 3211-7. https://doi.org/10.1016Zj.ica.2005.04.028.
4. Mohamed GG, Omar MM, Hindy AM. Metal complexes of Schiff bases: preparation, characterization, and biological activity. Turkish Journal of Chemistry.
2006, vol. 30(3), pp. 361-82. https://journals.tubitak.gov.tr/chem/vol30/is s3/11.
5. Cerchiaro G, Ferreira AM. Oxindoles and copper complexes with oxindole-derivatives as potential pharmacological agents. Journal of the Brazilian Chemical Society. 2006, vol. 17, pp. 1473-85. https://doi.org/10.1590/S0103-50532006000800003.
6. Konstantinovic SS, Radovanovic B, Cakic Z, Vasic VM. Synthesis and characterization of Co (II), Ni (II), Cu (II) and Zn (II) complexes with 3-salicylidenehydrazono-2-indolinone. Journal of the Serbian Chemical Society. 2003, vol. 68(8-9), pp. 641-7. DOI: 10.2298/JSC0309641K.
7. Sharma V, Srivastava S, Srivastava A. Novel coordination complexes of the trivalent ruthenium, rhodium and iridium with hydrazones derived from isatin hydrazide and various aldehydes with spectral and biological characterization. Polish Journal of Chemistry. 2006, vol. 80(3), pp. 387-96.
8. Sharma VK, Srivastava A, Srivastava S. Synthetic, structural and antifungal studies of coordination compounds of Ru (III), Rh (III) and Ir (III) with tetradentate Schiff bases. Journal of the Serbian Chemical Society. 2006, vol. 71(8-9), pp. 917-28. https://doi.org/10.2298/JSC0609917S.
9. Selvam P, Chandramohan M, De Clercq E, Witvrouw M, Pannecouque C. Synthesis and anti-HIV activity of 4-[(1, 2-dihydro-2-oxo-3H-indol-3-ylidene) amino]-N (4, 6-dimethyl-2-pyrimidinyl)-benzene sulfonamide and its derivatives. European Journal of Pharmaceutical Sciences. 200, vol. 14(4), pp. 313-6. https://doi.org/10.1016/S0928-0987 (01) 00197-X.
10. Rajopadhye M, Popp FD. Synthesis and antileukemic activity of spiro [indoline-3, 2'-thiazolidine]-2, 4'-diones. Journal of heterocyclic chemistry. 1987, vol. 24(6), pp. 1637-42. https://doi.org/10.1002/jhet.5570240627.
11. Pandeya SN, Smitha S, Jyoti M, Sridhar SK. Biological activities of isatin and its
derivatives. Acta Pharm. 2005, vol. 55(1), pp. 27-46.
12. Abadi AH, Abou-Seri SM, Abdel-Rahman DE, Klein C, Lozach O, Meijer L. Synthesis of 3-substituted-2-oxoindole analogues and their evaluation as kinase inhibitors, anticancer and antiangiogenic agents. European journal of medicinal chemistry. 2006, vol. 41(3), pp. 296-305. https://doi.org/10.1016Zj.ejmech.2005.12.00 4.
13. Malik KM, Haider SZ, Hossain MA, Hursthouse MB. Dipotassium sodium trisaccharinate monohydrate, K2Na (C7H4NO3S)3. H2O. Acta Crystallographica Section C: Crystal Structure Communications. 1984, vol. 40(10), pp. 1696-8.
https://doi.org/10.1107/S010827018400919 7.
14. Devi J, Kumari S, Malhotra R. Synthesis, spectroscopic studies, and biological activity of organosilicon (IV) complexes of ligands derived from 2-aminobenzothiazole derivatives and 2-hydroxy-3-methoxy benzaldehyde. Phosphorus, Sulfur, and Silicon and the Related Elements. 2012, vol. 187(5), pp. 587-97. https://doi.org/10.1080/10426507.2011.634 465.
15. Devi J, Devi S, Kumar A. Synthesis, spectral, and in vitro antimicrobial studies of organosilicon (IV) complexes with Schiff bases derived from dehydroacetic acid. Monatshefte fur Chemie-Chemical Monthly. 2016, vol. 147, pp. 2195-207. https://doi.org/10.1007/s00706-016- 1720-z.
16. Hassan EM, Mustafa YF, Merkhan MM. Computation in chemistry: representative software and resources. IJABAS. 2022, vol. 6(4), pp. 1-22.
17. Suresh MS, Prakash V. Preparation Characterization and Antibacterial Studies of Chelates of Schiff Base Derived from4-Aminoantipyrine, Furfural and o-phenylenediamine. Journal of Chemistry. 2011, vol. 8, pp. 1408-16. https://doi.org/10.1155/2011/254018.
18. Raman N, Ali SF, Raja DJ. Designing, synthesis and spectral characterization of Schiff base transition metal complexes:
DNA cleavage and antimicrobial activity studies. Journal of the Serbian Chemical Society. 2008, vol. 73(11), pp. 1063-71. https://doi.org/10.2298/JSC0811063R.
19. Raasch A, Scharfenstein O, Trankle C, Holzgrabe U, Mohr K. Elevation of ligand binding to muscarinic M2 acetylcholine receptors by bis (ammonio) alkane-type allosteric modulators. Journal of medicinal chemistry. 2002, vol. 45(17), pp. 3809-12. https://doi.org/10.1021/jm020871e.
20. Keypour H, Shayesteh M, Sharifi-Rad A, Salehzadeh S, Khavasi H, Valencia L. Synthesis and characterization of copper (II) and cobalt (II) complexes with two new potentially hexadentate Schiff base ligands. X-ray crystal structure determination of one copper (II) complex. Journal of Organometallic Chemistry. 2008, vol. 693(19), pp. 3179-87. https://doi.org/10.1016/j.jorganchem.2008.0 7.012.
21. Sarkar S, Dey K. Synthesis and spectroscopic characterization of some transition metal complexes of a new hexadentate N2S2O2 Schiff base ligand. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy. 2005, vol. 62(1-3), pp. 383-93. https://doi.org/10.1016Zj.saa.2005.01.005.
22. Abdulkarem AA. Synthesis and antibacterial studies of metal complexes of Cu (II), Ni (II) and Co (II) with tetradentate ligand. Journal of Biophysical Chemistry. 2017, vol. 8(02), pp.13-21.
23. Rezaeivala M, Keypour H. Schiff base and non-Schiff base macrocyclic ligands and complexes incorporating the pyridine moiety-The first 50 years. Coordination Chemistry Reviews. 2014, vol. 280, pp. 203-53.
https://doi.org/10.1016/jxcr.2014.06.007.
24. Uddin MN, Salam MA, Sultana J. Pb (II) complexes of Schiff bases derived from benzoylhydrazine as the antibacterial agents. Science publishing group. 2015, vol. 3, pp. 7-14. doi: 10.11648/j.mc.s.2015030101.12.
25. Tayim HA, Malakian AH, Bikhaz AB. Synthesis and physicochemical, antimitogenic, and antiviral properties of a
novel palladium (II) coordination compound. Journal of Pharmaceutical Sciences. 1974, vol. 63(9), pp. 1469-71. https://doi.org/10.1002/jps.2600630932.
26. Vassilian A, Bikhazi AB, Tayim HA. Synthesis and antimitogenic activity of some coordination compounds of platinum (II), palladium (II) and rhodium (III). Journal of Inorganic and Nuclear Chemistry. 1979, vol. 41(5), pp. 775-8. https://doi.org/10.1016/0022-1902 (79) 80380-2.
27. Kareem EK, Lateef SM, Drea AA. Synthesis and Characterization of Some Transition Metal Complexes with New Schiff Base Ligand Derivative from Isatin. Journal of Kufa for Chemical Sciences. 2015, vol.1, no.10, pp. 74-85.
28. Jaafar WA. Synthesis, Structural Study and Biological Activity Evaluation of Cr (III), Mn (II), Zn (II), Cd (II) and Hg (II) Complexes with New Schiff Base Ligand Derived from Isatin. Journal of Global Pharma Technology, 2018, vol. 10(06), pp. 513-520.
29. Zalov A.Z, Iskenderova K.O., Askerova Z.G., Hajiyeva A.B. Spectrophotometric study of Nickel (II) complexes with 2-hydroxythiolphenol and its derivatives in the presence of hydrophobic amines. Chemical Problems. 2021, no.4, pp. 22431.
30. Patil SA, Unki SN, Kulkarni AD, Naik VH, Badami PS. Synthesis, characterization, in vitro antimicrobial and DNA cleavage studies of Co (II), Ni (II) and Cu (II) complexes with ONOO donor coumarin Schiff bases. Journal of Molecular Structure. 2011, vol. 985 (2-3), pp. 330-8. https://doi.org/10.1016/j.molstruc.2010.11. 016.
31. Al-Mukhtar SE, Mustafa IA. Inorganic and coordination chemistry. Mosul university, Iraq. 1988;1.
32. Al-Shaalan NH. Synthesis, characterization and biological activities of Cu (II), Co (II), Mn (II), Fe (II), and UO2 (VI) complexes with a new Schiff base hydrazone: O-Hydroxyacetophenone-7-chloro-4-quinoline hydrazone. Molecules. 2011, vol.
16(10), pp. 8629-45.
https://doi.org/10.3390/molecules16108629
33. Abrahams SC. The stereochemistry of subgroup VI B of the periodic table. Quarterly Reviews, Chemical Society. 1956, vol. 10(4), pp. 407-36. https://doi.org/10.1039/QR9561000407.
34. Kanchanadevi S, Fronczek FR, David CI, Nandhakumar R, Mahalingam V. Investigation of DNA/BSA binding and cytotoxic properties of new Co (II), Ni (II) and Cu (II) hydrazone complexes. Inorganica Chimica Acta. 2021, vol. 526, pp. 120536. https://doi.org/10.1016Zj.ica.2021.120536.
35. Mangalam NA, Kurup MP, Suresh E, Kaya S, Serdaroglu G. Diversities in the chelation of aroylhydrazones towards cobalt (II) salts: synthesis, spectral characterization, crystal structure and some theoretical studies. Journal of Molecular Structure. 2021, vol. 1232, pp. 129978. https://doi.org/10.1016/j.molstruc.2021.129 978.
36. Zalov A.Z., Hasanova N.S. Spectrophotometric study of ternary complexes of Cr (VI) and Co (II). Chemical Problems. 2020, no.2, (2), pp. 164-73.
37. Raut RD, Jadhav SZ, Bagade PN, Nandehwar ST. Synthesis and physic-chemical studies of Cu(II), Ni(II), Co(II), Complexes with p-chloroisonitroso acetophenone (P-CIINAP). J.Chem. pharm. Res. 2011, vol. 3(6), pp. 195-199.
38. Zalov A.Z., isgenderova K.O., Askerova Z.G. Spectrophotometric research into interaction nickel (II) with 1-(2-pyridylazo)-2-hydroxy-4-mercaptofenol and aminophenols. Chemical Problems. 2021, no.3, pp. 150-9.
39. Perlepes SP, Kabanos T, Lazaridou V, Tsangaris JM. The coordination chemistry of N-(2-aminophenyl)-and N-(3-aminophenyl) quinoline-2'-carboxamide; two potentially tridentate ligands containing secondary amide and N-donor groups. Inorganica chimica acta. 1986, vol. 117(1), pp. 27-37. https://doi.org/10.1016/S0020-1693 (00) 88062-7.
40. Parihari RK, Patel RK, Patel RN. Complexes of Mn (II), Co (II) and Zn (II)
with N-(2-Thiazolyl) thiourea. Oriental Journal of Chemistry. 1999, vol.15, pp. 379-80.
41. Santiago PH, Santiago MB, Martins CH, Gatto CC. Copper (II) and zinc (II) complexes with Hydrazone: Synthesis, crystal structure, Hirshfeld surface and antibacterial activity. Inorganica Chimica Acta. 2020 vol. 508, pp. 119632. https://doi.org/10.1016/j.ica.2020.119632.
42. Siti Amira MH. Magnetic, metallomesogenic and thermoelectric studies of Cu (II), Ni (II), Co (II), Fe (II) and Mn (II) complexes with benzoates, cyclam and 4 alkyloxypyridines as ligands/Siti Amira Mat Hussin (Doctoral dissertation, University of Malaya).
43. Nicholls D. The chemistry of iron, cobalt and nickel: comprehensive inorganic chemistry. Elsevier; 2013.
44. Patel KS, Ikekwere PO. Magnetic and spectral properties of Cu (II) cyanobenzoates. Journal of Inorganic and Nuclear Chemistry. 1981, vol. 43(1), pp. 51-5. https://doi.org/10.1016/0022-1902 (81) 80436-8.
45. Kabanos TA, Tsangaris JM. Deprotonated and non-deprotonated complexes of n-(2-aminophenyl) pyridine-2-carboxamide and n-(3-aminophenyl) pyridine-2-carboxamide with Co (II), Ni (II), Cu (II) and Pd (II). Journal of coordination chemistry. 1984, vol. 13(2), pp. 89-103.
46. Hadi MA. Coordination Behavior of N/O donor ligand with some transition metals. Acta Chimica Pharmaceutica Indica. 2013, vol. 3(2), pp. 127-34.
47. Burger K. Coordination Chemistry Experimental Methods London Bult. Worths and Co publishers Ltd. 1973.
48. Hodnett EM, Dunn III WJ. Cobalt derivatives of Schiff bases of aliphatic amines as antitumor agents. Journal of medicinal chemistry. 1972, vol. 15(3), pp. 339.
http://dx.doi.org/10.1021/jm00273a037.
49. Jarrahpour AA, Khalili D. Synthesis of some new bis-Schiff bases of isatin and 5-fluoroisatin in a water suspension medium. Molecules. 2006, vol. 11(1), pp. 59-63. https://doi.org/10.3390/11010059. Kriza A,
Parnau C, Zalaru F. Complexes of Ti (IV) and Zr (IV) with some bidentate Schiff bases derived from isatin. Acta. Chim. Slov, vol. 48, pp. 445-452.
50. Sridhar SK, Ramesh A. Synthesis and pharmacological activities of hydrazones, Schiff and Mannich bases of isatin derivatives. Biological and Pharmaceutical Bulletin. 2001, vol. 24(10), pp. 1149-52. http://dx.doi.org/10.1248/bpb.24.1149.
51. Hassaan AM. Co (II) and Fe (III) complexes of Schiff bases derived from isatin with some amino acids. Egyptian journal of pharmaceutical sciences. 1994, vol. 35, pp. 165.
52. Lobana TS, Pannu AP, Hundal G, Butcher RJ, Castineiras A. Synthesis and structures of monomeric [chloro (isatin-3-thiosemicarbazone) bis (triphenylphosphine)] copper (I) and dimeric [dichlorobis (thiophene-2-carbaldehyde thiosemicarbazone) bis (triphenylphosphine)] dicopper (I)] complexes. Polyhedron. 2007, vol. 26(12), pp. 2621-8. http://dx.doi.org/10.1016Zj.poly.2006.12.04 4.
53. Gupta AK, Sindal RS. A comparative study of electrochemical reduction of isatin and its synthesized Schiff bases at HMDE. Journal of chemical sciences. 2009, vol. 121, pp. 347-51. http://dx.doi.org/10.1007/s12039-009-0040-9.
54. Kiemle DJ, Silverstein RM, Webster FX. Identification spectrométrique de composés organiques-3ème édition. De Boeck
Superieur; 2016, 480 p.
55. Bergman J, Engqvist R, Stâlhandske C, Wallberg H. Studies of the reactions between indole-2, 3-diones (isatins) and 2-aminobenzylamine. Tetrahedron. 2003, vol. 59(7), pp. 1033-48. http://dx.doi.org/10.1016/S0040- 4020 (02) 01647-2.
56. Singh YP, Patel SK. Molecular structures, spectral, electrochemical, DFT and antioxidant activities of copper (II) complexes with NNO donor Schiff base ligand. Journal of Molecular Structure. 2021, vol. 1228, p. 129457. https://doi.org/10.10167j.molstruc.2020.129 457.
57. Anacona JR. Synthesis and antibacterial activity of some metal complexes of beta-lactamic antibiotics. Journal of coordination chemistry. 2001, vol. 54 (3-4), pp. 355-65. https://doi.org/10.1080/0095897010802264 8.
58. Mustafa YF, Kasim SM, Al-Dabbagh BM, Al-Shakarchi W. Synthesis, characterization and biological evaluation of new azo-coumarinic derivatives. Applied Nanoscience (Switzerland) 2023, vol.13, pp. 1095-1102. https://doi.org/10.1007/s13204-021-01873-w.
59. Sultana N, Arayne MS. In vitro activity of cefadroxil, cephalexin, cefatrizine and cefpirome in presence of essential and trace elements. Pakistan Journal of Pharmaceutical Sciences. 2007, vol. 20(4), pp. 05-10.
[(z)-3((6-AMiNOPiRÎDÎN-2-iL) ÎMÎNO) ÎNDOLÎN-2-ON] LiQANDI ÎL9 YENi Mn(II), Co(II), Ni(II), Cu(II), Zn(II) V9 Cd(II) KOMPLEKSLERiNiN SiNTEZi V9
XARAKTERiSTiKASI
Farah T. Said1, Zina U. Casim2
Mosul Universiteti, Elmhr Kolleci, Kimya Departamenti, Mosul, iraq 2Kimya §öbssi, Qadin Tshsil Kolleci, Mosul Universiteti, Mosul, iraq
Xülasa: Bu i§da 3-((6-amino-1,6-dihidropiridin-2-il)imino)indolin-2-on §iff asasli liqand izatinin 2,6-diaminopiridinla kondensasiyasi ila sintez edilmi§dir. Element analizi, NMR spektroskopiyasi
уэ infraqirmizi spektroskopiya piridinb birb§diribn liqandin strukturunu tasdiqlami^dir. Bu liqandin Mn(II), Co(II), Ni(II), Cu(II), Zn(II) vэ Cd(II) metallari ilэ э1яуэ koordinasiya ЬМэ^э^п sintez edilmi§ vэ metallarin liqandlara nisbэti yoxlanilmi§dir. Müxtэlif spektroskopik üsullar, o cümlэdэn, ultrabэnöv§эyi §üalarla görünэn absorbsiya spektrofotometriyasi, IR spektrofotometriyasi, elektrik ke9iriciliyinin kэmiyyэtinin müэyyэn edilmэsi, эrimэ nöqtэsinin tэyini уэ maqnit hэssasllglnln tэhlili этэ1э §э1эп komplekslэrin sэciyyэlэndirilmэsinэ kömэk etmi§dir. Üzvi liqandin vэ qeyri-üzvi komplekslэrin mikroblara qar§i potensiali diffuziya üsulu ita Bacillus subtilis уэ Staphylococcus aureus bakteriya §tammlarina qar§i tэdqiq edilmi§dir. Hэm эlaqэlэndirilmэmi§ liqandlar, hэm dэ metal-liqand koordinasiya ЬМэ^э^п sinaqdan ke9irilmi§ mikroorqanizmlэrэ qar§i эhэmiyyэtli antibakterial tэsir göstэrmi§dir. A?ar sözlar: §iff эsasll liqand, izatin, NMR spektri, iQ spektri.
СИНТЕЗ И ХАРАКТЕРИСТИКА НОВЫХ КОМПЛЕКСОВ Mn(II), Co(II), Ni(II), Cu(II), Zn(II) И Cd(II) С [(z)-3((6-АМИНОПИРИДИН-2-ИЛ) ИМИНО) ИНДОЛИН-2-ОН]
ЛИГАНДОМ
1 2 Фарах Т. Саид , Зина У. Джасим
1 Кафедра химии, Научный колледж Мосульского университета, Мосул, Ирак 2Химический факультет Педагогического женского колледжа Мосульского университета,
Мосул, Ирак
Аннотация: В данной работе методом конденсации изатина с 2,6-диаминопиридином синтезирован лиганд основания Шиффа - 3-((6-амино-1,6-дигидропиридин-2-ил)имино)индолин-2-он. Элементный анализ, ЯМР и инфракрасная спектроскопия позволили подтвердить структуру пиридин-инкорпорированного лиганда. Были синтезированы дополнительные координационные соединения этого лиганда с металлами Mn(II), Co(II), Ni(II), Cu(II), Zn(II) и Cd(II), соотношение металлов и лигандов было проверено с помощью микроэлементного анализа. Различные спектроскопические методы, включая УФ-видимую абсорбционную спектрофотометрию, ИК-спектрофотометрию, а также количественное определение электропроводности, определение температуры плавления и анализ магнитной восприимчивости, способствовали определению характеристик полученных комплексов. Антимикробный потенциал органического лиганда и неорганических комплексов был исследован против штаммов бактерий Bacillus subtilis и Staphylococcus aureus методом диффузии в агаре. Как некоординированные лиганды, так и координационные соединения металл-лиганд проявляли заметный антибактериальный эффект в отношении тестируемых микроорганизмов.
Ключевые слова: лиганд основания Шиффа, изатин, спектр ЯМР, ИК-спектр.