Научная статья на тему 'Synchrotron ir-microspectroscopy-based visualization of molecular and chemical interactions between dental cement, biomimetic composite and native dental tissue'

Synchrotron ir-microspectroscopy-based visualization of molecular and chemical interactions between dental cement, biomimetic composite and native dental tissue Текст научной статьи по специальности «Фундаментальная медицина»

CC BY
100
16
i Надоели баннеры? Вы всегда можете отключить рекламу.
Ключевые слова
BIOMIMETIC MATERIALS / IR MICROSPECTROSCOPY / NATIVE HUMAN TOOTH HARD TISSUE / SYNCHROTRON RADIATION

Аннотация научной статьи по фундаментальной медицине, автор научной работы — Goloshchapov D.L., Kashkarov V.M., Seredin P.V., Ippolitov Y.A., Ippolitov I.Y.

The low affinity of composite materials for the hard tissue of human teeth poses a challenge to restorative dentists. This study was undertaken to explore molecular and chemical characteristics of the interface between the dental cement, the buffer layer formed from a next generation biomimetic material that mimics the organic mineral composition of human enamel and dentin, and the intact native hard dental tissue. Seven plane-parallel dental slices were analyzed using synchrotron IR microspectroscopy. The obtained absorption spectra of functional molecular groups were organized into cluster maps. This allowed us to identify the intact tissue, the adhesive agent and the biomimetic layer at their interface and to localize and measure concentrations of functional groups involved in the integration of the biomimetic composite into the hard tissue of the human tooth. The proposed biomimetic material is based on nanocrystal carbonate-substituted calcium hydroxyapatite synthesized from a biogenic calcium source and a complex of basic polar amino acids copying the composition of the human tooth and can form a functional bond with hard dental tissue.

i Надоели баннеры? Вы всегда можете отключить рекламу.
iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.
i Надоели баннеры? Вы всегда можете отключить рекламу.

Текст научной работы на тему «Synchrotron ir-microspectroscopy-based visualization of molecular and chemical interactions between dental cement, biomimetic composite and native dental tissue»

SYNCHROTRON IR-MICROSPECTROSCOPY-BASED VISUALIZATION OF MOLECULAR AND CHEMICAL INTERACTIONS BETWEEN DENTAL CEMENT, BIOMIMETIC COMPOSITE AND NATIVE DENTAL TISSUE

Goloshchapov DL1, Kashkarov VM1, Ippolitov YuA2, Ippolitov IYu2, Jitraporn Vongsvivut3, Seredin PV1^

1 Voronezh State University, Voronezh, Russia

2 Вurdenko Voronezh State Medical University, Voronezh, Russia

3 Australian Synchrotron, Melbourne, Australia

The low affinity of composite materials for the hard tissue of human teeth poses a challenge to restorative dentists. This study was undertaken to explore molecular and chemical characteristics of the interface between the dental cement, the buffer layer formed from a next generation biomimetic material that mimics the organic mineral composition of human enamel and dentin, and the intact native hard dental tissue. Seven plane-parallel dental slices were analyzed using synchrotron IR microspectroscopy. The obtained absorption spectra of functional molecular groups were organized into cluster maps. This allowed us to identify the intact tissue, the adhesive agent and the biomimetic layer at their interface and to localize and measure concentrations of functional groups involved in the integration of the biomimetic composite into the hard tissue of the human tooth. The proposed biomimetic material is based on nanocrystal carbonate-substituted calcium hydroxyapatite synthesized from a biogenic calcium source and a complex of basic polar amino acids copying the composition of the human tooth and can form a functional bond with hard dental tissue.

Keywords: biomimetic materials, native human tooth hard tissue, IR microspectroscopy, synchrotron radiation Funding: the study was supported by the Russian Science Foundation (Grant 16-15-00003). Acknowledgment: IR microspectroscopy was conducted at the Australian Synchrotron.

Author contribution: Goloshchapov DL planned the study, analyzed the literature, collected and interpreted the obtained data; Kashkarov VM collected, analyzed and interpreted the obtained data; Ippolitov YuA planned the study, prepared the samples, collected and analyzed the data; Ippolitov IYu prepared the samples; Jitraporn Vongsvivut conducted IR microspectroscopy; Seredin PV planned the study, analyzed the literature, collected, analyzed and interpreted the obtained data, and conducted IR microspectroscopy.

Compliance with ethical standards: the study was approved by the Ethics Committee of Voronezh State University (Protocol № 2019/3/1 dated March 4, 2019).

[23 Correspondence should be addressed: Pavel V. Seredin Universitetskaya pl.1, Voronezh, 394018; paul@phys.vsu.ru

Received: 18.07.2019 Accepted: 31.07.2019 Published online: 01.08.2019

DOI: 10.24075/brsmu.2019.047

ВИЗУАЛИЗАЦИЯ МОЛЕКУЛЯРНО-ХИМИЧЕСКОГО ВЗАИМОДЕЙСТВИЯ МАТЕРИАЛА, БИОКОМПОЗИТА И ТКАНИ ЗУБА НА ОСНОВЕ СИНХРОТРОННОЙ ИК-МИКРОСПЕКТРОСКОПИИ

Д. Л. Голощапов1, В. М. Кашкаров1, Ю. А. Ипполитов2, И. Ю. Ипполитов2, Jitraporn Vongsvivut3, П. В. Середин1^

1 Воронежский государственный университет, Воронеж, Россия

2 Воронежский государственный медицинский университет имени Н. Н. Бурденко, Россия

3 Австралийский синхротрон, Мельбурн, Австралия

В реставрационной стоматологии остается актуальной проблема низкого сродства композиционных материалов с нативной твердой тканью зуба. Целью работы было исследовать молекулярно-химические особенности формирования интерфейса стоматологический материал — биомиметический буферный слой — твердая ткань зуба человека. С применением метода молекулярной многомерной ИК-визуализации на 7 плоскопараллельных сегментах образцов был выполнен анализ участка интерфейса здоровая твердая ткань (эмаль/дентин) — биомиметический переходной слой — стоматологический материал/адгезивный, созданный с использованием нового поколения биомиметических материалов, воспроизводящих минералорганический комплекс эмали и дентина зубов человека, с нативными твердыми тканями зуба человека и стоматологическим цементом. Данные спектральной молекулярной визуализации, полученные на основе синхротронного ИК-картирования интенсивности функциональных молекулярных групп, позволили нам обнаружить и визуализировать различия между здоровой тканью, стоматологическим материалом и биомиметическим переходным слоем в межфазных областях (интерфейсах), а также определить локализацию и концентрацию функциональных групп, отвечающих процессам интеграции биомиметического композита и нативной твердой ткани зубов человека. Показано, что разработанная нами биомиметическая система на основе нанокристаллического карбонат-замещенного гидроксиапатита кальция, полученного из биогенного источника кальция и комплекса основных полярных аминокислот, соответствующих органоминеральному комплексу зубов человека, способна образовывать функциональную связь с твердой тканью зуба человека.

Ключевые слова: биомиметические материалы, нативная твердая ткань зуба человека, ИК-микроспектроскопия, синхротронное излучение Финансирование: исследование выполнено при поддержке гранта Российского Научного Фонда № 16-15-00003.

Благодарности: часть этого исследования была проведена с использованием канала Инфракрасной микроскопии (IRM) на Австралийском синхротроне.

Информация о вкладе авторов: Д. Л. Голощапов — планирование исследования, анализ литературы; сбор, анализ и интерпретация данных; В. М. Кашкаров — сбор, анализ, интерпретация данных; Ю. А. Ипполитов — планирование исследования, подготовка образцов, сбор и анализ данных; И. Ю. Ипполитов — подготовка образцов; Jitraporn Vongsvivut — проведение эксперимента; П. В. Середин — планирование исследования, анализ литературы, сбор, анализ, интерпретация данных, проведение эксперимента.

Соблюдение этических стандартов: исследование одобрено этической комиссией Воронежского государственного университета (протокол № 2019/3/1 от 04 марта 2019 г).

Для корреспонденции: Павел Владимирович Середин Университетская пл., 1, г. Воронеж, 394018; paul@phys.vsu.ru

Статья получена: 18.07.2019 Статья принята к печати: 31.07.2019 Опубликована онлайн: 01.08.2019 DOI: 10.24075/vrgmu.2019.047

Although modern composite materials and bonding resins used in restorative dentistry are durable and have a good adhesive capacity, their chemical and structural resemblance to native hard dental tissue is low [1, 2]. The difference in physical and chemical characteristics between synthetic materials and the natural enamel and dentin of human teeth necessitates development of novel restorative composites [2, 3]. Extensive research effort is being channeled into improving the tooth-material interface by employing innovative bonding systems and hybrid buffer layers that increase the durability of dental restorations and enhance the bonding strength between the filling material and hard dental tissue [3-5]. One of the most important questions that should be addressed by researchers is reliable chemical bonding between dental composite fillers/ bonding agents and the natural tissue of human teeth [6].

So far, biomimetic materials, whose composition and (nano)structure mimic those of hard dental tissue, have offered the best solution to the problem of interface quality between natural enamel/dentin and synthetic adhesives [7-9]. It is a well-known fact that nanocrystalline hydroxyapatite (HA), which is identical in composition and morphology to enamel apatite found in human teeth, facilitates better integration of restorative materials with the tooth [5, 10]. Besides, enrichment of biomimetic agents with polar amino acids occurring in the natural enamel matrix [11-14] creates a possibility for high-quality repair of damaged enamel or dentin layers and improves mechanical properties of the restoration [12, 15].

There are a few methods used to assess integration of the bonding resin with natural dental tissue and the quality of resin-enamel or resin-dentin interfaces. Fourier-transform infrared spectroscopy (FTIR) is a non-destructive technique that provides information about the molecular structure and fine structural properties of biological objects based on the analysis of their fingerprint vibrational IR spectra [16]. FTIR can be applied to study mechanisms of molecular transformations in biomimetic materials [17, 18] and dental adhesive agents [19], analyze the molecular composition of human teeth [6], and register new mineral phases [20]. Microscopes and sources of synchrotron radiation for IR spectroscopy are instrumental in acquiring large arrays of spectra from a microscopic area of a studied biological sample [17]. Based on the acquired IR spectra, chemical images of the sample can be generated, offering a wealth of information about molecular bonds and their spatial distribution.

The aim of this work was to study molecular and chemical properties of an interface between a dental cement, a biomimetic buffer layer and hard dental tissue based on multidimensional visualization of synchrotron IR spectroscopy data.

METHODS

Synthesis of biomimetic material and sample preparation

The biomimetic composite material was fabricated similar to the bonding system described in [21]. The composite contained hyaluronic acid (0.01-0.05 wt. %), L-histidine (0.01-0.2 wt. %), L-lysine hydrochloride (0.05-0.4 wt. %), L-arginine hydrochloride (0.2-1.6 wt. %), ethylene glycol monomethyl ether (30-85 wt. %), diglycidyl dimethacrylate (1-15 wt. %), urethane dimethacrylate (1-15 wt. %), ethanol (2-20 wt. %), and water (the rest). The analysis of optical absorption and emission properties found that the synthesized material, which contained the listed amino acids, was similar in its properties to natural tooth enamel and dentin [22]. Synthetic carbonate-substituted hydroxyapatite (CSHA) was added to the biomimetic buffer (0.01 g of CSHA per 1 ml

of the mixture) to improve the similarity of the biocomposite to natural dental tissue [20].

To ensure adhesion of the biomimetic composite to the tooth, we used a universal adhesive agent that effectively bound to the synthesized materials [23]. The adhesive agent was enriched with CSHA (1 ml of the adhesive per 0.01 g CSCA). Hydroxyapatite was combined with the biomimetic buffer and the adhesive agent, and the mixture was subsequently homogenized for 30 seconds using a QSonica Q55 sonicator (QSonica; USA).

Integration of the synthesized biocomposite material with hard dental tissue was tested on the dental specimens obtained from the patients aged 18 to 45 years who had indications for tooth extraction. The specimens were prepared for filling as described below.

First, enamel was removed using an air-driven micromotor hand piece with a round-head tungsten vanadium steel bur operated at 4,000 rpm and a water-cooling system necessary to avoid overheating of the dental matrix. Dentin was spared. Cavity preparation was finished using a low-speed hand piece. The cavity was washed and dried with compressed air

Second, enamel was etched for 60 s with a 37% phosphoric acid etching gel, rinsed with water and air-dried. Then, a dentin conditioner [21] was applied to the dentin surface for 20-30 s. The conditioner contained hyaluronic acid (0.01-0.05 wt. %), L-histidine (0.01-0.2 wt. %), L-lysine hydrochloride (0.05-0.4 wt. %), and L-arginine hydrochloride (0.2-1.6 wt. %). After that, the cavity was dried.

Third, the biomimetic buffer was evenly applied to the walls of the prepared cavity and dried with compressed air 20 seconds later. The biomimetic layer was coated with a universal CSHA-containing light-curing adhesive agent that was photopolymerized for 20 seconds.

Finally, 1 min after the previous step, the biomimetic buffer layer was coated with a commercial restorative dental compomer containing adhesive components.

Considering the requirements for the geometry of samples subject to IR microspectroscopy, we prepared 7 plane-parallel sections of the restored teeth immediately before the study as described in our previous work [24].

Method of sample analysis

The molecular composition of the samples and the interface between the restorative dental compomer, the biomimetic buffer layer and the native hard tissue of the human tooth was analyzed using attenuated total reflection (ATR) Fourier transform synchrotron infrared microspectroscopy. Measurements were conducted at the Australian Synchrotron Infrared Microspectroscopy Beamline (Melbourne, Australia) equipped with a Hyperion 3000 FTIR microscope (Bruker; USA) and an ATR-FTIR accessory with a germanium prism (Melbourne, Australia) [17]. Figures 1A and B are show the studied segment (marked with the rectangle) that yielded IR absorption spectra at 3800-700 cm-1 wavelength (Fig. 1C).

Using the IR microscope and OPUS 7.5 software (Bruker; USA), we acquired a cluster of IR spectra from a small sample area of 100*100 pm in size (Fig. 1B) with a 2 pm sampling interval and constructed one-dimensional IR images (maps) based on the color codes for the intensity of IR absorption bands (Fig. 1D). The lowest absorbance intensity is shown in red, whereas the highest, in blue. The map demonstrates the distribution of absorbance intensity of a molecular group and, therefore, reveals its concentration in a specified sample area.

RESULTS

By applying IR spectroscopy to the interface between the light-curing adhesive agent, the biomimetic composite material and natural dental enamel/dentin (Fig. 1B), we were able to identify the major vibrational modes active in the IR spectrum (Fig. 1C) that can be used as spectral fingerprints for the compounds present in the studied sample area.

The absorption band at 1163-981 cm-1 had the highest intensity and represented the PO4 mineral component of enamel/dentin apatite [22]. The range between 1700 and 1100 cm-1 wavelength represented the protein constituents of organic enamel/dentin and the components of the biomimetic buffer (see Synthesis of biomimetic material and sample preparation). Here, the most active vibrational modes were observed for the CH2-CH3 collagen group at 1457 cm-1 and for Amide absorption bands (Amide I at 1650 cm-1, C=O stretching; Amide II at 1550 cm-1, N-H bending, and Amide III at 1245 cm-1, CN stretching) [18, 19, 22]. We also recorded vibrations at 1725 cm-1 wavelength produced by the methyl ester group (-COOCH3), the component of the restorative Bis- (-GMA dental compomer [19].

Fig. 2A features the IR map of P04 distribution across the studied interface segment (Fig. 1B). The IR spectrum specific for this group (Fig. 2B) was acquired from the area of enamel-biomimetic layer integration. The spectrum contained vibrations of the P04 group at 1163-981 cm-1 wavelength occurring in natural enamel /dentin apatite [19, 20] and the biomimetic agent. We concluded that the part of the interface occupied by

the restorative compomer did not contain phosphate groups. The zone bordering on tooth enamel where spectral vibrations were observed at 1163-981 cm-1 was ~30 |jm in size (Fig. 3A, the dotted line).

For further information about the studied interface, an IR image was generated (Fig. 3A). This IR map shows the distribution of absorbance intensity for CN, NH, C=O, and CH2/ CH3 in the range between 1718 and 1358 cm-1 wavelength (Fig. 3B). The listed molecular groups are components of collagen, Amide I and Amide II (the organic constituents of tooth enamel/dentin added to the biomimetic buffer).

The results of the IR map analysis (Fig. 3A) suggest that the distribution of organic components in the biomimetic layer was more homogenous than the distribution of phosphate groups. These findings are consistent with the fact that the proportion of hydroxyapatite in the biomimetic layer was lower than the proportion of organic components.

The IR spectrum presented in Fig. 1C contains an absorption band at 1725 cm-1. It is well known that such vibration is typical for dental cements based on Bis-GMA and polymethyl methacrylate and suggests the presence of the ester group -COOCH3) [19]. Moreover, this spectral band (Fig. 4B) does not overlap with other vibrations, which allowed us to visually represent it as an IR image (Fig. 4A).

The IR map demonstrates spatial distribution of the restorative dental compomer in the analyzed sample segment (Fig. 4A). The figure shows that the distribution of absorbance intensity of the ester group (-COOCH3) coincides with the spatial distribution of the dental compomer on the map (Fig. 1B).

А

C

1800 1600 1400 1200

Wavenumbers (om-1)

1000

32 250

32 300

32 350

33.01

Fig. 1. The optical image of a plane-parallel dental segment from the interface between the dental cement, the biomimetic composite material, enamel and dentin (A) sized 100x200 jm; the 20x optical image of the studied interface (B); the typical IR absorption spectrum from the studied interface (C); the IR map of total absorbance compiled from the IR microspectroscopy data array (D)

The analysis of the acquired spectra (Fig. 1B) allowed us to identify an intensive absorption band for Amide III at 1269-1224 cm-1 and construct a separate IR map for the biomimetic layer (Fig. 5A). Of note, its vibration (Fig. 5B) did not overlap with the absorption spectra of other functional groups, meaning that it can be used as a marker of a biomimetic composite.

Comparison of the optical data (Fig. 1B) and the IR map (Fig. 5A) clearly shows that the molecular group at 1269-1224 cm-1 can be localized to only a narrow segment of the interface between the light-curing material, the biomimetic layer and the enamel/dentin of the human tooth.

DISCUSSION

IR spectroscopy of dental materials [19], biomimetic composites [20], and natural tissue of human teeth [6] characterizes the molecular composition of the studied samples as a single whole. In contrast to the research studies cited in this article, one-dimensional images (IR maps) based on the color codes of absorbance intensity of 4 main spectral ranges (17521704 cm-1, 1718-1358 cm-1, 1269-1224 cm-1, and 1163981 cm-1) became a good visual representation of the spatial distribution of molecular groups across the studied sample and of molecular-chemical interactions occurring at the interface between the light-curing material, the biomimetic layer and the enamel/dentin of the human tooth.

The IR map of the phosphate group (Fig. 2A) revealed the presence of an area with absorbance intensity varying from 1.0 to 7.0. This was part of the biomimetic buffer layer

that contained synthetic carbonate-substituted calcium hydroxyapatite introduced into the biomimetic material in order to increase its molecular and chemical resemblance to natural tooth structures [20]. The presence of CSHA in the biomimetic material allowed us to clearly discriminate between the biomimetic layer and the restorative compomer on the IR map (Fig. 2A), where color changes were determined by the intensity of vibrational modes representing the P04 group of CSHA. The margin between the natural dental tissue and the biomimetic composite material was blurred, which proves the high similarity of the composite to natural enamel and dentin.

It should be noted, though, that alone, the IR map of phosphate groups is not enough to study the integration of dental cements with the dental enamel/dentin mediated by the biomimetic buffer layer. At 1163-981 cm-1 the absorption spectra of phosphate groups (Fig. 2B) can overlap with the vibrational modes of aluminum silicates or silica that are common components of restorative dental materials [19, 25]. However, the analysis of the interface margin (Fig. 1A and 2A) did not reveal significant amounts of such compounds in the analyzed spectral range (Fig. 2B), which can suggest their low concentration in the studied sample area.

While the IR map shows the distribution of the phosphate group, the IR image of vibrations at 1718-1358 cm-1 corresponding to the organic components of the sample (Fig. 3A) helps to accurately identify the margin between enamel and dentin. In Fig. 3A, the dentin area (shown in red) has a higher organic content than enamel (shown in green), which is consistent with the available reports [20].

1800 1600 1400 1200 1000

Wavenumbers (сm-1)

Fig. 2. A. The IR absorbance map based on the color codes for absorbance Intensity at 1163-981 cm-1. B. The IR absorption spectrum of the enamel area containing a characteristic phosphate vibrational mode at 1163-981 cm-1

1800 1600 1400 1200 1000

Wavenumbers (сm-1)

Fig. 3. A. The IR absorbance map based on the color codes for absorbance intensity at 1718-1358 cm-1. B. The IR absorption spectrum containing vibrational modes of CN, NH, C=O, and CH2/CH3 groups at 1718-1358 cm-1

At the same time, when studying the interactions between the dental compomer/the biomimetic layer and hard dental tissue, one should bear in mind that the spectral range between 1718 and 1358 cm-1 contains a few overlapping bands [18]. This complicates result interpretation and makes it difficult to draw unambiguous conclusions about the type of interactions at the compomer/buffer/hard tissue interface.

The IR spectra of the ester group (-COOCH3) (Fig. 4A) and Amide III (Fig. 5A) do not overlap with other vibrational modes. Therefore, the analysis of their IR maps allows us to make the following conclusions. First, it can be clearly seen that the area of integration between the restorative compomer and natural tooth enamel, where absorbance intensity for -COOCH3 varies from its peak to the lowest value, covers a spot ~14 jm in width and overlaps with the area dominated by organic components (Fig. 4A, 5A). Second, the analysis of the distribution of absorbance intensity for Amide III (Fig. 5A) present in the biomimetic layer suggests that this layer separates hard dental tissue from the dental cement.

All IR images (Fig. 2A, 3A, 4A, 5A) offer a good visual representation of the buffer layer, whereas other imaging techniques provide information about the morphology of the tooth-material interface only [2, 4, 15]. This means that buffer layers caught in the integration area and close to each other in composition are hard to analyze.

It is not always possible to visualize interactions occurring at the heterogonous interface between structurally similar materials using a series of one-dimensional IR images [6]. This is a limitation of a one-dimensional approach to the identification of spectral changes for the materials only slightly different in their

А

1.43

1.10

0.9

0.7

0.5

0.3

0.01

32 250

B

32 300

32 350

chemical structure. However, this limitation can be overcome by using multidimensional clusterization methods that can effectively systematize vast arrays of multicomponent IR spectra [26]. Using this approach, we were able to analyze the features of a complex dental compomer/biomimetic layer/enamel/dentin interface. The comprehensive cluster analysis of the spectral ranges 1752-1704 cm-1, 1718-1358 cm-1, 1269-1224 cm-1, and 1163-981 cm-1 discovered that interactions between the material and native tooth tissue were mediated by the buffer layer (Fig. 6, the dotted line).

The spatial distribution of molecular and chemical phosphate, protein, Amide and ester groups (Fig. 6) shows that the biomimetic layer between enamel and the dental compomer binds to the partially demineralized enamel matrix via a mediator sublayer, which may indicate an organic and mineral interaction in the analyzed region. At the same time, the data analysis (Fig. 6) shows that the buffer layer between the biomimetic material and dentin is wider due to a more porous structure of dentin, as compared to enamel [1, 2]. Clusterization of IR spectra helps to see that organic and mineral components of the biomimetic buffer layer tend to permeate the light-curing adhesive agent, forming a mediator interface.

Considering our findings, one can assume that the real size of a mediator sublayer that facilitates integration between the biomimetic composite material, the restorative compomer and hard dental tissue is 3-4 jm, which is consistent with current state of scientific knowledge [27].

The data yielded by the analysis of all IR images (Fig. 2-6) can be used to reliably discriminate between the functional groups of all materials present at the biomimetic system-hard

32 250

B

32 300

32 350

1800 1600 1400 1200 1000

iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.

Wavenumbers (cm-1)

Fig. 4. А. The IR absorbance map based on the color codes for absorbance Intensity at 1752-1704 cm-1. B. The IR absorption spectrum containing a vibrational mode of the ester group (-COOCH3) at 1752-1704 cm-1

1800 1600 1400 1200 1000

Wavenumbers (cm-1)

Fig. 5. А. The IR absorbance map based on the color codes for Amide III absorbance intensity at 1269-1224 cm-1. B. The IR absorption spectrum of the enamel area containing a characteristic phosphate vibrational mode at 1269-1224 cm-1

native dental tissue interface and confirm the efficacy of the chosen approach to the analysis of integration processes between dental cements and next-generation biomimetic composites.

It should be noted that our findings are true for totally etched samples. However, they may be also true for the samples prepared using other techniques (self-etch or self-adhesive systems) that exploit materials similar in their chemical activity or composition to those used in our study.

CONCLUSIONS

We have demonstrated the feasibility of using multidimensional IR imaging to study the integration of next-generation biomimetic materials mimicking the mineral and organic composition of natural enamel with hard tissue of the human tooth. Using synchrotron radiation and IR maps of absorbance intensity constructed for each functional molecular group, we detected and graphically presented differences between healthy tissue, the dental cement, and the biomimetic buffer layer at their interface and determined the position and concentration of functional groups that indicate integration of the biomimetic composite with hard dental tissue. We have shown that the proposed biomimetic system consisting of nanocrystalline CSHA from a biogenic calcium source and a complex of polar amino acids found in human teeth can form a functional bond with hard tissue of human teeth. The obtained miscrospectroscopy data confirm the chemical differentiation of the materials and the presence of organic and mineral interaction at the interface between the biomimetic system and hard dental tissue.

А

32 250

B

32 300

Х(цм)

32 350

32 250

32 300

Х(цм)

32 350

Fig. 6. Cluster analysis of absorption bands at 1760-1690 cm-1 and 1520-1360 cm-1 delineating the biomimetic composite area

References

1. Peutzfeldt A, Sahafi A, Flury S. Bonding of restorative materials to dentin with various luting agents. Oper Dent. 2011 Jun; 36 (3): 266-73.

2. Temel UB, Van Ende A, Van Meerbeek B, Ermis RB. Bond strength and cement-tooth interfacial characterization of self-adhesive composite cements. Am J Dent. 2017 Aug; 30 (4): 205-11.

3. Rohr N, Fischer J. Tooth surface treatment strategies for adhesive cementation. J Adv Prosthodont. 2017 Apr; 9 (2): 85-92.

4. Pontes DG, Araujo CTP, Prieto LT, de Oliveira DCRS, Coppini EK, Dias CTS, Paulillo LAMS. Nanoleakage of fiber posts luted with different adhesive strategies and the effect of chlorhexidine on the interface of dentin and self-adhesive cements. Gen Dent. 2015 Jun; 63 (3): 31-7.

5. Barandehfard F, Kianpour Rad M, Hosseinnia A, Khoshroo K, Tahriri M, Jazayeri HE, Moharamzadeh K, Tayebi L. The addition of synthesized hydroxyapatite and fluorapatite nanoparticles to a glass-ionomer cement for dental restoration and its effects on mechanical properties. Ceramics International. 2016 Nov 15; 42 (15): 17866-75.

6. Simon JC, A. Lucas S, Lee RC, Darling CL, Staninec M, Vaderhobli R, Pelzner R, Fried D. Near-infrared imaging of secondary caries lesions around composite restorations at wavelengths from 1300-1700-nm. Dental Materials. 2016 Apr 1; 32 (4): 587-95.

7. Uskokovic V. Biomineralization and biomimicry of tooth enamel. In: Non-Metallic Biomaterials for Tooth Repair and Replacement [Internet]. Elsevier; 2013 [cited 2014 Sep 10]: 20-44. Available from: http://linkinghub.elsevier.com/retrieve/pii/ B9780857092441500021.

8. Niu L, Zhang W, Pashley DH, Breschi L, Mao J, Chen J, Tay FR. Biomimetic remineralization of dentin. Dental Materials. 2014; 30 (1): 77-96.

9. Cao C, Mei M, Li Q, Lo E, Chu C. Methods for Biomimetic

Mineralisation of Human Enamel: A Systematic Review. Materials. 2015 May 26; 8 (6): 2873-86.

10. Dorozhkin SV Hydroxyapatite and Other Calcium Orthophosphates: Bioceramics, Coatings and Dental Applications [Internet]. Nova Science Publishers, Inc New York; 2017 [cited 2017 Aug 23]. 462 p. Available from: https://istina.msu.ru/publications/ book/58538935/

11. El Rhilassi A, Mourabet M, Bennani-Ziatni M, El Hamri R, Taitai A. Interaction of some essential amino acids with synthesized poorly crystalline hydroxyapatite. Journal of Saudi Chemical Society. 2016; 20 (Suppl 1): 632-40.

12. Li H, Gong M, Yang A, Ma J, Li X, Yan Y. Degradable biocomposite of nano calcium-deficient hydroxyapatite-multi(amino acid) copolymer. Int J Nanomedicine. 2012; (7): 1287-95.

13. Aljabo A, Abou Neel EA, Knowles JC, Young AM. Development of dental composites with reactive fillers that promote precipitation of antibacterial-hydroxyapatite layers. Materials Science and Engineering: C. 2016; (60): 285-92.

14. Tavafoghi M, Cerruti M. The role of amino acids in hydroxyapatite mineralization. Journal of The Royal Society Interface. 2016 Oct 1; 13 (123): 20160462.

15. Ruan Q, Zhang Y, Yang X, Nutt S, Moradian-Oldak J. An amelogenin-chitosan matrix promotes assembly of an enamellike layer with a dense interface. Acta Biomaterialia. 2013 Jul; 9 (7): 7289-97.

16. Baker MJ, Trevisan J, Bassan P, Bhargava R, Butler HJ, Dorling KM, et al. Using Fourier transform IR spectroscopy to analyze biological materials. Nat Protocols. 2014; 9 (8): 1771-91.

17. Vongsvivut J, Perez-Guaita D, Wood BR, Heraud P, Khambatta K, Hartnell D, et al. Synchrotron macro ATR-FTIR microspectroscopy for high-resolution chemical mapping of single cells. Analyst. 2019 Mar 14; 144 (10): 3226-38.

18. Seredin P, Goloshchapov D, Ippolitov Y, Vongsvivut P. Pathology-specific molecular profiles of saliva in patients with multiple dental caries — potential application for predictive, preventive and personalised medical services. EPMA Journal. 2018 Jun 1; 9 (2): 195-203.

19. Hçdzelek W, Marcinkowska A, Domka L, Wachowiak R. Infrared Spectroscopic Identification of Chosen Dental Materials and Natural Teeth. Acta Physica Polonica A. 2008 Aug; 114 (2): 471-84.

20. Seredin PV, Goloshchapov DL, Prutskij T, Ippolitov YuA. Fabrication and characterisation of composites materials similar optically and in composition to native dental tissues. Results in Physics. 2017; (7): 1086-94.

21. Erusalimov FA, Ippolitov YuA, Kunin AA. Bioactive bonding system [Internet]. RU2423966C2, 2011 [cited 2019 Jul 18]. Available from: https://patents.google.com/patent/RU2423966C2/en

22. Seredin PV, Goloshchapov DL, Gushchin MS, Ippolitov YA, Prutskij T. The importance of the biomimetic composites components for recreating the optical properties and molecular composition of intact dental tissues. J Phys: Conf Ser. 2017; 917 (4): 042019.

23. Ippolitov YuA. The possibility of bond system biological

compatibility improvement for adhesion of hard dental tissues to filling material. Volgogradskij nauchno-medicinskij zhurnal. 2010; 4 (28): 31-4.

24. Seredin PV, Goloshchapov DL, Prutskij T, Ippolitov YuA. A Simultaneous Analysis of Microregions of Carious Dentin by the Methods of Laser-Induced Fluorescence and Raman Spectromicroscopy. Opt Spectrosc. 2018 Nov 1; 125 (5): 803-9.

25. Khan AS, Khalid H, Sarfraz Z, Khan M, Iqbal J, Muhammad N, et al. Vibrational spectroscopy of selective dental restorative materials. Applied Spectroscopy Reviews. 2017 Jul 3; 52 (6): 507-40.

26. Kobrina Y, Rieppo L, Saarakkala S, Pulkkinen HJ, Tiitu V, Valonen P, et al. Cluster analysis of infrared spectra can differentiate intact and repaired articular cartilage. Osteoarthritis and Cartilage. 2013 Mar 1; 21 (3): 462-9.

27. Atmeh AR, Chong EZ, Richard G, Festy F, Watson TF. Dentin-cement Interfacial Interaction: Calcium Silicates and Polyalkenoates. Journal of Dental Research [Internet]. 2012 Mar 20 [cited 2018 Apr 13]; Available from: http://journals.sagepub. com/doi/abs/10.1177/0022034512443068

Литература

1. Peutzfeldt A, Sahafi A, Flury S. Bonding of restorative materials to dentin with various luting agents. Oper Dent. 2011 Jun; 36 (3): 266-73.

2. Temel UB, Van Ende A, Van Meerbeek B, Ermis RB. Bond strength and cement-tooth interfacial characterization of self-adhesive composite cements. Am J Dent. 2017 Aug; 30 (4): 205-11.

3. Rohr N, Fischer J. Tooth surface treatment strategies for adhesive cementation. J Adv Prosthodont. 2017 Apr; 9 (2): 85-92.

4. Pontes DG, Araujo CTP, Prieto LT, de Oliveira DCRS, Coppini EK, Dias CTS, Paulillo LAMS. Nanoleakage of fiber posts luted with different adhesive strategies and the effect of chlorhexidine on the interface of dentin and self-adhesive cements. Gen Dent. 2015 Jun; 63 (3): 31-7.

5. Barandehfard F, Kianpour Rad M, Hosseinnia A, Khoshroo K, Tahriri M, Jazayeri HE, Moharamzadeh K, Tayebi L. The addition of synthesized hydroxyapatite and fluorapatite nanoparticles to a glass-ionomer cement for dental restoration and its effects on mechanical properties. Ceramics International. 2016 Nov 15; 42 (15): 17866-75.

6. Simon JC, A. Lucas S, Lee RC, Darling CL, Staninec M, Vaderhobli R, Pelzner R, Fried D. Near-infrared imaging of secondary caries lesions around composite restorations at wavelengths from 1300-1700-nm. Dental Materials. 2016 Apr 1; 32 (4): 587-95.

7. Uskokovic V. Biomineralization and biomimicry of tooth enamel. In: Non-Metallic Biomaterials for Tooth Repair and Replacement [Internet]. Elsevier; 2013 [cited 2014 Sep 10]: 20-44. Available from: http://linkinghub.elsevier.com/retrieve/pii/ B9780857092441500021.

8. Niu L, Zhang W, Pashley DH, Breschi L, Mao J, Chen J, Tay FR. Biomimetic remineralization of dentin. Dental Materials. 2014; 30 (1): 77-96.

9. Cao C, Mei M, Li Q, Lo E, Chu C. Methods for Biomimetic Mineralisation of Human Enamel: A Systematic Review. Materials. 2015 May 26; 8 (6): 2873-86.

10. Dorozhkin SV Hydroxyapatite and Other Calcium Orthophosphates: Bioceramics, Coatings and Dental Applications [Internet]. Nova Science Publishers, Inc New York; 2017 [cited 2017 Aug 23]. 462 p. Available from: https://istina.msu.ru/publications/ book/58538935/

11. El Rhilassi A, Mourabet M, Bennani-Ziatni M, El Hamri R, Taitai A. Interaction of some essential amino acids with synthesized poorly crystalline hydroxyapatite. Journal of Saudi Chemical Society. 2016; 20 (Suppl 1): 632-40.

12. Li H, Gong M, Yang A, Ma J, Li X, Yan Y. Degradable biocomposite of nano calcium-deficient hydroxyapatite-multi (amino acid) copolymer. Int J Nanomedicine. 2012; (7): 1287-95.

13. Aljabo A, Abou Neel EA, Knowles JC, Young AM. Development of dental composites with reactive fillers that promote precipitation

of antibacterial-hydroxyapatite layers. Materials Science and Engineering: C. 2016; (60): 285-92.

14. Tavafoghi M, Cerruti M. The role of amino acids in hydroxyapatite mineralization. Journal of The Royal Society Interface. 2016 Oct 1; 13 (123): 20160462.

15. Ruan Q, Zhang Y, Yang X, Nutt S, Moradian-Oldak J. An amelogenin-chitosan matrix promotes assembly of an enamel-like layer with a dense interface. Acta Biomaterialia. 2013 Jul; 9 (7): 7289-97.

16. Baker MJ, Trevisan J, Bassan P, Bhargava R, Butler HJ, Dorling KM, et al. Using Fourier transform IR spectroscopy to analyze biological materials. Nat Protocols. 2014; 9 (8): 1771-91.

17. Vongsvivut J, Perez-Guaita D, Wood BR, Heraud P, Khambatta K, Hartnell D, et al. Synchrotron macro ATR-FTIR microspectroscopy for high-resolution chemical mapping of single cells. Analyst. 2019 Mar 14; 144 (10): 3226-38.

18. Seredin P, Goloshchapov D, Ippolitov Y, Vongsvivut P. Pathology-specific molecular profiles of saliva in patients with multiple dental caries — potential application for predictive, preventive and personalised medical services. EPMA Journal. 2018 Jun 1; 9 (2): 195-203.

19. H^dzelek W, Marcinkowska A, Domka L, Wachowiak R. Infrared Spectroscopic Identification of Chosen Dental Materials and Natural Teeth. Acta Physica Polonica A. 2008 Aug; 114 (2): 471-84.

20. Seredin PV, Goloshchapov DL, Prutskij T, Ippolitov YuA. Fabrication and characterisation of composites materials similar optically and in composition to native dental tissues. Results in Physics. 2017; (7): 1086-94.

21. Ерусалимов Ф. А., Ипполитов Ю. А., Кунин А. А. Биоактивная бондинговая система [интернет]. RU2423966C2, 2011 [cited 2019 May 20]. Доступно по ссылке: https://patents.google. com/patent/RU2423966C2/ru.

22. Seredin PV, Goloshchapov DL, Gushchin MS, Ippolitov YA, Prutskij T. The importance of the biomimetic composites components for recreating the optical properties and molecular composition of intact dental tissues. J Phys: Conf Ser. 2017; 917 (4): 042019.

23. Ипполитов Ю. А. Возможность повышения биологической тропности светоотверждаемой бондинговой системы для адгезии твердых тканей зуба к пломбировочному материалу. Волгоградский научно-медицинский журнал. 2010; 4 (28): 31-4.

24. Середин П. В., Голощапов Д. Л., Prutskij T., Ипполитов Ю. А. Единовременный анализ микрообластей кариозного дентина методами лазерно-индуцированной флуоресценции и рамановской спектромикроскопии. Оптика и спектроскопия. 2018; 125 (11): 708.

25. Khan AS, Khalid H, Sarfraz Z, Khan M, Iqbal J, Muhammad N, et al. Vibrational spectroscopy of selective dental restorative materials. Applied Spectroscopy Reviews. 2017 Jul 3; 52 (6): 507-40.

26. Kobrina Y, Rieppo L, Saarakkala S, Pulkkinen HJ, Tiitu V, Valonen P,

et al. Cluster analysis of infrared spectra can differentiate intact and repaired articular cartilage. Osteoarthritis and Cartilage. 2013 Mar 1; 21 (3): 462-9. 27. Atmeh AR, Chong EZ, Richard G, Festy F, Watson TF.

Dentin-cement Interfacial Interaction: Calcium Silicates and Polyalkenoates. Journal of Dental Research [Internet]. 2012 Mar 20 [cited 2018 Apr 13]; Available from: http://journals.sagepub. com/doi/abs/10.1177/0022034512443068.

i Надоели баннеры? Вы всегда можете отключить рекламу.