Научная статья на тему 'SYNCHRONIZATION SYSTEMS OF TIME SCALES AND FREQUENCIES IN POLAR LATITUDES BY METEOR RADIO CHANNEL'

SYNCHRONIZATION SYSTEMS OF TIME SCALES AND FREQUENCIES IN POLAR LATITUDES BY METEOR RADIO CHANNEL Текст научной статьи по специальности «Компьютерные и информационные науки»

CC BY
22
9
i Надоели баннеры? Вы всегда можете отключить рекламу.
Ключевые слова
METEOR RADIO CHANNEL / METEOR SYNCHRONIZATION / SYNCHRONIZATION OF TIME SCALES / SYNCHRONIZATION METHODS / DUPLEX METHOD / SIMULATION MODEL / NOISE-LIKE SIGNAL / M-SEQUENCE / RECEIVER SENSITIVITY / REGISTRATION THRESHOLD

Аннотация научной статьи по компьютерным и информационным наукам, автор научной работы — Briushinin A.A., Davydov V.V.

The necessity of using a meteor communication channel as a backup system for determining the coordinates of moving objects in polar latitudes and transmitting information is substantiated. The necessity of using a time scale synchronization system in the meteor communication channel has been established. The reasons that cause a failure in the transmission of information in the meteor communication channel are presented. A model for calculating the shift of time scales in the meteor communication channel is proposed. A method has been developed to reduce random errors and increase the noise immunity of the meteor communication channel. Recommendations are given on the choice of receiver parameters for synchronization with a given accuracy.

i Надоели баннеры? Вы всегда можете отключить рекламу.
iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.
i Надоели баннеры? Вы всегда можете отключить рекламу.

Текст научной работы на тему «SYNCHRONIZATION SYSTEMS OF TIME SCALES AND FREQUENCIES IN POLAR LATITUDES BY METEOR RADIO CHANNEL»

SIMULATION OF PHYSICAL PROCESSES

Conference materials UDC 004.942

DOI: https://doi.org/10.18721/JPM.153.208

Synchronization systems of time scales and frequencies in polar latitudes by meteor radio channel

A. A. Briushinin 1 e, V. V. Davydov 1 2, 3 1 Peter the Great Saint-Petersburg Polytechnic University, Saint Petersburg, Russia;

2 The Bonch-Bruevich Saint-Petersburg State University of Telecommunications, Saint Petersburg, Russia; 3 All-Russian Research Institute of Phytopathology, Moscow Region, Russia H [email protected]

Abstract. The necessity of using a meteor communication channel as a backup system for determining the coordinates of moving objects in polar latitudes and transmitting information is substantiated. The necessity of using a time scale synchronization system in the meteor communication channel has been established. The reasons that cause a failure in the transmission of information in the meteor communication channel are presented. A model for calculating the shift of time scales in the meteor communication channel is proposed. A method has been developed to reduce random errors and increase the noise immunity of the meteor communication channel. Recommendations are given on the choice of receiver parameters for synchronization with a given accuracy.

Keywords: meteor radio channel, meteor synchronization, synchronization of time scales, synchronization methods, duplex method, simulation model, noise-like signal, m-sequence, receiver sensitivity, registration threshold

Citation: Briushinin A. A., Davydov V. V., Synchronization systems of time scales and frequencies in polar latitudes by meteor radio channel, St. Petersburg State Polytechnical University Journal. Physics and Mathematics. 15 (3.2) (2022) 45-50. DOI: https://doi.org/10.18721/ JPM.153.208

This is an open access article under the CC BY-NC 4.0 license (https://creativecommons. org/licenses/by-nc/4.0/)

Материалы конференции УДК 004.942

DOI: https://doi.org/10.18721/JPM.153.208

Системы синхронизации шкал времени и частот в полярных широтах по метеорному радиоканалу

А. А. Брюшинин 1 н, В. В. Давыдов 1 2, 3 1 Санкт-Петербургский политехнический университет Петра Великого, Санкт-Петербург, Россия; 2 Санкт-Петербургский государственный университет телекоммуникаций им. проф. М. А. Бонч-Бруевича, Санкт-Петербург, Россия; 3 Всероссийский научно-исследовательский институт фитопатологии, Московская область, Россия

е [email protected]

Аннотация. Обоснована необходимость использования метеорного канала связи в качестве резервной системы для определения координат подвижных объектов в полярных широтах и передачи информации. Установлена необходимость использования системы синхронизации шкал времени в метеорном канале связи. Представлены причины, которые вызывают сбой в передаче информации в метеорном канале связи. Предложена модель расчета сдвига шкал времени в метеорном канале связи. Разработан способ для уменьшения случайных погрешностей и повышения помехозащищенности метеорного канала связи. Даны рекомендации по выбору параметров приемника для осуществления синхронизации с заданной точностью.

Ключевые слова: метеорный радиоканал, метеорная синхронизация, синхронизация шкал времени, методы синхронизации, встречный метод, имитационная модель, шумопо-добный сигнал, m-последовательность, чувствительность приемника, порог регистрации

© Briushinin A. A., Davydov V. V., 2022. Published by Peter the Great St.Petersburg Polytechnic University.

Ссылка при цитировании: Брюшинин А. А., Давыдов В. В. Системы синхронизации шкал времени и частот в полярных широтах по метеорному радиоканалу // Научно-технические ведомости СПбГПУ. Физико-математические науки. 2022. Т. 15. № 3.2. С. 45-50. DOI: https://doi.org/10.18721/ JPM.153.208

Статья открытого доступа, распространяемая по лицензии CC BY-NC 4.0 (https:// creativecommons.org/licenses/by-nc/4.0/)

Introduction

The development of industry and trade, as well as mining, required new developments for communication systems and determining the coordinates of objects [1—10]. The most reliable among communication systems are fiber-optic lines [11—16], which can provide information transmission in difficult conditions. Among the coordinate determination systems, satellite navigation systems are in the greatest demand [1, 5, 6—9, 17—24]. When using satellite systems in northern latitudes (above 70 degrees latitude) to determine coordinates, a number of problems arise [25—27]. They are associated with the attenuation of the amplitude of the GLONASS signal by ionospheric disturbances (for example, the Northern lights, etc.). This creates large errors in determining the coordinates of the object [28, 29].

Under these conditions, navigation is carried out by ground-based pulse-phase radio navigation systems (PPRNS) that emit radio-pulse navigation signals [30-33]. The coordinates of the transmitting stations of the PPRNS are known in advance. The stations serve a certain area of the earth's surface. Transmitting stations work in groups forming a single chain. Each chain includes a master station and several slave stations, whose radio pulse emissions are synchronized with the signals of the master station. The emissions of the leading station of the chain are synchronized, for example, by precise time signals using quantum frequency standards [9, 16, 19, 32]. These standards need to be adjusted during the work. One of the adjustment options is offered in our work.

Meteor synchronization

In northern latitudes, it is advisable to use the meteor radio channel as a backup channel for transmitting the exact time signal. The principle of meteor radio communication is based on the ability of ultrashort waves (VHF) to mirror the ionized traces formed as a result of the combustion of meteoroids in the Earth's atmosphere (Fig. 1) [33, 34].

It is known that the radiometeor communication channel is intermittent. The ionized trace is formed on average for 0.5 second, then it dissipates due to the process of bipolar (ambipolar) diffusion and it is necessary to wait for the formation of the next meteor trail. This disadvantage limits the scope of the radiometeor communication channel.

Due to the random location of the meteor trail in the synchronization systems of spatially remote time scales and frequencies on the meteor radio channel, the time of signal propagation is not known in advance, therefore, it is necessary to use two-way information transmission - the method is called active (two-way, duplex).

Fig. 1. The principal model of the meteor communication channel

© Брюшинин А. А., Давыдов В. В., 2022. Издатель: Санкт-Петербургский политехнический университет Петра Великого.

To calculate the shift of the time scales AT, it is necessary to calculate the propagation time of the signal tp, for this, in addition to fixing the timestamp t<2>R by the receiver, the time t{l)R is fixed by the transmitter, after exchanging this information, a system of two equations is compiled:

t{ 2 =t(1> +AT + t

Ir IT ^ t-11 TV

t^ =ti2 -AT + t,.

In total, we solve a system of two equations (1) with two unknowns:

AT = 1

2

(tR - R )+( V -

(2)

to =--, (4)

In this case, both simultaneous transmission of the timestamp (counter method) and alternate transmission is possible. Alternate transmission is suitable for a communication range of less than 500 km.

Simulation model of time stamp transmission via meteor channel

Equation describing the power of the received signal reflected from an under-compacted trace [6]:

t

Pr (t) = A ■ q2 • e^, (3)

where A is the coefficient, q is the linear electron density, t is the attenuation constant, t is the time elapsed since the appearance of the trace.

All formulas for generating random distribution parameters are obtained by the inverse function method.

A random time for the appearance of a meteor trail t0:

ln(l—R)

T

where R is a random variable from a standard uniform distribution. A random lifetime of the trail t :

life

f = Tmean ^(1 " R), (5)

where R is a random variable from a standard uniform distribution.

The experience of operating the COMET system has shown that the average lifetime of the trace is 0.5 seconds [8].

A random value of the linear electron density Q:

Q =-qkiL—, (6)

1 - R + Rqm!n-

qmax

where R is a random variable from a standard uniform distribution.

Simulation results

The potential accuracy of measuring the arrival time of the timestamp directly depends on the signal-to-noise ratio and the width of the signal spectrum [9-10]:

^t =—, (7)

V3 hFeff

where a =-, h — maximum signal-to-noise ratio at the output of the matched filter, Fff —

n e

effective spectrum width.

We express from (7) the minimum value of the signal power at the receiver input to ensure the specified measurement accuracy (and hence synchronization):

P =

a2 P_

2 B (ot 2Af )2'

(8)

Using (8), we calculate the minimum values of the signal amplitude U at the input of the receiver for a given accuracy.

A study of the dependence of the average waiting time of a meteor trail suitable for synchronization t v on the distance to the receiver showed that with an increase in the distance

J wait

to the receiver, the waiting time increases, that is, the efficiency of the synchronization session decreases. In addition, an increase in the waiting time occurs when the power of the transmitter decreases (Fig. 2).

Fig. 2. The dependence of the average waiting time on the distance to the receiver or the different

power of the transmitter

As can be seen in Fig. 2, the average waiting time does not exceed 40 minutes, which means that the transmission of a noise-like signal as a timestamp over a distance of 2000 km with a transmitter power of 1500 Watts and a given accuracy of 15 ns is possible, while it is necessary to have a receiver sensitivity of the order of 1.26e-08 V or less.

Conclusion

Transmission as a timestamp of the m-sequence allows to increase the noise immunity and secrecy of the meteor radio communication system, as well as to reduce the random error. The use of highly stable quantum generators (frequency standards) in meteor communication channels makes it possible to further reduce the random error during channel synchronization.

REFERENCES

1. Wang, D., Rud V.Y., Prospective directions for the development of microwave frequency standards for satellite navigation systems, Journal of Physics: Conference Series. 2086(1) (2021) 012073.

2. Semenov V.V., Nikiforov N.F., Ermak S.V., Calculation of stationary magnetic resonance signal in optically oriented atoms induced by a sequence of radio pulses, Soviet journal of Communications Technology and Electronics. 36(4) (1991) 59-63.

3. Lukashev N.A., Davydov R.V., Glinushkin A.P., Rud' V.Y., Improving characteristics of microwave frequency standard on Hg-199 ions for telecommunication systems, Journal of Physics: Conference Series. 1326(1) (2019) 012046.

4. Mihov E.D., Nepomnyashchiy O.V., Selecting informative variables in the identification problem Journal of Siberian Federal University - Mathematics and Physics. 9(4) (2016) 473-480.

5. Ryzhenko I.N., Lutsenko A.E., Varygin O.G., Nepomnyashchiy O.V., Carrier compensation mode implementation in satellite communication channels. In: Proceedings of 2019 International Siberian Conference on Control and Communications, SIBCON 2019, vol. 8729665 (2019) 23-29.

6. Petrov A.A., Myazin N.S., Kaganovskiy V.E., Rubidium atomic clock with improved metrological characteristics for satellite communication system, Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics). 10531 LNCS (2017) 561-568.

7. Arinushkina K.G., Valov A.P., Digital processing of optical signals in the frequency standard based in rubidium atoms - 87, In: Proceedings of ITNT 2021 - 7th IEEE International Conference on Information Technology and Nanotechnology, 2021 Samara, Russia, 20-24 September 2021. vol. 44026298 (2021) 44-49.

8. Grevtseva A., Rud V., Method of processing velocity increase of measuring results of quantum frequency standard parameters for information transfer velocity increase in satellite communication systems, CEUR Workshop Proceedings. 2667 (2020) 15-18.

9. Petrov A.A., New scheme of the microwave signal formation for quantum frequency standard on the atoms of caesium-133 Journal of Physics: Conference Series. 769(1) (2016) 012065.

10. Kuzmin M.S., Rogov S.A., On the use of a multi-raster input of one-dimensional signals in two-dimensional optical correlators, Computer Optics. 43(3) (2019) 391-396.

11. Fadeenko V.B., Pchelkin G.A., Davydov V.V., Rud V.Yu., Features of the transmission of microwave signals in the range of 8-12 GHz in the maritime radar station over fiber-optic communication line, Journal of Physics: Conference Series. 1400(4) (2019) 044010.

12. Ermak S.V., Karseev A.U., Velichko E.N., Fiber-optic super-high-frequency signal transmission system for sea-based radar station Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics). 8638 LNCS (2014) 694-702.

13. Sharova N.V., Fedorova E.V., Vologdin V.A., Fiber-optics system for the radar station work control, Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics). 9247 (2015) 712-721.

14. Lenets V.A., Tarasenko M.Yu., Rodygina N.S., New method for testing of antenna phased array in X frequency range, Journal of Physics: Conference Series. 2018, 1038(1) (2018) 012037.

15. Tarasenko M.Yu., Lenets V.A., Malanin K.Yu., Akulich N.V., Features of use direct and external modulation in fiber optical simulators of a false target for testing radar station, Journal of Physics: Conference Series. 1038(1) (2018) 012035.

16. Popovskiy N.I., Rud V.Yu., Features of the construction of photonic integrated circuits for communication systems Journal of Physics: Conference Series 2086(1) (2021) 012163.

17. Davydov R., Antonov V., Moroz A., Parameter Control System for a Nuclear Power Plant Based on Fiber-Optic Sensors and Communication Lines, In: IEEE International Conference on Electrical Engineering and Photonics (EExPolytech), Saint-Petersburg. Vol. 8906791 (2019) 295-297.

18. Lukashev N.A., Moroz A.V., Compact microwave frequency standard on Hg-199 ions for navigation systems, Journal of Physics: Conference Series. 1236(1) (2019) 012068.

19. Valov, A.P., Arinushkina, K.G., The use of digital data processing to improve the metrological characteristics of the rubidium frequency standard, Journal of Physics: Conference Series. 2086(1) (2021) 012070.

20. Lukashev N.A., Rud V.Yu., Microwave frequency standard on Hg-199 ions for space stations and vehicles Journal of Physics: Conference Series. 1400(2) (2019) 022050.

iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.

21. Petrov A. A., Digital Frequency Synthesizer for 133Cs-Vapor Atomic Clock, Journal of Communications Technology and Electronics. 62(3) (2017) 289-293.

22. Petrov A.A., Shabanov V.E., Zalyotov D.V., Bulyanitsa A.L., Shapovalov D.V., Modernization of the frequency synthesizer of cesium atomic clock, IEEE International Conference on Electrical Engineering and Photonics, EExPolytech 2018, Saint-Petersburg, October 2018. vol. 8564389 (2018) 52-55.

23. Zalyotov D. V., Shabanov V. E., Shapovalov D. V., Features of direct digital synthesis applications for microwave excitation signal formation in quantum frequency standard on the atoms of cesium, Journal Physics: Conference Series. 1124(1) (2018) 041004.

24. Vatov A.P., Lukashev N.A., Grebenikova N.M., Improving performance of quantum frequency standard with laser pumping, Proceedings of 18th International conference of Laser Optics ICLO-2018, Saint-Petersburg, Vol. 8435889 (2019) 271.

25. Riehle F., Frequency standard. Basic and applications. WILEY-VCH Verlag CmbH Co. KGaA: New-York, 2008.

26. Petrov A.A., Zaletov D.V., Shapovalov D.V., Peculiarities of Constructing a Scheme for Formation of a Microwave Excitation Signal in a Cesium Atomic Clock, Journal of Communications Technology and Electronics. 66(3) (2021) 295-299.

27. Grevtseva A.S., Dmitriev R.A., Features of the formation of the frequency of the microwave excitation signal in the quantum frequency standard on rubidium atoms - 87, Journal of Physics:

Conference Series. 2086(1) (2021) 012055.

28. Petrov A.A., Digital Frequency Synthesizer for 133Cs-Vapor Atomic Clock, Journal of Communications Technology and Electronics. 62(3) (2017) 289—293.

29. Petrov A.A., Grebenikova N.M., Some Directions ofQuantum Frequency Standard Modernization for Telecommunication Systems, Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics). 11118 LNCS (2018) 641-648.

30. Davydov R., Kulikova M., Selection basis of an antenna for a radio receiver of a small-sized module of a pulse-phase radio navigation system of a moving object, In IEEE International Conference on Electrical Engineering and Photonics (EExPolytech 2020), Saint-Petersburg, Vol. 9244003 (2020) 38-41.

31. Davydov R., Nagornaya A., The algorithm for processing signals of a pulse-phase radio navigation system in a quasi-differential mode using signals from global navigation satellite systems. In: IEEE International Conference on Electrical Engineering and Photonics (EExPolytech 2020), Saint-Petersburg, Vol. 9243977 (2020) 145-148.

32. Valov A.P., Nagornaya A.I., Kulikova M.E., Glinushkin A.P., Method of improving the rubidium - 87 quantum frequency standard's metrological characteristics, Journal of Physics: Conference Series. 1695(1) (2020) 012169.

33. Tolmachev S.V., Ryabov I.V., Chernov D.A., Hardware-software complex for meteor-burst communication, International Conference Systems of Signal Synchronization, Generating and Processing in Telecommunications, SINKHROINFO 2017, Vol. 7997565 (2017) 314-319.

34. Mashkova E., Zavjalov S., Volvenko S., Xue W., Evaluation of the Transmission Efficiency of Multi-frequency Signals with an Unknown Initial Phase in the Meteor Burst Communication System, Springer Proceedings in Physics. 268 (2022) 545-553.

THE AUTHORS

BRIUSHININ Anatolii A.

[email protected]

ORCID: 0000-0002-3129-1694

DAVYDOV Vadim V.

[email protected]

ORCID: 0000-0001-9530-4805

Received 12.08.2022. Approved after reviewing 15.08.2022. Accepted 26.08.2022.

© Peter the Great St. Petersburg Polytechnic University, 2022

i Надоели баннеры? Вы всегда можете отключить рекламу.