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Abstract. This survey-type paper deals with the symmetries related to quaternionic
analysis. The main goal is to formulate an SU(2) invariant version of the theory. First,
we consider the classical Lie groups related to the algebra of quaternions. After that, we
recall the classical Spin(4) invariant case, that is Cauchy–Riemann operators, and recall
their basic properties. We define the SU(2) invariant operators called the Coifman–
Weiss operators. Then we study their relations with the classical Cauchy–Riemann
operators and consider the factorization of the Laplace operator. Using SU(2) invari-
ant harmonic polynomials, we obtain the Fourier series representations for quaternionic

valued functions studying in detail the matrix coefficients.
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1. Introduction

The roots of quaternionic analysis come from the works of Moisil and Théodo-

resco (see [1]), and Fueter (see [2, 3]). Deavours published the first survey [4] of

Fueter’s works at the beginning of 70s. The idea is to found a well-defined and

explicit counter-part for complex function theory on the plane. A function class in

quaternionic analysis corresponding to complex holomorphic functions, called reg-

ular functions, is characterized by so-called Cauchy–Riemann operators. It seems

that Sudbery’s survey paper [5] was one of the starting points for modern research of

the area, making the theory again visible. Around the same time in Gent, Richard

Delangle and his students Fred Brackx and Frank Sommen started to study func-

tion theory on Clifford numbers, called Clifford analysis (see [6]). The quaternionic

analysis is a natural special case for this theory still having its own special features.

See [7] as a modern introduction to the topic.

Cauchy–Riemann operators are well-studied and known. Their counter-part in

Clifford analysis is the so-called Dirac operator, whose kernel is used to define a

higher dimensional analogy for complex holomorphic functions, called monogenic

functions. The theory of monogenic functions is well-known and offers a nice ap-

proach for function theory in higher dimensions. The symmetry of the Dirac operator

is also well-studied (see, e.g., [8, 9]).

Quaternionic analysis symmetries are not so well eloborated, although the start-

ing point is fascinating. Many classical Lie groups are associated with quaternions,
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indeed SU(2), Spin(3), Spin(4), SO(3) and SO(4). In the spirit of Clifford analy-

sis, Cauchy–Riemann operators are Spin(4) invariant under L and H actions (see

Section 3). However, they are not invariant under canonical actions

R[u]f(x) = f(ux) and S[u]f(x) = f(xu), (1)

where u ∈ SU(2). This action is mentioned and studied in the book by Coifman

and Weiss [10]. In this survey-type paper, our aim is to complete their studies and

give a modern representation of their theory using quaternions instead of matrices.

The fundamental tools are SU(2) invariant operators under the preceding actions.

We are call them Coifman–Weiss operators. Coifman–Weiss operators give also a

decomposition for the Laplacian, such as the Cauchy–Riemann operator and its

conjugate. The results given in this paper offer a new way to look at quaternionic

analysis via symmmetry and many possibilities to continue research in this direction.

The structure of the paper is the following. Section 2 is completely algebraic:

we recall all needed tools and more as a starting point for further needs. In Section

3, we recall the Cauchy–Riemann operators and their classical actions. In Section

4, we define the Coifman–Weiss operators by SU(2) invariant differential operators

and represent them by the Cauchy–Riemann operators and derive some fundamental

formulas. In Section 5, we find the Fourier series representation for a quaternion

valued functions using SU(2) invariant harmonic polynomials.

2. Quaternions

In this section, we recall Quanternions and classical Lie groups related to them.

All theory is completely known, and we use references [11, 12]. This section is the

starting point for the following ones, and for this reason we want to give a detailed

representation.

2.1. Algebra of Quaternions. The associative division algebra of quater-

nions is generated in R4 with the basis {e0, e1, e2, e3} putting

e21 = e22 = e23 = e1e2e3 = −1.

The algebra is denoted by H. In the above, we denote the identity by e0 = 1. We

also denote basis quaternions by

i = e1, j = e2, k = e3.

A general quaternion is

x = x0 + x

where the x0 is the scalar part of x and the vector part is respectively

x = x1e1 + x2e2 + x3e3.

The conjugate is defined by

x = x0 − x.
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The conjugation is an anti-involution, that is

xy = y x

for all x, y ∈ H. A quaternion and its conjugate satisfies the relation

3∑

j=0

ejxej = −2x. (2)

The real and vector part of a quaternion x may be computed by

Re(x) := x0 =
1

2
(x+ x), Vec(x) := x =

1

2
(x− x).

The norm in H is defined by

|x|2 = xx = xx = x2
0 + x2

1 + x2
2 + x2

3

and it is multiplicative, that is, for all x, y ∈ H we have

|xy| = |x||y|.

This means, that the unit sphere

S3 = {x ∈ H : |x| = 1}

admits the group structure. The definition of the norm gives us the explicit formulas

for inverse elements

x−1 =
x

|x|2

for non-zero quaternions. For an element of the unit sphere x ∈ S3, the inverse is

just x−1 = x.

The inner product of quaternions x, y ∈ H may be computed by

〈x, y〉 = Re(xy) = x0y0 + x1y1 + x2y2 + x3y3.

If a ∈ H, we have

〈ax, y〉 = 〈x, ay〉. (3)

The real part satisfies Re(xy) = Re(yx) and

Re(xyz) = Re(zxy) = Re(yzx) (4)

for all x, y, z ∈ H.

In this paper, we often use so-called complex or polar representations for quater-

nions, defined by

x = X1 +X2j,

where X1 = x0 +x1i and X2 = x2 +x3i are complex numbers. Then the conjugation

is

x = X1 −X2j (5)
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and the multiplication

xy = (X1Y1 −X2Y 2) + (X1Y2 +X2Y 1)j. (6)

This gives

|x|2 = |X1|2 + |X2|2.
2.2. SU(2) ∼= S3. The special unitar group SU(2) is defined by

SU(2) =

{(
X1 X2

−X2 X1

)
∈ C2×2 : |X1|2 + |X2|2 = 1

}
.

Since (
X1 X2

−X2 X1

)(
Y1 Y2

−Y 2 Y 1

)
=

(
X1Y1 −X2Y 2 X1Y2 +X2Y 1

−(X1Y2 +X2Y 1) X1Y1 −X2Y 2

)
,

we observe comparing this with the formula (6), that

SU(2) ∼= S3.

Let us define the mapping

ρu(x) = uxu

where u ∈ S3 and x ∈ R3 = Vec(H). Since x = −x, we have

Re(uxu) =
1

2
(uxu+ uxu) =

1

2
(uxu− uxu) = 0,

and observe that for all u ∈ S3 we have

ρu : R3 → R3.

Since |uxu| = |x|, we obtain ρu ∈ O(3) for any u ∈ S3. Since

ρu(x × y) =
1

2
u(xy − yx)u =

1

2
(uxuuyu− uyuuxu) = ρu(x)× ρu(y)

i.e., the mapping ρu preserves the orientation, so we have ρu ∈ SO(3), or more

precisely,

u 7→ ρu; S3 → SO(3)

is a group homomorphims. We know, that any rotation in R3 is the composite of

two plane reflections. Let u ∈ S3 ∩ R3 and decompose x = λu + v, where v ⊥ u.

Since ρu(u) = u and ρu(v) = −v, we have

ρu(x) = λu − v
i.e., ρu is the reflection of the plane Span(u)⊥. Then for each rotation, we may

find reflections i.e., vectors u1 and u2, such that ρu1u2
is the wanted rotation. We

conclude that

u 7→ ρu; S3 → SO(3)

is surjection. Since the mapping is 2 − 1, we observe that S3 is a two fold cover

group of SO(3), i.e., S3 ∼= Spin(3).

2.3. Rotations in R4. If u, v ∈ S3, then our first observation is that the

mappings

uL : x 7→ ux, vR : x 7→ xv

are orthogonal mappings.
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Proposition 2.1 [11, 12]. The preceding mappings belongs to SO(4).

Proof. We need to prove that their determinant is one. Let now u ∈ S3 and

x ∈ R3 such that u ⊥ x. Then

ux = u0x+ ux = u0x+ u× x ∈ R3.

Since |ux| = |x|, by the preceding section, there exists v ∈ S3 such that

ux = ρv(x) = vxv.

Then u = vxvx−1 and

det(uL) = det(vL) det(xL) det(vL) det(x−1
L )

= det(vL) det(xL) det(vL)−1 det(xL)−1 = 1. �

Let us now define the mapping ρu,v(x) = uxv, where u, v ∈ S3. Obviously

ρu,v ∈ SO(4).

Lemma 2.2 [11, 12]. The mapping

ρ : S3 × S3 → SO(4)

is surjection.

Proof. For the sake of completeness, we recall the proof. Let Q ∈ SO(4) be an

arbitrary rotation and let u = Q(1). Then |u| = 1 and x 7→ uQ(x) belongs to SO(4)

leaving the x0-axis invariant, indeed uQ(1) = uu = 1. Hence uQ(x) is a rotation in

R3 and there exists v ∈ S3 satisfying

uQ(x) = ρv(x) = vxv.

We compute

uQ(x) = uQ(x0) + uQ(x) = x0 + vxv = vxv.

Hence Q(x) = uvxv = ρuv,v(x), completing the proof. �

Since the kernel of the mapping ρ is {(1, 1), (−1,−1)}, we have that

S3 × S3 ∼= Spin(4).

3. Cauchy–Riemann operators

In this section, we represent Cauchy–Riemann operators and recall their invari-

ance properties.

3.1. Definition and basic properties. The Cauchy–Riemann operator and

its conjugate is defined by

∂x = ∂x0 + ∂x

and

∂x = ∂x0 − ∂x,
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where ∂x = e1∂x1 + e2∂x2 + e3∂x3 is called the Dirac operator. They factorize the

Laplacian by

∂x∂x = ∂x∂x = �x = ∂2
x0

+ ∂2
x1

+ ∂2
x2

+ ∂2
x3
.

It is well-known (see, e.g., [13]) that the Laplacian is SO(4) invariant, that is, if we

define an action by T [u, v]f(x) = f(uxv), where u, v ∈ SU(2), then

[�x, T [u, v]] = 0.

As a special case of this, we have

[�x, R[u]] = [�x, S[u]] = 0,

that is, the Laplacian is also left and right SU(2) invariant under actions (1).

3.2. On the invariance of the Cauchy–Riemann operator. Let us now

study invariance of the Cauchy–Riemann operator. For this, we need the following

lemma.

Lemma 3.2. If u, v ∈ S3, then

∂uxv = u∂xv.

Proof. A proof may be found in [8, p. 222] in the Clifford analysis level. But

for the sake of completeness and since the situation is a little bit different, we want

to give a detailed proof. Let us first consider Q ∈ SO(4) and y = Q(x). Hence

Q(ek) =

3∑

j=0

Qjkej.

Consider the Cauchy–Riemann operators

∂x =

3∑

k=0

ek∂xk
and ∂y =

3∑

j=0

ej∂yj

Since x = QT (y), we find

xk =

3∑

j=0

Qjkyj

and ∂xk

∂yj
= Qjk. Then we compute using the chain rule

∂f

∂yj
=

3∑

k=0

∂f

∂xk

∂xk
∂yj

=

3∑

k=0

Qjk
∂f

∂xk
.

Then we obtain

∂y =

3∑

j=0

ej∂yj =

3∑

j,k=0

ejQjk∂xk
=

3∑

k=0

(
3∑

j=0

Qjkej

)
∂xk

=

3∑

k=0

Q(ek)∂xk
.

Now, choosing Q(x) = uxv, we obtain the result. �

Using the preceding lemma, we deduce that the Cauchy–Riemann operator is

not R or S invariant.
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Proposition 3.2. For the Cauchy–Riemann operator

(a) R[u]∂x = u∂xR[u],

(b) S[u]∂x = ∂xuS[u].

Remark 3.3. The preceding proposition may be found in the book by Coifman

and Weiss [10. p. 118], but they prove it only for differentiable functions f : H→ R
using a different technique.

Although the Cauchy–Riemann operator is not SU(2) invariant under actions

R and S, we can make it invariant by defining actions

L[u]f(x) = uf(uxu)

and

H [u]f(x) = uf(uxu)u.

Indeed, using Lemma 3.1, we compute

L[u]∂xf(x) = u∂uxuf(uxu) = uu∂xuf(uxu) = ∂xL[u]f(x)

and

H [u]∂xf(x) = u∂uxuf(uxu)u = uu∂xuf(uxu)u = ∂xL[u]f(x),

since uu = 1.

Proposition 3.4. For each u ∈ SU(2), we have

[∂x, L[u]] = [∂x, L[u]] = [∂x, H [u]] = [∂x, H [u]] = 0.

The L and H operators are defined and studied for the first time in context of

the Clifford Dirac operator by Frank Sommen in his paper [14–16], but of course the

formulas work also for the Cauchy–Riemann operator in quaternionic analysis.

4. Coifman–Weiss operators

The Lie algebra su(2) ∼= H is generated by {e0, e1, e2, e3} and the exponential

mapping

e(·) : su(2)→ SU(2)

is defined via matrix exponentiation (see [10, 17]). We define left SU(2) invariant

derivatives by

/∂Rxj
f(x) = lim

t→0

f(xetej )− f(x)

t
.

Extending f outside of S3, we may write etej = 1 + tej + o(t2), that is,

/∂Rxj
f(x) = lim

t→0

f(x+ txej)− f(x)

t
= 〈xej , ∂x〉f(x).

Obviously /∂Rxj
Ru = Ru/∂

R
xj

.

Similarly, we define left SU(2) invariant derivatives by

/∂Sxj
f(x) = lim

t→0

f(etejx)− f(x)

t
.
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Extending f outside of S3, we may write etej = 1 + tej + o(t2), that is,

/∂Sxj
f(x) = lim

t→0

f(x+ tejx)− f(x)

t
= 〈ejx, ∂x〉f(x).

Obviously /∂Sxj
Su = Su/∂

S
xj

.

We define the left and right SU(2) invariant Coifman–Weiss operators and their

conjugations by

/∂Rx =

3∑

j=0

ej/∂
R
xj

and /∂Rx =

3∑

j=0

ej/∂
R
xj
.

and

/∂Sx =

3∑

j=0

ej/∂
S
xj

and /∂Sx =

3∑

j=0

ej/∂
S
xj
.

Let us first prove the following representation result. The first of them can be found

in [10].

Proposition 4.1. Left invariant Coifman–Weiss operators satisfy

/∂Rx f(x) = x∂xf(x)

and

/∂Rx f(x) = ∂̇xxḟ(x).

Proof. In [10], the proof is based on matrix operators. We give here a direct

proof with quaternions. Let f be a differentiable function. Using (3), we have

/∂Rxj
= 〈xej , ∂x〉 = 〈ej , x∂x〉.

Hence

/∂Rx f(x) =

3∑

j=0

ej/∂
R
xj
f(x) =

3∑

j=0

ej〈ej , x∂x〉f(x) = x∂xf(x).

Using (4), we obtain

/∂Rxj
= 〈xej , ∂x〉 = Re(xej∂x) = Re(ejx∂x) = Re(∂xxej) = 〈ej , ∂xx〉

and

/∂Rx f(x) =

3∑

j=0

ej/∂
R
xj
f(x) =

3∑

j=0

ej〈ej , ∂xx〉f(x) = ∂̇xxḟ(x). �

Proposition 4.2. Right invariant Coifman–Weiss operators satisfy

/∂Sx f(x) = ∂̇xxḟ(x)

and

/∂Sx f(x) = x∂xf(x).

Proof. Let f be a differentiable function. Using (4), we have

/∂Sxj
= 〈ejx, ∂x〉 = Re(ejx∂x) = Re(x ej∂x) = Re(ej∂xx) = 〈ej , ∂xx〉.
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Hence

/∂Sx f(x) =

3∑

j=0

ej/∂
S
xj
f(x) =

3∑

j=0

ej〈ej , ∂̇xx〉ḟ(x) = ∂̇xxḟ.

In the above, we have

/∂Sxj
= Re(ej∂xx) = 〈∂xx, ej〉 = 〈ej , x∂x〉.

Hence

/∂Sx f(x) =

3∑

j=0

ej/∂xjf(x) =

3∑

j=0

ej〈ej , x∂x〉f(x) = x∂xf. �

Using the preceding formulas, we can give direct proof for invariance.

Proposition 4.3. If u ∈ SU(2), then
[
/∂Rx , R[u]

]
=
[
/∂Rx , R[u]

]
=
[
/∂Sx , S[u]

]
=
[
/∂Sx , S[u]

]
= 0.

Proof. Let u ∈ S3. Using Lemma 3.1, we compute

S[u]
(
/∂Sx f(x)

)
= ∂̇xuxuḟ(xu) = ∂̇xuu xḟ(xu) = ∂̇xxS[u]ḟ(x) = /∂Sx (S[u]f(x)).

Other formulas can be proved by a similar technique. �

Remark 4.4. Coifman–Weiss operators obey the quaternionic conjugation law

if we allow that they act also from the right, that is, /∂Rx f = f/∂Rx and /∂Sx f =

f/∂Sx . Thus, Cauchy–Riemann and Coifman–Weiss operators behave algebraically

similarly.

Let us next prove the following decomposition formulas for the Laplacian. One

of these formulas can be found in [10]. Next, we formulate both and give a direct

proof using quaternions.

Proposition 4.5. /∂Rx
(
/∂Rx +2

)
=
(
/∂Rx +2

)
/∂Rx = |x|2�x,

(
/∂Sx +2

)
/∂Sx = /∂Sx

(
/∂Sx +

2
)

= |x|2�x.

Proof. We compute

/∂Sx
(
/∂Sx f

)
= |x|2�x +

3∑

j=0

ejx
∂x

∂xj
∂xf.

Using (2), we compute

/∂Sx
(
/∂Sx f

)
= |x|2�xf +

3∑

j=0

ejxej∂xf = |x|2�xf − 2x∂xf = |x|2�xf − 2/∂Sx f.

Similarly, we compute

/∂Sx
(
/∂Sx f

)
= |x|2�xf − 2/∂Sx f, /∂Rx

(
/∂Rx f

)
= |x|2�xf − 2/∂Rx f,

/∂Rx
(
/∂Rx f

)
= |x|2�xf − 2/∂Rx f.

The proof follows from these. �

These formulas indicate the commutativity of Coifman–Weiss operators and

their adjungated versions.

Corollary 4.6. /∂Rx /∂
R
x = /∂Rx /∂

R
x , /∂Sx /∂

S
x = /∂Sx /∂

S
x .
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5. Fourier series on SU(2)

In this section, we find the Fourier series expansion for quaternionic valued

functions L2(SU(2)) and extend them to the whole space. This job is already mostly

done, e.g., in the book by Ruzhansky and Turunen [17]. Using the Fourier series,

it is easy to obtain a series representation for the quaternionic valued function on

spherical domains.

5.1. Homogeneous spherical harmonic polynomials. Let us consider

integrable functions f, g : S3 → C. We define the innerproduct

(f, g)L2(S3) :=
1

ω3

∫

S3

f(x)g(x) dS(x)

and in the usual way this leads us to the space L2(SU(2)), square integrable complex

valued functions on S3. We define the left and right SU(2) action on L2(SU(2)) by

(1). The Lie group SU(2) ∼= S3 admits a natural biaxial nature, i.e., every point is

of the form y = Y1 + Y2j, where Y1 = y0 + y1i and Y2 = y2 + y3i.

We look for irreducible representations in the usual manner. We take a space

of 2ℓ-homogeneous complex valued polynomials Vℓ with an orthonormal basis

pℓn(y) = pℓn(Y1, Y2) =
Y ℓ−n

1 Y ℓ+n
2√

(ℓ− n)!(ℓ+ n)!
,

for n ∈ {−ℓ,−ℓ + 1, . . . , ℓ − 1, ℓ} and ℓ ∈ 1
2N0. The dimension of the space Vℓ is

2ℓ+ 1 and ℓ− n, ℓ+ n ∈ Z. See all details in [10, 17].

The matrix elements {Rtℓmn} and {Stℓmn}, with respect to the actions (1), are

defined by

Rxpℓn(Y1, Y 2) =
∑

k

Rtℓkn(x)pℓk(Y1, Y 2)

and

Sxpℓn(Y1, Y2) =
∑

k

Stℓkn(x)pℓk(Y1, Y2),

for x ∈ SU(2). For the left action, we need to use conjugates in the second variable

to complete the calculations successfully.

Proposition 5.1. Matrix elements admits to representations

Rtℓmn(x) =
1

2π

√
(ℓ −m)!(ℓ+m)!

(ℓ − n)!(ℓ+ n)!

π∫

−π

(z1e
iθ + z2e

−iθ)ℓ−n(z1e
−iθ − z2e

iθ)ℓ+nei2mθ dθ

and

Stℓmn(x) =
1

2π

√
(ℓ−m)!(ℓ +m)!

(ℓ − n)!(ℓ+ n)!

π∫

−π

(z1e
iθ − z2e

−iθ)ℓ−n(z1e
−iθ + z2e

iθ)ℓ+nei2mθ dθ
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for x = z1 + z2j.

Proof. The right invariant version of the formulas can be found in [10] in a

slightly different form.

Left invariant case. Consider the homogeneous polynomials

pℓn(y) = pℓn(Y1, Y 2) =
Y ℓ−n

1 Y
ℓ+n

2√
(ℓ− n)!(ℓ + n)!

.

Using (5) and (6), we have

Rxpℓn(y) = pℓn(xy) = pℓn(z1Y1+z2Y 2, z1Y2 − z2Y 1) = pℓn(z1Y1+z2Y 2, z1Y 2−z2Y1).

Hence

(z1Y1 + z2Y 2)
ℓ−n(z1Y 2 − z2Y1)

ℓ+n

√
(ℓ − n)!(ℓ+ n)!

=
∑

k

Rtℓkn(x)
Y ℓ−k

1 Y
ℓ+k

2√
(ℓ − k)!(ℓ+ k)!

.

To find an explicit formula for a matrix coefficient, we first substitute y = 1√
2
(eiθ +

eiθj), i.e., we obtain

(z1e
iθ + z2e

−iθ)ℓ−n(z1e
−iθ − z2e

iθ)ℓ+n

√
(ℓ − n)!(ℓ+ n)!

=
∑

k

Rtℓkn(x)
e−i2kθ

√
(ℓ − k)!(ℓ+ k)!

.

We multiply both sides by ei2mθ and use the fact

π∫

−π

ei2(m−k)θ dθ =

{
2π, if m = k,

0, other integers.

Then we obtain

Rtℓmn(x) =
1

2π

√
(ℓ −m)!(ℓ+m)!

(ℓ− n)!(ℓ+ n)!

π∫

−π

(z1e
iθ + z2e

−iθ)ℓ−n(z1e
−iθ − z2e

iθ)ℓ+nei2mθ dθ.

Right invariant case. Using (6), we have

Sxpℓn(y) = pℓn(yx) = pℓn(Y1z1 − Y2z2, Y1z2 + Y2z1).

Hence

(Y1z1 − Y2z2)
ℓ−n(Y1z2 + Y2z1)

ℓ+n

√
(ℓ− n)!(ℓ+ n)!

=
∑

k

Stℓkn(x)
Y ℓ−k

1 Y ℓ+k
2√

(ℓ− k)!(ℓ+ k)!
.

We substitute y = 1√
2
(eiθ + e−iθj) and we have

(z1e
iθ − z2e

−iθ)ℓ−n(z2e
iθ + z1e

−iθ)ℓ+n

√
(ℓ− n)!(ℓ+ n)!

=
∑

k

Stℓkn(x)
e−i2kθ

√
(ℓ− k)!(ℓ + k)!

.

Multiplying both sides by ei2mθ and integrating as in the above, we obtain

Stℓmn(x) =
1

2π

√
(ℓ−m)!(ℓ +m)!

(ℓ− n)!(ℓ + n)!

π∫

−π

(z1e
iθ−z2e−iθ)ℓ−n(z2e

iθ+z1e
−iθ)ℓ+nei2mθ dθ. �
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Remark 5.2. For example, in the left invariant case, the integral can be written

by standard change of variables

π∫

−π

(z1e
iθ + z2e

−iθ)ℓ−n(z1e
−iθ − z2e

iθ)ℓ+nei2mθ dθ

=

π∫

−π

(z1e
i2θ + z2)

ℓ−n(z1 − z2e
i2θ)ℓ+nei2(m−ℓ)θ dθ

= 2

2π∫

0

(z1e
iθ + z2)

ℓ−n(z1 − z2e
iθ)ℓ+nei(m−ℓ)θ dθ.

Thus, we may represent the matrix elements in a coordinate independent way by

Rtℓmn(x) = − i
π

√
(ℓ −m)!(ℓ+m)!

(ℓ − n)!(ℓ+ n)!

∫

|w|=1

(z1w + z2)
ℓ−n(z1 − z2w)ℓ+n dw

wℓ−m+1

and

Stℓmn(x) = − i
π

√
(ℓ−m)!(ℓ+m)!

(ℓ− n)!(ℓ+ n)!

∫

|w|=1

(z1w − z2)
ℓ−n(z1 + z2w)ℓ+n dw

wℓ−m+1
.

The preceding formulas allow us to extend the matrix coefficients Rtℓmn(x) and
Stℓmn(x) to the whole space, i.e., we may assume x ∈ H. Let us recall that if

f : S3 → C is a restriction of a harmonic function F : H→ C, it is called a spherical

harmonics.

Proposition 5.3. Matrix coefficients are 2ℓ-homogeneous spherical harmonics.

Proof. Let x = z1 + z2j. In a left invariant matrix coeffient, the kernel is

given in the preceding remark by

kℓ(x) = kℓ(z1, z2) = (z1w + z2)
ℓ−n(z1 − z2w)ℓ+n

for |w| = 1. If x = z1 + z2j, we put

∂z1 = ∂x0 + i∂x1 and ∂z2 = ∂x2 + i∂x3

with their conjugations

∂z1
= ∂x0 − i∂x1 and ∂z2

= ∂x2 − i∂x3 .

Hence ∂zpzp = ∂zpzp = 0 and ∂zpzp = ∂zpzp = 2 for p = 1, 2. It is easy to see, that

�x = ∂z1
∂z1 + ∂z2

∂z2 .

It is straightforward to compute

∂z1
∂z1kℓ = 4(ℓ− n)(ℓ + n)wkℓ−1, ∂z2

∂z2kℓ = −4(ℓ− n)(ℓ+ n)wkℓ−1,
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that is

�xkℓ = 0.

The right invariant case is similar. �

5.2. Fourier series representation. Let tℓnm be either the right or left

invariant matrix coefficient. Hence, any f ∈ L2(SU(2)) admits the Fourier series

representation

f(x) =
∑

ℓ∈ 1
2N0

(2ℓ+ 1)
∑

m,n

(
f, tℓnm

)
L2(S3)

tℓnm(x),

where the summation is taken over m,n satisfying −ℓ ≤ m,n ≤ ℓ and ℓ−m, ℓ−n ∈
Z (see details in [10, 17]). If we define x = ru, r = |x| and u = x

r ∈ S3, we

may represent any f : � → C, where � ∈ H is a spherical neighborhood and

f |S3 ∈ L2(SU(2)) by the series

f(x) =
∑

ℓ∈ 1
2N0

(2ℓ+ 1)r2ℓ
∑

m,n

(
f, tℓmn

)
L2(S3)

tℓmn(u).

This allows us to find an explicit series expansion also for quaternion valued func-

tions.

Theorem 5.4. Let f = f1 + f2j be a quaternion valued function and f1 and

f2 be complex valued functions defined on any spherical neighborhood � ⊂ H and

f1|S3 , f2|S3 ∈ L2(SU(2)). Then

f(x) =
∑

ℓ∈ 1
2N0

(2ℓ+ 1)r2ℓ
∑

m,n

((
f1, t

ℓ
mn

)
L2(S3)

+ (−1)m−n
(
f2, t

ℓ
−m,−n

)
L2(S3)

j
)
tℓmn(u),

where x = ru, r = |x| and u = x
r ∈ S3.

Proof. We consider the left invariant case. Our first observation is

Rtℓmn(z1, z2) =
1

2π

√
(ℓ−m)!(ℓ+m)!

(ℓ− n)!(ℓ+ n)!

π∫

−π

(z1e
iθ − z2e−iθ)ℓ+n

× (z1e
−iθ + z2e

iθ)ℓ−ne−i2mθ dθ = Rtℓ−m,−n(z1,−z2).

Recall the coordinate invariant form of the matrix coefficient given in Remark 5.2

Rtℓmn(z1, z2) = − i
π

√
(ℓ −m)!(ℓ+m)!

(ℓ − n)!(ℓ+ n)!

∫

|w|=1

(z1w + z2)
ℓ−n(z1 − z2w)ℓ+n dw

wℓ−m+1
.

We assume z1z2 6= 0 and make the change of variables given by Coifman and Weiss

[10, p. 108]

z1z2w = t− |z2|2 + |z1|2

and we have

z1w + z2 =
t− |z1|2
z2

and z1 − z2w =
|z2|2 − t
z1

.
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We define � = {t = z1z2w + |z2|2 − |z1|2 : |w| = 1}. Hence the matrix coefficient

takes the form

Rtℓmn(z1, z2) = − i
π

√
(ℓ−m)!(ℓ +m)!

(ℓ− n)!(ℓ + n)!

×
∫

�

(
t− |z1|2
z2

)ℓ−n( |z2|2 − t
z1

)ℓ+n
zℓ−m+1
1 zℓ−m+1

2

(t− |z2|2 + |z1|2)ℓ−m+1

dt

z1z2

= − i
π

√
(ℓ−m)!(ℓ +m)!

(ℓ− n)!(ℓ + n)!
z−n−m
1 zn−m

2

×
∫

�

(t− |z1|2)ℓ−n(|z2|2 − t)ℓ+n dt

(t− |z2|2 + |z1|2)ℓ−m+1
.

The path � is the same if we choose ±z2. Hence the integral above is invariant

under substitution by −z2 and we obtain Rtℓmn(z1,−z2) = (−1)n−mRtℓmn(z1, z2).

Especially
Rtℓmn(z1, z2) = (−1)m−nRtℓ−m,−n(z1, z2).

The proof is similar for the right invariant matrix coefficients. Hence

tℓmn(u)j = jtℓmn(u) = (−1)m−njtℓ−m,−n(u),

and we obtain

f(x) = f1(x) + f2(x)j =
∑

ℓ∈ 1
2N0

(2ℓ+ 1)r2ℓ
∑

m,n

(
f1, t

ℓ
mn

)
L2(S3)

tℓmn(u)

+
∑

ℓ∈ 1
2N0

(2ℓ+ 1)r2ℓ
∑

m,n

(
f2, t

ℓ
mn

)
L2(S3)

tℓmn(u)j

=
∑

ℓ∈ 1
2N0

(2ℓ+ 1)r2ℓ
∑

m,n

(
f1, t

ℓ
mn

)
L2(S3)

tℓmn(u)

+
∑

ℓ∈ 1
2N0

(2ℓ+ 1)r2ℓ
∑

m,n

(
f2, t

ℓ
−n,−m

)
L2(S3)

j(−1)m−ntmn(u)

=
∑

ℓ∈ 1
2N0

(2ℓ+1)r2ℓ
∑

m,n

((
f1, t

ℓ
mn

)
L2(S3)

+(−1)m−n(f2, t
ℓ
−m,−n)L2(S3)j

)
tℓmn(u). �

Conclusions. In this paper, we recall the SU(2) invariant version of quater-

nionic analysis and write all proofs using modern tools. The fundamental objective is

to find an SU(2) invariant Dirac type operators, which are called Coifman–Weiss op-

erators, after the founders of the theory. In addition, we discuss the SU(2) invariant

Fourier series and recall nice and explicit formulas for matrix coefficients.

This paper allows us to continue studies with Coifman–Weiss operators in dif-

ferent directions.

There are still open questions in the basic theory. The connection of the rep-

resentation of the Coifman and Weiss matrix coefficients that we get in this paper,
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and the representation of Ruzhansky and Turunen [17], should be studied. Also,

the connection to Jacobi polynomials should be recorded explicitly for all cases. We

leave these to the interested reader as an exercise.
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