Научная статья на тему 'Surgical management of periventricular glioma: decision-making and preoperative assessment of resectability'

Surgical management of periventricular glioma: decision-making and preoperative assessment of resectability Текст научной статьи по специальности «Клиническая медицина»

CC BY
58
10
i Надоели баннеры? Вы всегда можете отключить рекламу.
Ключевые слова
ПЕРИВЕНТРИКУЛЯРНАЯ ГЛИОМА / СИСТЕМА ГРАДАЦИИ / СТЕПЕНЬ РЕЗЕКЦИИ / НЕЙРОНАВИГАЦИЯ / ХИРУРГИЧЕСКИЕ РЕЗУЛЬТАТЫ / PERIVENTRICULAR GLIOMA / GRADING SYSTEM / EXTENT OF RESECTION / IMAGE-GUIDED RESECTION / SURGICAL OUTCOMES

Аннотация научной статьи по клинической медицине, автор научной работы — Rozumenko Artem Volodymyrovych, Kliuchka Valentyn Mykolajovych, Rozumenko Volodymyr Davydovych, Dashchakovskyi Andrii Volodymyrovych, Fedorenko Zoja Pavlivna

OBJECTIVE. Periventricular gliomas (PVG) are deep-seated tumors with wide invasion into cerebral core structures accompanied by high rates of postoperative deterioration and early relapse. The purpose of this study was to define the preoperative neuroimaging signs as the factors determining the early postoperative outcome in patients with high-grade PVG. MATERIALS AND METHODS. The clinical records of 132 (50 females and 82 males) consecutive patients with a mean age 45.9 years (range 21-69) undergoing image-guided surgery for PVG at a single academic institution were retrospectively analyzed. There were 52 (39.4 %) WHO grade III gliomas, and 80 (60.6 %) of patients had WHO grade IV gliomas. RESULTS. Postoperative median KPS score significantly raised from 67.4 to 82.0, as well as a number of patients with the KPS score ≥ 70: from 18 (13.6 %) to 109 (82.6 %) with p<0.01. The multivariate regression analysis revealed that poor postoperative functional status was associated with basal ganglia involvement (OR 2.75, 95% CI 0.93-8.09, p = 0.07), the higher EOR grade (OR 3.30, 95% CI 1.15-9.43, p = 0.03), and hydrocephalus (OR 5.08, 95% CI 1.49-17.35, p = 0.09). Total/subtotal resection was carried out in 84 (63.6 %) cases; in 48 (36.4 %) cases, the partial resection was performed. The multivariate logistic regression analysis revealed that three factors decreased the likelihood of total/subtotal resection in PVG: basal ganglia invasion (OR 0.18, 95% CI 0.06-0.55, p< 0.01), minor extraventricular part (OR 0.40, 95% CI 0.17-0.94, p = 0.04), and contralateral side extension (OR 0.38, 95% CI 0.16-0.92, p = 0.03). In contrast, the presence of tumor-associated cyst (OR 3,73, 95% CI 1.32-10.54, p = 0.01) increased odds of total/subtotal resection. The four-tear grading system of PVG integrating statistically identified factors of total/subtotal resection and risks of postoperative neurological deterioration was developed. The Kaplan-Meier analysis showed that overall median survival was 17.7 ± 1.9 months for patients with high-grade PVG. The survival analysis using Cox regression model revealed that age over 45 years (HR 1.77, 95% CI 1.06-2.99; p = 0.03) and higher tumor WHO grade (HR 2.24, 95% CI 1.27-3.95; p = 0.005) significantly decreased survival rates. CONCLUSIONS. The proposed grading system provides the possibility of preoperative evaluation of PVG resectability that in combination with 3D surgical planning and image-guided resection allows performing maximal safe resections and preventing of postoperative neurological deficits.

i Надоели баннеры? Вы всегда можете отключить рекламу.
iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.
i Надоели баннеры? Вы всегда можете отключить рекламу.

Хирургическое лечение перивентрикулярных глиом: тактика принятия решения и дооперационная оценка резектабельности

ЦЕЛЬ: определить факторы дооперационной визуализации, позволяющие оценить ранние послеоперационные результаты лечения пациентов с ПВГ высокой степени анаплазии. МАТЕРИАЛЫ И МЕТОДЫ. Ретроспективно проанализированы клинические записи 132 (50 женщин и 82 мужчин в возрасте от 21 до 69 лет (средний возраст 45,9 года)) пациентов, которым выполнена операция по удалению ПВГ под контролем нейронавигации. Среди удаленных глиом было 52 (39,4%) WHO Gr III и 80 (60,6%) WHO Gr IV, РЕЗУЛЬТАТИ. Средний показатель по шкале Карновского в послеоперационный период увеличился с 67,4 до 82,0 баллов, а количество пациентов с показателем ≥70 баллов с 18 (13,6%) до 109 (82,6%), (р<0,01). Многофакторный регрессионный анализ выявил, что низкий функциональный статус в послеоперационный период был связан с инвазией опухоли в базальные ганглии (отношение шансов (ОШ) 2,75, 95% доверительный интервал (ДИ) 0,93-8,09, p=0,07), достижением более высокой степени радикальности (ОШ 3,30, 95% ДИ 1,15-9,43, p=0,03) и первичной гидроцефалией (ОШ 5,08, 95% ДИ 1,49-17,35, p=0,09). Парциальная резекция выполнена в 48 (36,4%) случаях, остальным пациентам тотальная или субтотальная. Многофакторный регрессионный анализ показал, что снижение радикальности было связано с инвазией опухоли в базальные ганглии (ОШ 0,18, 95% ДИ 0,06-0,55, p<0,01), наличием у опухоли меньшего экстравентрикулярного компонента (ОШ 0,40, 95% ДИ 0,17-0,94, p=0,04) и распространением на противоположное полушарие (ОШ 0,38, 95% ДИ 0,16-0,92, p=0,03). Степень резекции была высшей при наличии кист в структуре опухолевого очага (ОШ 3,73, 95% ДИ 1,32-10,54, p=0,01). Разработана 4-уровневая система градации ПВГ, которая объединила статистически выявленные факторы, способствующие достижению высокой степени радикальности. Анализ по Каплан-Мейеру показал, что общая медиана выживаемости составила (17,7 ± 1,9) мес. Использование регрессионной модели Кокса выявило, что возраст старше 45 лет (отношение рисков 1,77, 95% ДИ 1,06-2,99, p=0,03) и высокая степень анаплазии (отношение рисков 2,24, 95% ДИ 1,27-3,95, p=0,005) значительно снижали выживаемость. ВЫВОДЫ. Предложенная система градации позволяет на дооперационном этапе оценить резектабельность ПВГ, что вместе с применением 3D-хирургического планирования и навигационного сопровождения позволяет провести максимально безопасное удаление опухоли и предотвратить развитие послеоперационных неврологических нарушений.

Текст научной работы на тему «Surgical management of periventricular glioma: decision-making and preoperative assessment of resectability»

Original аг^с1е=Орипнальна стаття=Оригинальная статья

DOI: https://doi.org/10.25305/unj.153708

1 Department of Intracerebral Tumors, Romodanov Neurosurgery Institute, Kyiv, Ukraine

2 National Cancer Registry of Ukraine, National Cancer Institute, Kyiv, Ukraine

Received: 4 January 2019 Accepted: 21 February 2019

Address for correspondence:

Artem Rozumenko, Department of Intracerebral Tumors, Romodanov Neurosurgery Institute, 32 Platona Mayborody st., Kyiv, Ukraine, 04050, e-mail: dr. rozumenko@gmail. com

Surgical management of periventricular glioma: decision-making and preoperative assessment of resectability

Artem V. Rozumenko1, Valentyn M. Kliuchka1, Volodymyr D. Rozumenko1, Andrii V. Dashchakovskyi1, Zoja P. Fedorenko 2

Objective. Periventricular gliomas (PVG) are deep-seated tumors with wide invasion into cerebral core structures accompanied by high rates of postoperative deterioration and early relapse.

The purpose of this study was to define the preoperative neuroimaging signs as the factors determining the early postoperative outcome in patients with high-grade PVG.

Materials and methods. The clinical records of 132 (50 females and 82 males) consecutive patients with a mean age 45.9 years (range 21-69) undergoing image-guided surgery for PVG at a single academic institution were retrospectively analyzed. There were 52 (39.4 %) WHO grade III gliomas, and 80 (60.6 %) of patients had WHO grade IV gliomas.

Results. Postoperative median KPS score significantly raised from 67.4 to 82.0, as well as a number of patients with the KPS score > 70: from 18 (13.6 %) to 109 (82.6 %) with p<0.01. The multivariate regression analysis revealed that poor postoperative functional status was associated with basal ganglia involvement (OR 2.75, 95% CI 0.93-8.09, p = 0.07), the higher EOR grade (OR 3.30, 95% CI 1.15-9.43, p = 0.03), and hydrocephalus (OR 5.08, 95% CI 1.49-17.35, p = 0.09).

Total/subtotal resection was carried out in 84 (63.6 %) cases; in 48 (36.4 %) cases, the partial resection was performed. The multivariate logistic regression analysis revealed that three factors decreased the likelihood of total/subtotal resection in PVG: basal ganglia invasion (OR 0.18, 95% CI 0.06-0.55, p<0.01), minor extraventricular part (OR 0.40, 95% CI 0.17-0.94, p = 0.04), and contralateral side extension (OR 0.38, 95% CI 0.16-0.92, p = 0.03). In contrast, the presence of tumor-associated cyst (OR 3,73, 95% CI 1.32-10.54, p = 0.01) increased odds of total/subtotal resection. The four-tear grading system of PVG integrating statistically identified factors of total/subtotal resection and risks of postoperative neurological deterioration was developed.

The Kaplan-Meier analysis showed that overall median survival was 17.7 ± 1.9 months for patients with high-grade PVG. The survival analysis using Cox regression model revealed that age over 45 years (HR 1.77, 95% CI 1.06-2.99; p = 0.03) and higher tumor WHO grade (HR 2.24, 95% CI 1.27-3.95; p = 0.005) significantly decreased survival rates.

Conclusions. The proposed grading system provides the possibility of preoperative evaluation of PVG resectability that in combination with 3D surgical planning and image-guided resection allows performing maximal safe resections and preventing of postoperative neurological deficits. Keywords: periventricular glioma; grading system; extent of resection; image-guided resection; surgical outcomes

Ukrainian Neurosurgical Journal. 2019;25(1):40-47

Xipypri4He лшування перивентрикулярних глюм: тактика прийняття ршення та дооперацшна оцшка резектабельност

Розуменко А.В.1, Ключка В.М.1, Розуменко В.Д.1, Дащаковський А.В 1, Федоренко З.П.2

1 Вщдтення внутршньомозкових пухлин, 1нститут нейрохiрурпт' iM. акад. А.П. Ромоданова НАМН Укратни, Китв, Укратна

2 Нацюнальний канцер-реестр Укратни, Нацюнальний шститут раку, Китв, Укратна

Над1йшла до редакцп 04.01.2019 Прийнята до публ1кацп 21.02.2019

Перивентрикулярш глюми (ПВГ) е глибинно розташованими пухлинами з широкою iнвазiею, як асо^юються з високою частотою тсляоперацшних ускладнень i раншми рецидивами.

Мета: визначити чинники дооперацшнот вiзуалiзацiT, як дають змогу оцшити ранш тсляоперацшш результати л^ування пашентв з ПВГ високого ступеня анаплази.

Матерiали i методи. Ретроспективно проаналiзовано клЫчш записи 132 (50 жшок i 82 чоловшв в^ом вщ 21 до 69 роюв (середнш в^ - 45,9

Copyright © 2019 Artem V. Rozumenko, Valentyn M. Kliuchka, Volodymyr D. Rozumenko, Andrii V. Dashchakovskyi, Zoja P. Fedorenko

[icci (D 1 wor'<'s licensed under a Creative Commons Attribution 4.0 International License ^^gnJ https://creativecommons.org/licenses/by/4.0/

Адреса для листування:

Розуменко Артем Володимирович, Вддлення внутр1шньомозкових пухлин, 1нститут нейрох1рургИ ¡м. акад. А.П. Ромоданова, вул. Платона Майбороди, 32, Ки/в, УкраУна, 04050, e-mail: dr.rozumenko@gmail.com

року)) пащен^в, яким виконано опера^ю з видалення ПВГ тд контролем нейронав^аци. Серед вщдалених глюм було 52 (39,4%) WHO Gr III та 80 (60,6%) - WHO Gr IV.

Результати. Середшй показник за шкалою Карновського у тсляоперацмний перюд збтьшився з 67,4 до 82,0 балiв, а ктьюсть пащен^в з >70 балiв

- з 18 (13,6%) до 109 (82,6%), (р<0,01). Багатофакторний регресшний аналiз виявив, що низький функцiональний статус у тсляоперацшний перiод був пов'язаний з iнвазiею пухлини в базальт гангли (вiдношення шансiв (ВШ) - 2,75, 95% довiрчий iнтервал (Д1) - 0,93-8,09, p=0,07), досягненням бтьш високого ступеня радикальностi (ВШ - 3,30, 95% Д1

- 1,15-9,43, p=0,03) та первинною гiдроцефалiею (ВШ - 5,08, 95% Д1

- 1,49-17,35, p=0,09).

Парцiальну резекцiю виконано в 48 (36,4%) випадках, у решти пацiентiв

- тотальну або субтотальну. Багатофакторний регресшний аналiз показав, що зниження радикальной пов'язано з iнвазiею пухлини в базальнi гангли (ВШ - 0,18, 95% Д1 - 0,06-0,55, p<0,01), наявнiстю у пухлини меншоТ екстравентрикулярноТ частини (ВШ -0,40, 95% Д1 - 0,17-0,94, p=0,04) та поширенням на протилежну твкулю (ВШ - 0,38, 95% Д1 - 0,160,92, p=0,03). Ступiнь резекцiТ був вищiм за наявност кiст у структурi пухлинного вогнища (ВШ - 3,73, 95% ДИ - 1,32-10,54, p=0,01). Розроблена 4^внева система градацiТ ПВГ поеднала статистично виявлеш чинники, якi сприяють досягненню високого ступеня радикальностi. Аналiз результатiв за Каплан-Мейером показав, що загальна медiана виживаностi становить (17,7 ± 1,9) мiс. Використання регресшноТ моделi Кокса виявило, що вк старше 45 рокiв (вiдношення ризиюв - 1,77, 95% Д1 - 1,06-2,99, p=0,03) i високий ступшь анаплазiТ (вiдношення ризикiв

- 2,24, 95% Д1 - 1,27-3,95, p = 0,005) значно знижували показники виживаностi.

Висновки. Запропонована система градаци дае змогу на дооперацшному етапi оцiнити резектабельность ПВГ, що разом iз застосуванням 3D-хiрургiчного планування i нав^ацшного супроводу дае змогу провести максимально безпечне видалення пухлин та запоб^ти розвитку тсляоперацшних неврологiчних порушень.

Ключовi слова: перивентрикулярна глiома; система градацiТ; ступiнь резекцiТ; нейронавiгацiя; хiрургiчнi результати

Ukrainian Neurosurgical Journal. 2019;25(1):40-47

Хирургическое лечение перивентрикулярных глиом: тактика принятия решения и дооперационная оценка резектабельности

Розуменко А.В.,1, Ключка В.Н.1, Розуменко В.Д.1, Дащаковский А.В.1, Федоренко З.П.2

1 Отделение внутримозговых опухолей, Институт нейрохирургии им. акад. А.П. Ромоданова НАМН Украины, Киев, Украина

2 Национальный канцер-регистр Украины, Национальный институт рака, Киев, Украина

Поступила в редакцию 04.01.2019 Принята к публикации 21.02.2019

Адрес для переписки:

Розуменко Артем Владимирович, Отделение внутримозговых опухолей, Институт нейрохирургии им. акад. А.П. Ромоданова, ул. Платона Майбороды, 32, Киев, Украина, 04050, e-mail: dr.rozumenko@gmail.com

Перивентрикулярные глиомы (ПВГ) являются глубоко расположенными опухолями с широкой инвазией, ассоциируются с высокой частотой послеоперационных осложнений и ранними рецидивами, Цель: определить факторы дооперационной визуализации, позволяющие оценить ранние послеоперационные результаты лечения пациентов с ПВГ высокой степени анаплазии.

Материалы и методы. Ретроспективно проанализированы клинические записи 132 (50 женщин и 82 мужчин в возрасте от 21 до 69 лет (средний возраст - 45,9 года)) пациентов, которым выполнена операция по удалению ПВГ под контролем нейронавигации. Среди удаленных глиом было 52 (39,4%) WHO Gr III и 80 (60,6%) - WHO Gr IV, Результати. Средний показатель по шкале Карновского в послеоперационный период увеличился с 67,4 до 82,0 баллов, а количество пациентов с показателем >70 баллов - с 18 (13,6%) до 109 (82,6%), (р<0,01). Многофакторный регрессионный анализ выявил, что низкий функциональный статус в послеоперационный период был связан с инвазией опухоли в базальные ганглии (отношение шансов (ОШ) - 2,75, 95% доверительный интервал (ДИ) - 0,93-8,09, p=0,07), достижением более высокой степени радикальности (ОШ - 3,30, 95% ДИ - 1,15-9,43, p=0,03) и первичной гидроцефалией (ОШ - 5,08, 95% ДИ - 1,49-17,35, p=0,09). Парциальная резекция выполнена в 48 (36,4%) случаях, остальным пациентам - тотальная или субтотальная. Многофакторный регрессионный анализ показал, что снижение радикальности было связано с инвазией опухоли в базальные ганглии (ОШ - 0,18, 95% ДИ - 0,06-0,55, p<0,01), наличием у опухоли меньшего экстравентрикулярного компонента (ОШ - 0,40, 95% ДИ - 0,17-0,94, p = 0,04) и распространением на противоположное полушарие (ОШ - 0,38, 95% ДИ - 0,16-0,92, p=0,03).

Степень резекции была высшей при наличии кист в структуре опухолевого очага (ОШ - 3,73, 95% ДИ - 1,32-10,54, p=0,01).

Разработана 4-уровневая система градации ПВГ, которая объединила статистически выявленные факторы, способствующие достижению высокой степени радикальности.

Анализ по Каплан-Мейеру показал, что общая медиана выживаемости составила (17,7 ± 1,9) мес. Использование регрессионной модели Кокса выявило, что возраст старше 45 лет (отношение рисков - 1,77, 95% ДИ -1,06-2,99, p=0,03) и высокая степень анаплазии (отношение рисков - 2,24, 95% ДИ - 1,27-3,95, p=0,005) значительно снижали выживаемость. Выводы. Предложенная система градации позволяет на дооперационном этапе оценить резектабельность ПВГ, что вместе с применением 3D-хирургического планирования и навигационного сопровождения позволяет провести максимально безопасное удаление опухоли и предотвратить развитие послеоперационных неврологических нарушений. Ключевые слова: перивентрикулярная глиома; система градации; степень резекции; нейронавигация; хирургические результаты

Ukrainian Neurosurgical Journal. 2019;25(1):40-47

Introduction

Glioma is the most common primary brain tumor in persons of working age. The social and economic effects of glial tumors in the population are determined by long-term patient disability and loss of performance with the significant decrease in quality of life and life expectancy [1-3].

The appearance of glioma is considering as a result of a neoplastic transformation of stem cells arising mostly from the ventricular-subventricular zone. The periventricular glioma (PVG) itself is characterized by a wide invasion along the white matter fibers, early damage to cerebral core structures, impending anaplastic transformation, and relapse [4, 5]. The functional limits prevent radical surgical treatment, that causes high rates of recurrence and unfavorable prognosis in the vast majority of patients, even after sophisticated combined therapy [6-8].

At the same time, surgery remains a key link in the treatment of patients with PVG that could clarify the histological diagnosis, contributes to clinical improvement and provides additional time for adjuvant therapy application. The improvement of the prognosis for the deep-seated gliomas is associated with the technologies of intraoperative visualization of brain tumors such as the multimodal neuronavigation, intraoperative MRI, intraoperative fluorescence and endoscopic assistance as well as the introduction of the newest methods of adjuvant treatment, in particular, photodynamic therapy, brachytherapy, and radiosurgery [9-16].

In recent studies on high-grade glioma (HGG) patient's survival, the preference to the residual tumor volume estimation instead of the extent of resection is observed. The accumulated data strongly confirms the relation of residual tumor volume with elongation of progression-free period and higher survival rates in operated patients with HGG [17-20].

The purpose of the present study was to define the preoperative neuroimaging signs as the factors determining the possibility to achieve survival benefit resection and to assess the early postoperative outcome in patients with high-grade PVG.

Materials and methods

Patient population

A retrospective study included patients with supratentorial high-grade PVG operated from February 2009 to December 2017 at the Romodanov Neurosurgery Institute (Kyiv, Ukraine).

The inclusion criteria were as follows: (1) age > 18 years, (2) newly diagnosed supratentorial high-grade glioma (WHO III and IV Grade), (3) tumor invades ventricular wall and has both intra- and extraventricular component, (4) image-guided tumor resection, and (5) clinical follow-up and neuroimaging (pre-, intra- and postoperative) data availability. Exclusion criteria were as follows: (1) history of any other malignant tumor and (2) incomplete clinical and neuroimaging datasets.

The functional status of patients was evaluated using the Karnofsky Performance Status Scale (KPS) by a board-certified neurosurgeon or physiotherapist according to clinical observation in the preoperative and postoperative period. All patients received standardized perioperative care.

Imaging studies

MRI studies were carried out on 1.5 T Philips Intera (Philips, Netherlands) scanner according to the radiological study protocol for the cranial program of navigation station. The scanning protocol included at least 3D T1-weighted with Gd-enhancement, T2-weighted, T2-FLAIR, and DWI sequences.

Postoperative computed tomography was performed on Somatom AR STAR PLUS (Siemens, Germany) or Aquilion ONE (Toshiba, Japan) within 24 hours of surgery for early identification of complication signs. Additionally, MRI with Gd-enhancement performed within 14 days after surgery for radiosurgery planning was helpful to distinguish residual tumor at the period of decreasing edema.

The residual tumor volume was calculated matching the preoperative MRI data with intraoperative data from neuronavigation system and postoperative CT and MRI.

According to previous studies on high-grade glioma patients survival, the residual tumor volume of 5 cm3 was established as benefit factor for the survival [17].

This residual tumor volume was selected in our study as a threshold between partial and subtotal resection. The cases with radiologically gross total resection (no tumor remains on CT/MRI) were included to subtotal resection group considering wide infiltration pattern inherent to PVG.

Surgical planning

The surgical planning was performed with a spatial 3D-modeling technique using navigation station software for segmentation and reconstruction of the preoperative MRI series. The spatial location of the tumor to neurovascular structures was defined on 3D models with a reconstruction of basal ganglia, subcortical tracts, deep vessels, and cerebral ventricles. Also, the contouring of tumor invasion areas and perifocal edema was performed. The optimal surgical approach boundaries and the total tumor volume available for the removal were determined preoperatively on the 3D models.

Surgical procedure

All patients were operated using neuronavigation system StealthStation (Medtronic, USA). The rigid head fixation was mandatory. Preoperative preparations and craniotomy were performed in standard fashion. Image-guidance was utilized for craniotomy and tumor resection to control the EOR and brain-shift monitoring. The standard measures for brain-shift prevention were neutral head positioning, en bloc tumor resection, prevention of tissue compression and early opening of intracerebral cavities (cysts, hematomas, and ventricles).

Statistical analysis

The methods of descriptive statistics were used for continuous variables. The categorical variables were analyzed using the standard deviation and frequency of distribution. The variables with more than two possible values (age, EOR, tumor location, and size) were dichotomized. The McNemar's test was used to analyze the depending samples.

The multiple logistic regression model with backward stepwise was applied to determine which variables were independently associated with the EOR and postoperative KPS score. All variables were screened for entry into the logistic regression model by using the chi-square test.

A p value of <0.05 was considered significant.

Statistical analysis was performed using the Deducer package (Java GUI extensions to statistical programming platform R licensed under the GNU).

Results

A total of 132 consecutive patients (50 females and 82 males) with mean age 45.9 years (range 21-69) were retrospectively included in the study.

The periventricular tumors with dominant extraventricular component were in 77 (58.3 %) patients; in other 55 (41.7 %) cases, the intraventricular part was greater or equal to extraventricular one. The tumor extended into the ventricular corpus and/or atrium was found in 36 (27.3 %) cases, the ventricular horns were affected in 96 (72.7 %) cases. The extending of the tumor to contralateral hemisphere was found in 63 (47.7 %) patients, the basal ganglia invading was in 93 (70.5 %) cases, and tumor contact with septum pellucidum was in 58 (43.9 %) cases. The larger diameter of the tumor was over 50 mm in 84 (63.6 %) patients.

In 36 (27.3%) patients the tumor-associated cyst was found, and only in 14 (11.6 %) cases, hydrocephalus was observed.

The tumors were clinically presented with intracranial hypertension, paresis, and seizures, that prevents the most part of patients to carry normal activity or active work. The average KPS score was 67.4 in the preoperative period, and the number of patients with KPS scores less than 70 was 114 (86.4 %). Demographic and clinical characteristics of patients are presented in Table 1.

Total/subtotal resection was carried out in 84 (63.6 %) cases; in other 48 (36.4 %) cases, the partial resection was performed. There were 52 (39.4 %) WHO grade III gliomas, and in 80 (60.6 %) of patients WHO grade IV gliomas were found.

Table 1. Demographic and clinical characteristics of patients

Variable Value (%) p value

Patients, N 132 (100.0)

Age at diagnosis (years)

Mean 45.9 ± 12.8

Range 21-69

< 45 55 (41.7)

> 45 77 (58.3) 0.06

Sex

Male 82 (62.1)

Female 50 (37.9) < 0.01

Preoperative KPS score

Median 67.4

< 70 114 (86.4)

> 70 18 (13.6) < 0.01

Tumor extension

iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.

Dominant extraventricular part 77 (58.3)

Minor extraventricular part 55 (41.7) 0.05

Ventricular involvement

Horn 96 (72.7)

Corpus/Antrum 36 (27.3) < 0.01

Septum dislocation

< 10mm 112 (84.8)

> 10mm 20 (15.2) < 0.01

Septum contact

Present 58 (43.9)

None 74 (56.1) 0.16

Contralateral side extension

Present 63 (47.7)

None 69 (52.3) 0.60

Basal ganglia invasion

Present 93 (70.5)

None 39 (29.5) < 0.01

Tumor-associated cyst

Present 36 (27.3)

None 96 (72.7) < 0.01

Hydrocephalus

Present 14 (11.6)

None 118 (88.4) < 0.01

Largest diameter of tumor (mm)

< 50 48 (36.4)

> 50 84 (63.6) < 0.01

There was not estimated the reliable relation of the functional status in the preoperative period with tumor size (p = 0.77) and WHO grade (p = 0.13), basal ganglia invasion (p = 0.14), contralateral hemisphere extension (p = 0.42), localization to ventricular wall (p = 0.44) or to ventricular compartments (p = 0.96), septum contact (p = 0.96) and dislocation (p = 0.84), presence of hydrocephalus (p = 0.45), tumor-associated cyst (p = 0.53), patients age (p = 0.19), and sex (p = 0.1).

Postoperative median KPS score significantly raised from 67.4 to 82.0, as well as a number of patients with the KPS score > 70: from 18 (13.6 %) to 109 (82.6 %) with p<0.01. Twenty-two (17.7 %) patients saved initially low functional status (KPS<70), and one got worse. All surgical complications were hemorrhages in the site of operation — 4 (3.0 %) cases, one of them resulted in fatal outcome. The clinical and surgical outcomes are summarized in Table 2.

The multivariate regression analysis revealed the association of poor postoperative functional status with basal ganglia involvement (OR 2.75, 95% CI 0.93-8.09; p = 0.07), the higher EOR grade (OR 3.30, 95% CI 1.15-9.43; p = 0.03), and hydrocephalus (OR 5.08, 95% CI 1.49-17.35; p = 0.09) (Table 3).

Multivariate logistic regression analysis revealed that three factors decreased the likelihood of total/subtotal resection in PVG: basal ganglia invasion (OR 0.18, 95% CI 0.06-0.55; p<0.01), minor extraventricular part (OR 0.40, 95% CI 0.17-0.94; p = 0.04), and contralateral side extension (OR 0.38, 95% CI 0.16-0.92; p = 0.03). In contrast, the presence of tumor-associated cyst (OR 3,73, 95% CI 1.32-10.54; p = 0.01) increased odds of total/subtotal resection (Table 4).

The follow-up data were available for 103 (78.0 %). The survival analysis using Cox regression model (Table 5) revealed that age over 45 years (HR 1.77, 95% CI 1.06-2.99; p = 0.03) and higher tumor WHO grade (HR 2.24, 95% CI 1.27-3.95; p = 0.005) significantly decreased survival rates.

The Kaplan-Meier analysis showed that overall median survival was 17.1 ± 1.9 months for patients with high grade PVG: 13.4 ± 0.7 mos. for glioblastomas and 44.0 ± 11.0 mos. for anaplastic glioma (Table 6). The EOR increasing didn't add any benefit to survival for each of WHO grade group (p = 0.71). There was a difference between groups of patients depending on age group and WHO grade (p<0.01). The Figure 1 presents survival curves.

Description of grading system

The grading scale evaluation was based on the revealing of statistically verified factors affecting the effectiveness of PVG resection.

Each of statistically verified preoperative neuroimaging sign was considered as a risk factor with the value of 1 score. The absence of risk factors or one of them (0-1 score) matched Grade I, and the cases with 4 risk factors (4 scores) were considered as Grade IV tumors that have lower chances for total/ subtotal resection and increased risk of postoperative neurological deterioration. The proposed grading system and its correlation to surgical outcomes are presented in Table 7.

Table 2. Clinical and surgical outcomes in study groups

Variable Total p value

Extent of resection

Total/subtotal resection (%) 84 (63.6)

Partial resection (%) 48 (36.4) 0.02

Postoperative KPS score

Median 82.0

< 70 (%) 23 (17.4)

> 70 (%) 109 (82.6) < 0.01

WHO Grade

III 52 (39.4)

IV 80 (60.6) 0.02

Table 3. Multivariate analysis of prognostic factors for postoperative functional status decrease

Variable p value OR 95% CI

Hydrocephalus 0.09 5.08 1.49-17.35

Basal ganglia invasion 0.07 2.75 0.93-8.09

Higher EOR grade 0.03 3.30 1.15-9.43

Table 4. Multivariate analysis of prognostic factors for total/subtotal resection

Variable p value OR 95% CI

Minor extraventricular part 0.04 0.40 0.17-0.94

Basal ganglia invasion < 0.01 0.18 0.06-0.55

Contralateral side extension 0.03 0.38 0.16-0.92

Tumor-associated cyst 0.01 3,73 1.32-10.54

Table 5. Cox regression analysis of survival predicting factors

Variable Wald p value HR 95.0% CI

Age group 6.201 0.03 1.77 1.06-2.99

WHO grade 5.584 0.005 2.24 1.27-3.95

Table 6. Survival terms in patients with PVG depending on tumor WHO grade and patients age

Age Group WHO grade Survival (mos.) Std. error 95% CI

< 45 III 47.4 3.03 41.4-53.3

IV 16.2 2.36 11.5-20.8

Total 44.0 16.54 11.5-76.4

> 45 III 24.5 7.85 9.1-39.8

IV 12.7 1.05 10.6-14.7

Total 13.4 0.80 11.8-14.9

Total 17.1 1.87 13.4-20.7

Age group < 45 yr Age group > 45 yr

Fig. 1. Survival functions in patients with periventricular gliomas depending on WHO grade for age group < 45 years (A) and > 45 (B)

Table7. Proposed grading system for surgical outcomes assessment on our series data

Discussion

Nowadays approach in surgery for deep-seated brain gliomas reflexes the searching of optimal balance between the EOR maximizing and preserving of functional integrity of surrounding neurovascular structures. Prevention of postoperative neurological deterioration requires individualized surgical strategy considering the tumor location and involvement of eloquent brain structures, as well as the initial neurological deficits and concomitant pathology [3, 8, 12, 13].

Previous studies showed the uniqueness of PVG that could be explained by pathohistological features of subventricular zone as a source of multipotent stem cells. Early malignization and fast relapse are typical for PVG, which predominantly are glioblastomas [6, 21]. The vicinity of basal ganglia and circumventricular organs responsible for metabolic and endocrine function also limits the possibilities of radical resection with high risks of hemorrhage into residual tumor parts [22, 23].

Furthermore, surgical approach to PVG itself is complicated due to hidden subcortical localization of the tumor and high density of surrounding white matter tracts. This requires the mandatory use of image-guided resection techniques, at least multimodal

neuronavigation. Also, the fluorescence guidance and intraoperative scanning (MRI and CT) showed their effectiveness and are preferable to routine practice [24-26].

The significant decrease of survival rates for PVG is associated with the incomplete resection, unstoppable tumor cell dissemination, and high levels of postoperative neurological disorders [4-6]. The residual tumor volume was estimated as a significant prognostic factor for survival in patients with high-grade gliomas [17-20].

The grading system for preoperative assessment of outcomes in glioma patients was evaluated together with the ongoing development of surgical techniques and collecting of statistical data in order to analyze their efficacy [27-32].

In our study, we aimed to find out the preoperative neuroimaging prognostic signs for surgical outcomes in patients with PVG. The statistical analysis revealed four factors responsible for maximizing resection and affecting postoperative functional status. The favorable factors were organized in grading system.

In 1998, Vorster et al. published the results of surgery for primary and secondary brain tumors in 204 patients, and proposed a five-tier grading system to assess complication risks and length of hospital stay. Using multivariate regression analysis, the authors defined the following risk factors: patient age over 60 years, preoperative KPS scores of 50 or less, previous radiotherapy, tumor eloquent location, and deep brain structures (ventricles or basal ganglia) invasion. In contrast to our study, it included heterogeneous histological groups and the influence of tumor type was not tested, as well as categories of tumor location (eloquent and deep) were not clearly dissolved [27].

Litofsky et al. (2006). identified patients age and using of image-guided resection as additional factors promoting save resection and decreasing levels of neurological deficits. However, the factor predicting the

Grade Scores Total/ subtotal resection (%), p<0.01 Postoperative KPS score <70 (%), p = 0.69 Number of cases

I 0-1 30 (100) 3 (10) 30

II 2 27 (62.8) 7 (16.3) 43

III 3 21 (55.3) 8 (21,1) 38

IV 4 6 (28.6) 5 (23.8) 21

greater EOR and its association with outcomes was not evaluated by the authors [28].

Our data confirms the value of multimodal surgical planning and image-guided resection that ensure better neurological outcomes in patients with PVG. Preoperative virtual simulation of intervention could help to work out the optimal transcortical approach passing beyond the eloquent structures and to delineate the tumor volume suitable for safe resection. Neuronavigation usage for the entire process of tumor resection helps to control distances to surrounding neurovascular structure and to evaluate achieved EOR when the brain-shift was compensated.

Chaichana et al. in 2010 revealed the relation of preoperative clinical and neuroimaging signs with survival rates in glioblastoma patients. The age, preoperative KPS score, motor and speech deficits, and periventricular location (ventricular wall involvement) were tested with regression analysis and validated in the multicenter study in 2013. The EOR was not included into the grading system, as a factor that could not be revealed preoperatively [29-31].

Statistical analysis of PVG treatment in our series results showed that patents age and tumor WHO Grade influenced postoperative survival rates. At the same time, various neuroimaging signs were statistically tested and used to predict early surgical results (EOR and functional status) in patients with high-grade PVG.

Marcus et al. developed a grading system for preoperative predicting surgical outcomes in glioblastoma surgery. The grading system included the most frequent neuroimaging features that were described in the literature as factors affecting the EOR and/or survival. In this study, each of selected features (1) periventricular or deep location, (2) corpus callosum or bilateral location, (3) eloquent location, (4) tumor size and (5) associated edema had the equal weight of one point in the grading system. The sum of points defined one of three possible grades of complexity. For patient groups with the same grade of complexity, the EOR and postoperative complications rate were calculated. The chi-square test confirmed a correlation of grade score with EOR [32].

In contrast to our study, the criteria for periventricular tumors were wider that lead to the inclusion of tumors without ventricular wall attachment. Also, the prominent limitation in this work was the absence of statistical testing of initially selected preoperative neuroimaging features.

We proposed the grading system with statistically verified neuroimaging features of PVG with influence on surgical outcome: tumor with minor extraventricular part, the tumor-associated cyst, tumor basal ganglia invasion, and contralateral side extension. The small number of included preoperative features makes the grading system more useful for clinical practice. The application of the grading system developed could help to choose surgical tactics of limited resection for complex high-score PVG. Also, we should conclude the absence of statistically significant effect of EOR on survival in our series of high-grade PVG. This fact together with the negative influence of the EOR increasing on postoperative functional status in patients advocates safe resection aimed at the intracranial optimal decompression and achievement of tumor tissue specimens.

The prominent limitation of the study was in its retrospective nature preventing the proper collecting of clinical data and the functional outcome evaluation. This study also did not analyze the influence of prognostic implication of molecular markers and different adjuvant therapy protocols on survival. We suggest that prospective multicenter study is required for further validation of developed grading system to disclose the factors depending on applied surgical techniques and validation of the quality of life and survival data in patients after surgery for PVG.

Conclusions

Proposed grading scale provides the possibility of a preoperative evaluation of PVG resectability that in combination with 3D surgical planning and image-guided resection allows performing maximal safe resections and preventing postoperative neurological deficits.

Disclosure

iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

The study was approved and conducted within the guidelines of the Romodanov Neurosurgery Institute review board.

Informed consent

The written informed consent was obtained from each patient or appropriate family member before the surgery.

References

1. Butowski NA. Epidemiology and diagnosis of brain tumors. Continuum (Minneap Minn). 2015 Apr;21(2 Neuro-oncology):301-13. doi: 10.1212/01.CON.0000464171.50638. fa. PubMed PMID: 25837897.

2. Ostrom QT, Gittleman H, Liao P, Vecchione-Koval T, Wolinsky Y, Kruchko C, Barnholtz-Sloan JS. CBTRUS Statistical Report: Primary brain and other central nervous system tumors diagnosed in the United States in 2010-2014. Neuro Oncol. 2017 Nov 6;19(suppl_5):v1-v88. doi: 10.1093/neuonc/ nox158. PubMed PMID: 29117289; PubMed Central PMCID: PMC5693142.

3. Gil-Robles S, Duffau H. Surgical management of World Health Organization Grade II gliomas in eloquent areas: the necessity of preserving a margin around functional structures. Neurosurg Focus. 2010 Feb;28(2):E8. doi: 10.3171/2009.12.FOCUS09236. PubMed PMID: 20121443

4. Parsa AT, Wachhorst S, Lamborn KR, Prados MD, McDermott MW, Berger MS, Chang SM. Prognostic significance of intracranial dissemination of glioblastoma multiforme in adults. J Neurosurg. 2005 Apr;102(4):622-8. PubMed PMID: 15871503.

5. Adeberg S, Bostel T, König L, Welzel T, Debus J, Combs SE. A comparison of long-term survivors and short-term survivors with glioblastoma, subventricular zone involvement: a predictive factor for survival? Radiat Oncol. 2014 Apr 23;9:95. doi: 10.1186/1748-717X-9-95. PubMed PMID: 24758192; PubMed Central PMCID: PMC4011838.

6. Yang W, Xu T, Garzon-Muvdi T, Jiang C, Huang J, Chaichana

KL. Survival of Ventricular and Periventricular High-Grade Gliomas: A Surveillance, Epidemiology, and End Results Program-Based Study. World Neurosurg. 2018 Mar;111: e323-e334. doi: 10.1016/j.wneu.2017.12.052. PubMed PMID: 29258929.

7. D'Angelo VA, Galarza M, Catapano D, Monte V, Bisceglia M, Carosi I. Lateral ventricle tumors: surgical strategies according to tumor origin and development--a series of 72 cases. Neurosurgery. 2008 Jun;62(6 Suppl 3):1066-75.

doi: 10.1227/01.neu.0000333772.35822.37. PubMed PMID: 18695527

8. Eliyas JK, Glynn R, Kulwin CG, Rovin R, Young R, Alzate J, Pradilla G, Shah MV, Kassam A, Ciric I, Bailes J. Minimally Invasive Transsulcal Resection of Intraventricular and Periventricular Lesions Through a Tubular Retractor System: Multicentric Experience and Results. World Neurosurg. 2016 Jun;90:556-564. doi: 10.1016/j.wneu.2015.12.100. PubMed PMID: 2680567.

9. Stummer W, Reulen HJ, Meinel T, Pichlmeier U, Schumacher W, Tonn JC, Rohde V, Oppel F, Turowski B, Woiciechowsky C, Franz K, Pietsch T; ALA-Glioma Study Group. Extent of resection and survival in glioblastoma multiforme: identification of and adjustment for bias. Neurosurgery. 2008 Mar;62(3):564-76; discussion 564-76. doi: 10.1227/01. neu.0000317304.31579.17. PubMed PMID: 18425006.

10. Hervey-Jumper SL, Berger MS. Role of surgical resection in low- and high-grade gliomas. Curr Treat Options Neurol. 2014 Apr;16(4):284. doi: 10.1007/s11940-014-0284-7. PubMed PMID: 24595756.

11. González-Darder JM, González-López P, Talamantes F, Quilis V, Cortés V, García-March G, Roldán P. Multimodal navigation in the functional microsurgical resection of intrinsic brain tumors located in eloquent motor areas: role of tractography. Neurosurg Focus. 2010 Feb;28(2):E5. doi: 10.3171/2009.11. FOCUS09234. PubMed PMID: 20121440.

12. Delgado-López PD, Corrales-García EM. Survival in glioblastoma: a review on the impact of treatment modalities. Clin Transl Oncol. 2016 Nov;18(11):1062-1071. PubMed PMID: 26960561.

13. Senft C, Forster MT, Bink A, Mittelbronn M, Franz K, Seifert V, Szelényi A. Optimizing the extent of resection in eloquently located gliomas by combining intraoperative MRI guidance with intraoperative neurophysiological monitoring. J Neurooncol. 2012 Aug;109(1):81-90. doi: 10.1007/s11060-012-0864-x. Epub 2012 Apr 17. PubMed PMID: 22528791.

14. Wolbers JG. Novel strategies in glioblastoma surgery aim at safe, supra-maximum resection in conjunction with local therapies. Chin J Cancer. 2014 Jan;33(1):8-15. doi: 10.5732/ cjc.013.10219. PubMed PMID: 24384236; PubMed Central PMCID: PMC3905085.

15. Li YM, Suki D, Hess K, Sawaya R. The influence of maximum safe resection of glioblastoma on survival in 1229 patients: Can we do better than gross-total resection? J Neurosurg. 2016 Apr;124(4):977-88. doi: 10.3171/2015.5.JNS142087. PubMed PMID: 26495941.

16. Eyüpoglu IY, Hore N, Savaskan NE, Grummich P, Roessler K, Buchfelder M, Ganslandt O. Improving the extent of malignant glioma resection by dual intraoperative visualization approach. PLoS One. 2012;7(9):e44885. doi: 10.1371/journal. pone.0044885. PubMed PMID: 23049761; PubMed Central PMCID: PMC3458892.

17. Chaichana KL, Jusue-Torres I, Navarro-Ramirez R, Raza SM, Pascual-Gallego M, Ibrahim A, Hernandez-Hermann M, Gomez L, Ye X, Weingart JD, Olivi A, Blakeley J, Gallia GL, Lim M, Brem H, Quinones-Hinojosa A. Establishing percent resection and residual volume thresholds affecting survival and recurrence for patients with newly diagnosed intracranial glioblastoma. Neuro Oncol. 2014 Jan;16(1):113-22. doi: 10.1093/neuonc/not137. PubMed PMID: 24285550; PubMed Central PMCID: PMC3870832.

18. Mampre D, Ehresman J, Pinilla-Monsalve G, Osorio MAG, Olivi A, Quinones-Hinojosa A, Chaichana KL. Extending the resection beyond the contrast-enhancement for glioblastoma: feasibility, efficacy, and outcomes. Br J Neurosurg. 2018 Oct;32(5):528-535. doi: 10.1080/02688697.2018.1498450. PubMed PMID: 30073866.

19. Grabowski MM, Recinos PF, Nowacki AS, Schroeder JL, Angelov L, Barnett GH, Vogelbaum MA. Residual tumor volume versus extent of resection: predictors of survival after surgery for glioblastoma. J Neurosurg. 2014 Nov;121(5):1115-23. doi: 10.3171/2014.7.JNS132449. PubMed PMID: 25192475.

20. Kuhnt D, Becker A, Ganslandt O, Bauer M, Buchfelder M,

Nimsky C. Correlation of the extent of tumor volume resection and patient survival in surgery of glioblastoma multiforme with high-field intraoperative MRI guidance. Neuro Oncol. 2011 Dec;13(12):1339-48. doi: 10.1093/neuonc/nor133. Erratum in: Neuro Oncol. 2014 Oct;16(10):1429. PubMed PMID: 21914639; PubMed Central PMCID: PMC3223093.

21. Sanai N, Tramontin AD, Quiñones-Hinojosa A, Barbaro NM, Gupta N, Kunwar S, Lawton MT, McDermott MW, Parsa AT, Manuel-García Verdugo J, Berger MS, Alvarez-Buylla A. Unique astrocyte ribbon in adult human brain contains neural stem cells but lacks chain migration. Nature. 2004 Feb 19;427(6976):740-4. doi: 10.1038/nature02301. PubMed PMID: 14973487.

22. Ganong WF. Circumventricular organs: definition and role in the regulation of endocrine and autonomic function. Clin Exp Pharmacol Physiol. 2000 May-Jun;27(5-6):422-7. doi: 10.1046/j.1440-1681.2000.03259.x. PubMed PMID: 10831247.

23. Cottrell GT, Ferguson AV. Sensory circumventricular organs: central roles in integrated autonomic regulation. Regul Pept. 2004 Jan 15;117(1):11-23. doi: 10.1016/j.regpep.2003.09.004. PubMed PMID: 14687696.

24. Chaichana KL, McGirt MJ, Frazier J, Attenello F, Guerrero-Cazares H, Quinones-Hinojosa A. Relationship of glioblastoma multiforme to the lateral ventricles predicts survival following tumor resection. J Neurooncol. 2008 Sep;89(2):219-24. doi: 10.1007/s11060-008-9609-2. PubMed PMID: 18458819.

25. Lim DA, Cha S, Mayo MC, Chen MH, Keles E, VandenBerg

5, Berger MS. Relationship of glioblastoma multiforme to neural stem cell regions predicts invasive and multifocal tumor phenotype. Neuro Oncol. 2007 Oct;9(4):424-9. doi: 10.1215/15228517-2007-023. PubMed PMID: 17622647; PubMed Central PMCID: PMC1994099.

26. Jafri NF, Clarke JL, Weinberg V, Barani IJ, Cha S. Relationship of glioblastoma multiforme to the subventricular zone is associated with survival. Neuro Oncol. 2013 Jan;15(1):91-

6. doi: 10.1093/neuonc/nos268. PubMed PMID: 23095230; PubMed Central PMCID: PMC3534420.

27. Vorster SJ, Barnett GH. A proposed preoperative grading scheme to assess risk for surgical resection of primary and secondary intraaxial supratentorial brain tumors. Neurosurg Focus. 1998 Jun 15;4(6):e2. doi: 10.3171/foc.1998.4.6.5. PubMed PMID: 17154442.

28. Litofsky NS, Bauer AM, Kasper RS, Sullivan CM, Dabbous OH; Glioma Outcomes Project Investigators. Image-guided resection of high-grade glioma: patient selection factors and outcome. Neurosurg Focus. 2006 Apr 15;20(4):E16. doi: 10.3171/foc.2006.20.4.10. PubMed PMID: 16709021.

29. Chaichana K, Parker S, Olivi A, Quiñones-Hinojosa A. A proposed classification system that projects outcomes based on preoperative variables for adult patients with glioblastoma multiforme. J Neurosurg. 2010 May;112(5):997-1004. doi: 10.3171/2009.9.JNS09805. PubMed PMID: 19817542.

30. McGirt MJ, Chaichana KL, Gathinji M, Attenello FJ, Than K, Olivi A, Weingart JD, Brem H, Quiñones-Hinojosa AR. Independent association of extent of resection with survival in patients with malignant brain astrocytoma. J Neurosurg. 2009 Jan;110(1):156-62. doi: 10.3171/2008.4.17536. PubMed PMID: 18847342.

31. Chaichana KL, Pendleton C, Chambless L, Camara-Quintana J, Nathan JK, Hassam-Malani L, Li G, Harsh GR 4th, Thompson RC, Lim M, Quinones-Hinojosa A. Multi-institutional validation of a preoperative scoring system which predicts survival for patients with glioblastoma. J Clin Neurosci. 2013 Oct;20(10):1422-6. doi: 10.1016/j.jocn.2013.02.007. PubMed PMID: 23928040; PubMed Central PMCID: PMC4086640.

32. Marcus HJ, Williams S, Hughes-Hallett A, Camp SJ, Nandi D, Thorne L. Predicting surgical outcome in patients with glioblastoma multiforme using pre-operative magnetic resonance imaging: development and preliminary validation of a grading system. Neurosurg Rev. 2017 Oct;40(4):621-631. doi: 10.1007/s10143-017-0817-0. PubMed PMID: 28204997; PubMed Central PMCID: PMC5591365.

Science editor:

Nikolai G. Rainov, Dr. med. habil., Dr. h. c., FRSEd

MVZ Wirbelsäulenzentrum München Taufkirchen, Deutschland

i Надоели баннеры? Вы всегда можете отключить рекламу.