Научная статья на тему 'SURFACE AND GROUNDWATER GEOECOLOGY IN THE MIDDLE URALS: A CASE-STUDY OF POLEVSKOY AND KACHKANAR MINING DISTRICTS, SVERDLOVSK REGION'

SURFACE AND GROUNDWATER GEOECOLOGY IN THE MIDDLE URALS: A CASE-STUDY OF POLEVSKOY AND KACHKANAR MINING DISTRICTS, SVERDLOVSK REGION Текст научной статьи по специальности «Науки о Земле и смежные экологические науки»

CC BY
50
26
i Надоели баннеры? Вы всегда можете отключить рекламу.
Ключевые слова
WATER BODIES / GROUNDWATER / MONITORING / WASTE WATER / WASTE STORAGE FACILITIES / CHEMICAL ANALYSIS OF SAMPLES / TAILINGS DUMPS / MONITORING WELLS

Аннотация научной статьи по наукам о Земле и смежным экологическим наукам, автор научной работы — Pochechun V.A., Semyachkov A.I., Kurbanov Ibragim Kurban Ogly

The article presents the appraisal of surface water and groundwater in the territory of some mining districts in the Sverdlovsk Region. The main method of research is monitoring, which is understood as a system of observations aimed at predictive and environmental measures. The monitoring investigation network deployed at mines provides comprehensive information on the condition of surface and groundwater, and enables predictive appraisal and environmental impact reduction. The appraisal of surface and underground water was carried out using the data on maximum permissible concentrations in water bodies of fishery value as both underground and surface water resources are largely fed from man-made water bodies. The surface water appraisal is implemented as a casestudy of Seversk Reservoir in the Polevskoy district, Sverdlovsk Region and shows that the water body is in critical condition. The groundwater appraisal is undertaken in the area of Kachkanar mining cluster. An irregular trend change in the condition of groundwater in this area is revealed.

i Надоели баннеры? Вы всегда можете отключить рекламу.
iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.
i Надоели баннеры? Вы всегда можете отключить рекламу.

Текст научной работы на тему «SURFACE AND GROUNDWATER GEOECOLOGY IN THE MIDDLE URALS: A CASE-STUDY OF POLEVSKOY AND KACHKANAR MINING DISTRICTS, SVERDLOVSK REGION»

ГИАБ. Горный информационно-аналитический бюллетень / MIAB. Mining Informational and Analytical Bulletin, 2021;(11-1):90—97 ОРИГИНАЛЬНАЯ СТАТЬЯ / ORIGINAL PAPER

УДК 622 001: 10.25018/0236_1493_2021_111_0_90

ГЕОЭКОЛОГИЯ ПОВЕРХНОСТНЫХ И ПОДЗЕМНЫХ ВОД НА СРЕДНЕМ УРАЛЕ: НА ПРИМЕРЕ ПОЛЕВСКОГО И КАЧКАНАРСКОГО ГОРНЫХ РАЙОНОВ СВЕРДЛОВСКОЙ ОБЛАСТИ

В. А. Почечун12, А. И. Семячков12, Ибрагим Курбан оглы Курбанов12

1 Уральский государственный горный университет, Екатеринбург, Россия;

2 Институт экономики УрО РАН, Екатеринбург, Россия

Аннотация: Представлена оценка состояния поверхностных и подземных вод на территории некоторых горнодобывающих районов Свердловской области. Основным методом исследования является мониторинг, под которым понимается система наблюдений, направленных на прогностические и экологические мероприятия. Сеть мониторинга и расследований, развернутая на шахтах, предоставляет исчерпывающую информацию о состоянии поверхностных и подземных вод и позволяет проводить прогнозную оценку и снижать воздействие на окружающую среду. Оценка поверхностных и подземных вод была проведена с использованием данных о предельно допустимых концентрациях в водных объектах рыбохозяйственного значения, поскольку как подземные, так и поверхностные водные ресурсы в значительной степени питаются из искусственных водоемов. Оценка поверхностных вод проводится на примере Северского водохранилища в Полевском районе Свердловской области и показывает, что водоем находится в критическом состоянии. Оценка подземных вод проводится в районе Качканарского горнорудного кластера. Выявлена нерегулярная тенденция изменения состояния подземных вод в этом районе.

Ключевые слова: водные объекты, подземные воды, мониторинг, сточные воды, хранилища отходов, химический анализ проб, хвостохранилища, мониторинговые скважины. Для цитирования: Почечун В. А., Семячков А. И., Ибрагим Курбан оглы Курбанов Геоэкология поверхностных и подземных вод на Среднем Урале: на примере Полевского и Качканарского горных районов Свердловской области // Горный информационно-аналитический бюллетень. - 2021. - № 11-1. - С. 90-97. Б01: 10.25018/0236_1493_2021_111_0_90.

Surface and groundwater geoecology in the Middle Urals: a case-study of Polevskoy and Kachkanar mining districts, Sverdlovsk region

V. A. Pochechun12, A. I. Semyachkov12, Ibragim Kurban ogly Kurbanov12

1 Ural State Mining University, Yekaterinburg, Russia; 2 Institute of Economics, Ural Branch of the Russian Academy of Sciences, Yekaterinburg, Russia

Abstract: The article presents the appraisal of surface water and groundwater in the territory of some mining districts in the Sverdlovsk Region. The main method of research

© В. А. Почечун, А. И. Семячков, Ибрагим Курбан оглы Курбанов. 2021

is monitoring, which is understood as a system of observations aimed at predictive and environmental measures. The monitoring investigation network deployed at mines provides comprehensive information on the condition of surface and groundwater, and enables predictive appraisal and environmental impact reduction. The appraisal of surface and underground water was carried out using the data on maximum permissible concentrations in water bodies of fishery value as both underground and surface water resources are largely fed from man-made water bodies. The surface water appraisal is implemented as a case-study of Seversk Reservoir in the Polevskoy district, Sverdlovsk Region and shows that the water body is in critical condition. The groundwater appraisal is undertaken in the area of Kachkanar mining cluster. An irregular trend change in the condition of groundwater in this area is revealed.

Key words: water bodies, groundwater, monitoring, waste water, waste storage facilities, chemical analysis of samples, tailings dumps, monitoring wells.

For citation: Pochechun V. A., Semyachkov A. I., Ibragim Kurban ogly Kurbanov Surface and groundwater geoecology in the Middle Urals: a case-study of Polevskoy and Kachkanar mining districts, Sverdlovsk region. MIAB. Mining Inf. Anal. Bull. 2021;(11-1):90—97. [In Russ]. DOI: 10. 25018/0236_1493_2021_111_0_90.

Introduction

The sound regional environmental policy and effective public control of environmentally friendly and sustainable development activities call for the environmental impact assessment and ecosystem valuation [1-7], which is presented in this article as a case-study of a mining area in the Middle Urals.

Materials and methods

This study used the proprietary field research and analysis results, and the available literary sources. The work is based on the surface and groundwater monitoring data. Regarding groundwater monitoring, the test area has a system of monitoring wells with the layout governed by the local hydrodynamic network between the impact sources and the effluent discharge outlets.

The purpose of the monitoring in terms of water sampling is to obtain a discrete sample representative of the test water quality. Therefore, the surface and groundwater monitoring followed some rules and requirements. According to the GIDEK guidelines, before sampling, all existing wells were pumped through

within minimum 0.5 hours. The volume of one sample was 3 l minimum. Water sampling, storage and transportation were carried out as per RF State Standard GOST R 51592-2000.

Results and discussion

Over the past ten years (2008-2017, the Ural Federal District is Russia's fourth region in terms of ecological quality. As a whole, during this period, polluted waste water discharge in the Ural Federal District has increased by 19.5% and amounted to 2231 Mm3 in 2017 [8].

For example, the chemical analysis of 154 water samples taken from 7 sections in Seversk Reservoir, located in the Polevskoy district of the Sverdlovsk Region and affected by intense effluents of local mining and metallurgical plants, showed an excess of MAC over the standard values for the following components: sulfate ion — 1,16, copper — 100, zinc — 5, manganese — 1,9. In 76 samples taken from 3 effluent outlets at Seversk Reservoir, the excess of toxic elements over the standard values is: 2140 MAC for copper and 4604 MAC for zinc [9, 10].

Chemical composition of recirculated water in tailings dump

No. Parameter Units Value MAC of fishery-value water bodies

1. Sulphates mg/dm3 45 100

2. Nitrite ions mg/dm3 1,42 0,08

3. Nitrite ions mg/dm3 79,9 40

4. Ammonium ions mg/dm3 1,5 0,5

5. BOI full mgO2/dm3 6,5 3,0

6. Total iron mg/dm3 0,43 0,1

7. Copper mg/dm3 0,004 0,01

8. Vanadium mg/dm3 0,0066 0,001

9. Petroleum products mg/dm3 0,08 0,05

10. Suspended matter mg/dm3 10 25+background

11. Dry residue mg/dm3 344 1000

The data obtained make it possible to conclude that Seversk Reservoir is actually a man-made water body, and its water quality is governed by the localized man-made effluents.

Another potentially hazardous object affecting the surface and underground hydrosphere is waste storage facilities [11,12]. Let us consider the degree of impact exerted by a tailing dump located in the Kachkanar district, Sverdlovsk Region on the underground hydrosphere.

The tailing dump consists of three sections separated by dams. Currently the total area of the tailing dump is about 1695 hectares.

The liquid phase chemistry of the waste accumulated in the tailing dump is given as the composition of recirculated water. The recirculated water composition fully characterizes the tailing dump as a source of impact on ground water (Table 1). Parameters of the recirculated water chemistry include 11 items and, in general, illustrate the chemical specifics of iron ore processing aimed to produce iron-vanadium concentrate.

It is evident from Table 1 that the chemical composition of the recirculated water in the tailings dump is a potential

source of pollution of surface and groundwater: nitrogen group — from 2-3 to 17 MAC at high BOD total up to 2-3 MAC as a result of nitrogen pollution, iron — up to 4 MAC and vanadium — up to 6 MAC. Oil products in the recirculated water also exceed MAC.

Therefore, to evaluate quality of groundwater under the influence of the tailing dump, a monitoring network of wells was arranged in 2016. The layout and design of observation wells were determined based on the main task, namely, monitoring of negative impact of liquid tailings in the tailings dump on the groundwater quality (pollution) [13, 14]. The background well is located outside the influence area of influence of seepage flows at the boundaries of the tailing dump (Fig. 1).

All observation wells in the area of the tailing dump should be divided into three groups. The first group adjoins the groundwater drainage base — the Rogalevka river valley, which exerts the highest impact and occurs at the longest boundaries of the tailing dump. This group comprises the most of the observation wells—Nos. 1, 2, 3, 4, 5 and 6.

The second group of wells is oriented along the Vyia river valley, which is the

second higher order basis of groundwater drainage in this area. This group includes observation wells Nos. 7, 8, 9 and 10.

The third group is the background well located outside the influence area of seepage at the boundaries of the tailing dump.

Structurally, all operational wells are equipped identically; their depth varies from 20-25 m to 35-40 m since they

are drilled down to the first unconfined aquifer adjoined to the zone of exogenous fracturing of bedrocks.

The groundwater level measured through the mouth of an observation well informs on the underground hydroregime in space and time. The depth of groundwater shows during drilling is reflective of the groundwater depth level in a certain place and at a certain time.

Measurement data of ground water level in observation wells of monitoring network at tailing dump

No. Well No. Groundwater level as of November 2016 (depth to water, m) Groundwa-ter level as of November 2017 (depth to water, m) Groundwa-ter level as of November 2018 (depth to water, m) Groundwa-ter level as of November 2019 (depth to water, m) Groundwa-ter level as of November 2020 (depth to water, m)

1. Background well 0 6,5 7 8,6 7,76

2. Well 1 3,2 0 0,5 0 -

3. Well 2 8,3 0 0 0 1,12

4. Well 3 1,3 0 0 0 0

5. Well 4 2,0 2,2 1,5 1,6 1,54

6. Well 5 1,3 4,8 4,5 1,7 2,78

7. Well 6 Well spring Well spring Well spring Well spring Well spring

8. Well 7 6,6 4 4 4,9 5,02

9. Well 8 1,7 5,5 4,5 6,1 6,32

10. Well 9 5,9 2,0 6 3,1 2,75

11. Well 10 7,8 16,5 18 19,1 19,57

Table 3

Ground water monitoring results in 2019, mg/dm3

1st Quarter

Well * i U - 2 CO m vo rv 00 G\ o

Parameter-\ ao 03 < 2 eW i i i i i i i i 1

Ammonium 0,21 1,5 0,7 0,7 0,1 0,1 1,4 1,2 0,11 0,19 0,11 1,48

ions

Manganese 0,03 0,1 0,08 0,05 0,08 0,05 0,05 0,07 0,08 0,03 0,05 0,04

Iron 0,2 0,3 0,1 0,2 0,2 0,1 0,2 0,08 0,23 0,1 0,2 0,08

Nitrite ions 0,03 45 0,04 0,03 0,03 0,03 0,13 0,15 0,023 0,09 0,03 0,023

Nitrate ions 1,5 3,3 1,4 1,3 0,9 0,9 1,9 0,9 1,1 0,8 1,1 1,1

Sulphate 31,2 1000 10 26,4 60 11,3 45,6 36 26,4 88,8 40,8 36

ions

Dry residue 234 - 59 170 196 159 180 177 220 160 204 198

2nd Quarter

Well - 1 u < - 2 CO m vo rv 00 G\ o

Parameter^ ao 03 à 2 eW <u 1 <u <u <u eW 1 <U i

Ammonium 0,1 1,5 0,7 0,7 0,7 0,9 0,25 0,4 0,6 1,2 0,8 0,13

ions

Manganese 0,07 0,1 0,05 0,01 0,01 0,07 0,05 0,05 0,08 0,08 0,06 0,04

Iron 0,25 0,3 0,1 0,2 0,2 0,07 0,06 0,1 0,2 0,07 0,08 0,1

Nitrite ions 0,02 45 0,03 0,03 0,03 0,03 0,023 0,08 0,016 0,04 0,03 0,03

Nitrate ions 0,21 3,3 0,21 0,21 0,21 0,21 0,21 0,21 0,21 0,21 0,21 0,21

End of the table

2nd Quarter

Well * 1 u - 2 3 4 m vo rv 00 G\ o

ParameteT\ to o 03 < 2 i <u <u <u <u i 1 i i

Sulphate 60 1000 78 34 34 48 46 46 24 92 29 58

ions

Dry residue 281 - 123 223 223 192 166 182 185 196 180 178

3rd Quarter

Well - 1 u < - 2 3 4 m vo rv 00 G\ o

ParameteT\ rn 0 03 à 2 1 <u 1 <u 5 <u <u eW 1 <U 1

Ammonium 0,1 1,5 1,2 0,8 0,1 0,5 0,1 0,4 0,9 0,1 0,13 0,17

ions

Manganese 0,045 0,1 0,05 0,07 0,8 0,5 0,07 0,08 0,06 0,08 0,06 0,07

iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.

Iron 0,2 0,3 0,1 0,21 0,21 0,15 0,2 0,16 0,2 0,17 0,2 0,15

Nitrite ions 0,007 45 0,07 0,036 0,025 0,029 0,14 0,1 0,032 0,21 0,1 0,039

Nitrate ions 5,3 3,3 5,2 5,3 5,5 5,6 5,6 4,3 4,8 5,6 4,8 4,3

Sulphate 35 1000 10 24,2 36 10 10 24 14,5 62 29 34

ions

Dry residue 290 - 73 181 199 151 78 106 160 244 180 91

4th Quarter

Well * 1 u - 2 3 4 m vo rv 00 G\

ParameteT\ ro o 03 à < 2 eW i i 1 i <u <u

Ammonium 0,1 1,5 0,8 0,8 0,4 0,4 0,4 0,3 0,4 0,9 0,4

ions

Manganese 0,045 0,1 0,07 0,07 0,08 0,05 0,05 0,06 0,08 0,04 0,07

Iron 0,2 0,3 0,21 0,21 0,21 0,15 0,18 0,28 0,07 0,024 0,28

Nitrite ions 0,007 45 0,036 0,036 0,03 0,034 0,071 0,097 0,023 0,16 0,054

Nitrate ions 5,3 3,3 0,7 0,7 2,6 0,7 3,4 0,9 1,8 1,2 0,4

Sulphate 59 1000 10 10 28 25 13,2 13,2 22,8 92 47

ions

The time history of the groundwater level illustrates the impact of various natural and man-made processes such as backwater, depletion of the reserves, etc.

In case of close-spaced location of a surface storage of liquid effluents, which is a tailing dump, there is a rise in the level of groundwater as it is fed by seepage the tailings dam bottom and flood wall (Table 2).

As a criterion of groundwater pollution, we assume the MAC of water

bodies of fishery value, due to the fact that groundwater in the area of the tailing dump supplies surface water bodies and watercourses of fishery value, as well as the value from background well 4-n, as some pollutants (for example, copper, manganese, vanadium, iron) are typical of the area of the tailing dump, which is associated with numerous ore deposits in the territory under consideration, and a large number of operating and abandoned underground openings at various depths

and of different size, as well as waste storages and wastewater outlets.

Table 3 presents the results of quarterly groundwater sampling throughout the year. The analysis of these data shows that a number of pollutants stably exceed the background value, and some toxic components overrun the background value randomly ore once.

However, in general, the evidence of monitoring over a five-year period (20162020) points at some regular patterns. In groundwater accessed by observation wells 1-4, there is a chaotic change in the chemical composition, without visible variability in the components. In groundwater stricken by well 3, dry residue decreases from 120-140 mg/dm3 to 80-100 mg/dm3; in well 2, NO3 decreases from 2.5-3 mg/dm3 to 1.5-2 mg/dm3; in well 4 there is an increase in manganese, NH4 and in dry residue from 100 to 200 mg/dm3. Thus, the groundwater chemistry features both irregular variability and stationary directional (trend) variability. Accordingly, it can be predicted that some chemical components will remain at the same level (with irregular variability), while the other will decrease. The amount of reduction can be found from simple extrapolation.

The same trend is observed in groundwater accessed by wells 5 and

6; namely, almost all components show irregular variability except for NH4 in well 5, which increases from 0.1 mg/dm3 to 0.6 mg/dm3; in turn, NO3 decreases in well 6 from 4-5 mg/dm3 to 2-3 mg/dm3.

In groundwater stricken by wells 7 and8, there is no regular variability in the chemical composition, except for NO3 in well 7h, where this component increases from 1 mg/dm3 to 3 mg/dm3.

In groundwater accessed by wells 9 and 10, the content of such components as NO2, HNO3, as well as the dry residue decreases. The other indicators vary irregularly.

The background well located on the south of the waste storage facility shows stationary variability in terms of all components [10].

Conclusions

The ecological analysis of surface water and groundwater subjected to waste water impact shows that such water resources are, in fact, man-made bodies and need effective environmental measures to be developed and implemented. The created monitoring network allows water quality evaluation and analysis, prediction of changes in the surface and groundwater quality and prompt implementation of preventive environmental measures to reduce the impact of man-made objects.

REFERENCES

1. Yurak V.V., Dushin A.V., MochaLova L.A. In opposition to sustainable development: Scenarios for the future. Vestnik Gorn. Inst., 2020, 242(2), pp. 242-247. DOI: 10.31897/ PMI.2020.2.242

2. Polyanskaya I.G., Yurak V.V. Balanced natural resource management in a region: Dynamic rate setting assessment. Econ Reg., 2018, 14(3), pp. 851-869. doi:10.17059/2018-3-12

3. Polyanskaya I.G., Yurak V.V., Strovsky V.E. Mining wastes as a factor of sound subsoil management improvement in regions. Econ Reg., 2019, 15(4), pp. 1226-1240. DOI: 10.17059/2019-4-20

4. Polyanskaya I.G., Yurak V.V. Institutional assessment of environmentally oriented subsoil use. Econ Reg., 2017, 13(2), pp. 355-368. DOI: 10.17059/2017-2-3

5. Ignatyeva M.N., Yurak V.V., Dushin A.V., PoLyanskaya I.G. Assessing challenges and threats for balanced subsoil use. Environ Dev Sustainability, 2021. DOI: 10.1007/s10668-021-01420-1

6. Ignatyeva M., KosoLapov O., Yurak V., Ivanov A. Criteria for sustainable development in mining industry. E3S Web of Conferences, 2020, 177. doi:10.1051/e3sconf/202017705001

7. Dushin AV, Ignatyeva MN, Yurak VV, Ivanov AN. Economic evaluation of environmental impact of mining: Ecosystem approach. Eurasian Mining, 2020, (1), pp. 30-36.D0I: 10.17580/em.2020.01.06

8. Water cadaster of the Russian Federation. Surface and ground water resources, their use and quality. Annual edition. Moscow: RPC Ofort. 2017. 164 p.

9. Semyachkov A.I., Pochechun V.A., Sobgaida N.A. Innovative technologies for the protection of water bodies from pollution to obtain marketable products. Ecology and Industry of Russia, 2019, Vol. 23, no. 5.

10. Semyachkov A.I., Pochechun V.A. Sewage treatment technology for mining-and-smelting enterprise. IOP Conf. Series: Materials Science and Engineering 451 (2018) 012232.

11. Konovalov V.E., Pochechun V.A., Semyachkov A.I. Methodical preconditions of liquidation of negative influence of man-made waters of the mining territory on environment. IOP Conf. Series: Earth and Environmental Science 321 (2019) 012053.,

12. Danilov A., Smirnov Y., Korelskiy D. Effective methods for reclamation of area sources of dust emission. Journal of Ecological Engineering, 2017, 18(5), pp. 1-7. doi:10.12911/22998993/74947

13. Strizhenok A.V., Korelskiy D.S. Improvement of the system of industrial environmental monitoring of atmospheric air in the area of anthropogenic arrays impact. Journal of Physics: Conference Series, 2019, 1384(1), 012052.

14. Tagiltsev S.N Integration of methods of electrical exploration and geomechanics for the selection of places for laying of hydrogeological wells. 15th Conference and Exhibition Engineering and Mining Geophysics, Gelendzhik, 2019, pp. 169-176.

ИНФОРМАЦИЯ ОБ АВТОРАХ

Почечун Виктория Александровна1,2 — канд. геол-минерал. наук, доцент, viktoriyapochechun@ mail.ru;

Семячков Александр Иванович1,2 — докт. геол-минерал. наук, профессор; Ибрагим Курбан оглы Курбанов1,2 — ассистент;

1 Уральский государственный горный университет, Екатеринбург, Россия;

2 Институт экономики УрО РАН, Екатеринбург, Россия.

INFORMATION ABOUT THE AUTHORS

Pochechun V. A.1,2, Cand. Sci. (Geol. Mineral.), Associate Professor, viktoriyapochechun@ mail.ru;

Semyachkov A. I.1,2, Dr. Sci. (Geol. Mineral.), Professor; Ibragim Kurban ogly Kurbanov1,2, Assistant;

1 Ural State Mining University, Yekaterinburg, Russia;

2 Institute of Economics, Ural Branch of the Russian Academy of Sciences, Yekaterinburg, Russia.

Получена редакцией 25.05.2021; получена после рецензии 27.09.2021; принята к печати 10.10.2021.

Received by the editors 25.05.2021; received after the review 27.09.2021; accepted for printing 10.10.2021.

_

i Надоели баннеры? Вы всегда можете отключить рекламу.