Научная статья на тему 'Supramolecular iron(III) tetramesitylporphyrin cluster structure assembled by hydrogen bonding with sulfuric acid'

Supramolecular iron(III) tetramesitylporphyrin cluster structure assembled by hydrogen bonding with sulfuric acid Текст научной статьи по специальности «Химические науки»

CC BY
37
11
i Надоели баннеры? Вы всегда можете отключить рекламу.
Журнал
Макрогетероциклы
WOS
Scopus
ВАК
Область наук
Ключевые слова
IRON PORPHYRIN / CRYSTAL STRUCTURE / SUPRAMOLECULAR ASSOCIATIONS / HYDROGEN BONDING / ПОРФИРИНАТ ЖЕЛЕЗА / КРИСТАЛЛИЧЕСКАЯ СТРУКТУРА / СУПРАМОЛЕКУЛЯРНЫЕ АССОЦИАТЫ / ВОДОРОДНЫЕ СВЯЗИ

Аннотация научной статьи по химическим наукам, автор научной работы — Kudrik Evgeny V., Nefedov Sergey E., Sorokin Alexander B.

We present here the first crystalline assembly of a supramolecular structure formed by iron(III) 5,10,15,20-tetrakis-mesitylporphyrin via hydrogen bonding with charge compensating hydrosulfate residues. Two additional molecules of sulfuric acid provide hydrogen bonding connection of four iron porphyrin units to form a fragment with interporphyrin void where two iron sites are situated at 9.52 Å distance. The insertion of two molecules of sulfuric acid into cavity formed by four Fe(III) porphyrin molecules led to the formation of the cluster structure with dihedral angle of 53.3° between adjacent porphyrin molecules Fe(1A)N4/Fe(2A)N4 and parallel Fe(1A)N4/Fe(1B)N4 and Fe(2A)N4/Fe(2B)N4 planes. Such a supramolecular material, where four iron sites in the porphyrin ligand environment are strongly connected via network of the hydrogen bonds provides a new tool for exploring different applications involving multielectronic processes.

i Надоели баннеры? Вы всегда можете отключить рекламу.
iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.
i Надоели баннеры? Вы всегда можете отключить рекламу.

Структура супрамолекулярного кластера, образованного тетрамезитилпорфиринатом железа(III) посредством водородных связей с серной кислотой

Синтезирован первый кристаллический супрамолекулярный кластер, образованный 5,10,15,20-тетракисмезитилпорфиринатом железа(III) через водородные связи с гидросульфатными анионами, компенсирующими заряд. Две дополнительные молекулы серной кислоты обеспечивают связывание четырех молекул порфирина железа через водородные связи, что ведет к образованию организованной порфириновой структуры, где два иона железа находятся на расстоянии 9.52 Å. Внедрение двух молекул серной кислоты в полость, образованную четырьмя молекулами порфирината железа, ведет к образованию кластерной структуры, где две независимые молекулы Fe(1A)N4/Fe(2A)N4 расположены под углом 53.3°, а макроциклы Fe(1A)N4/Fe(1B)N4 и Fe(2A)N4/Fe(2B)N4 параллельны друг другу. Подобный супрамолекулярный материал с четырьмя центрами железа в порфириновом лигандном окружении, связанными между собой через систему сильных водородных связей, представляет интерес для применения в различных областях, связанных с многоэлектронными процессами.

Текст научной работы на тему «Supramolecular iron(III) tetramesitylporphyrin cluster structure assembled by hydrogen bonding with sulfuric acid»

Порфирины

Porphyrins

iVJaKporaTepoLii/JKj-JbJ

Статья

Paper

http://macroheterocycles.isuct.ru

DOI: 10.6060/mhc181004s

Supramolecular Iron(III) Tetramesitylporphyrin Cluster Structure Assembled by Hydrogen Bonding with Sulfuric Acid

Evgeny V. Kudrik,ab Sergey E. Nefedov,c@1 and Alexander B. Sorokina@2

aInstitut de Recherches sur la Catalyse et I'Environnement de Lyon (IRCELYON), 69626 Villeurbanne Cedex, France bInstitute of Macroheterocyclic Compounds, Ivanovo State University of Chemistry and Technology, 153000 Ivanovo, Russia cKurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences, 119991 Moscow, Russia @lCorresponding author E-mail: snef@igic.ras.ru

@2Corresponding author E-mail: alexander.sorokin@ircelyon.univ-lyon1.fr

We present here the first crystalline assembly of a supramolecular structure formed by iron(III) 5,10,15,20-tetrakis-mesitylporphyrin via hydrogen bonding with charge compensating hydrosulfate residues. Two additional molecules of sulfuric acid provide hydrogen bonding connection offour iron porphyrin units to form a fragment with interporphy-rin void where two iron sites are situated at 9.52 A distance. The insertion of two molecules of sulfuric acid into cavity formed by four Fe(III) porphyrin molecules led to the formation of the cluster structure with dihedral angle of 53.3° between adjacent porphyrin molecules Fe(1A)N/Fe(2A)N4 and parallel Fe(1A)N/Fe(1B)N4 and Fe(2A)N/Fe(2B)N4 planes. Such a supramolecular material, where four iron sites in the porphyrin ligand environment are strongly connected via network of the hydrogen bonds provides a new tool for exploring different applications involving multielec-tronic processes.

Keywords: Iron porphyrin, crystal structure, supramolecular associations, hydrogen bonding.

Структура супрамолекулярного кластера, образованного тетрамезитилпорфиринатом железа(Ш) посредством водородных связей с серной кислотой

Е. В. Кудрик,^ С. Е. Нефедов,^1 А. Б. Сорокин^2

Лионский институт исследований по катализу и окружающей среде, 69626 Виллербан, Франция ьИвановский государственный химико-технологический университет, 153000 Иваново, Россия Институт общей и неорганической химии им. Курнакова, 119991 Москва, Россия @1Е-тай: snef@igic.ras.ru

®2Е-таИ: alexander.sorokin@ircelyon.univ-lyon1.fr

Синтезирован первый кристаллический супрамолекулярный кластер, образованный 5,10,15,20-тетракисме-зитилпорфиринатом железа(Ш) через водородные связи с гидросульфатными анионами, компенсирующими заряд. Две дополнительные молекулы серной кислоты обеспечивают связывание четырех молекул порфирина железа через водородные связи, что ведет к образованию организованной порфириновой структуры, где два иона железа находятся на расстоянии 9.52 А. Внедрение двух молекул серной кислоты в полость, образованную четырьмя молекулами порфирината железа, ведет к образованию кластерной структуры, где две независимые молекулы Fe(1A)N/Fe(2A)N4расположены под углом 53.3°, а макроциклы Fe(1A)N/Fe(1B)N4 и Fe(2A)N/Fe(2B)N4 параллельны друг другу. Подобный супрамолекулярный материал с четырьмя центрами железа в порфириновом лигандном окружении, связанными между собой через систему сильных водородных связей, представляет интерес для применения в различных областях, связанных с многоэлектронными процессами.

Ключевые слова: Порфиринат железа, кристаллическая структура, супрамолекулярные ассоциаты, водородные

связи.

Introduction

Design and construction of phthalocyanine-[1] and por-phyrin-based[2-4] structured materials is a rapidly expanding research area. Different structural and functional properties of supramolecular multiporphyrin assemblies can be used for the development of functional systems, e.g., light harvesting constructions, redox active materials and molecular electronic systems. These systems are also very attractive to create new materials, sensor devices and catalysts. Several synthetic strategies have been used to design organized systems composing of phthalocyanine and porphyrin fragments. Numerous covalent organic frameworks comprising phthalocyanine[5,6] and porphyrin[7,8] units have been prepared. These phthalocyanine and porphyrin network polymers with controlled porosity and a very high concentration of active site are believed to be useful for catalytic applications.[9"11] The preparation of multiporphyrinic cages with three-dimentional cavities has attracted considerable interest in view of the utilization of guest-host interactions in different applications.[12] Supramolecular systems including phthalocyanine[13,14] and porphyrin[15-18] ligands assembled onto solid supports have also been described.

To construct these elaborated objects, porphyrin building blocks need to be functionalized to provide binding between porphyrin entities. This can be achieved by the introduction of different functional groups at the porphyrin moiety, e.g., in the phenyl rings of the tetraphenylporphyrin scaffold[19] or in meso-positions.[20] A variety of useful synthetic approaches have been developed to design elaborated multiporphyrin and multiphthalocyanine arrays.[3,21]

On the other hand, non-covalent interactions including coordination, electrostatic interactions and hydrogen bonding allow for self-assembling of the functional macro-cyclic units to multicomponent arrays. A 2D metal-organic network composing of zinc meso -polyphosphorylporphyrin was formed via P=O-Zn axial supramolecular coordination.[22] Self-organization of zinc b-(dialkoxyphosphoryl) porphyrins led to the solid dimeric species which were stable even in solution.[23] Unusual formation of a stable 2D copper porphyrin network where copper(II) sites are coordinated with two phosphoryl groups of adjacent porphyrin units was reported.[24] Weak intermolecular interactions play important role in supramolecular organization of Cd(II), Ni(II), Pd(II) and Pt(II) complexes of 5,15-bis(diethoxyphosphoryl)-10,20-diphenylporphy-rin.[25] Copper(II), nickel(II) and palladium(II) complexes of the same porphyrin in combination with dicopper paddle-wheel tetrapivalate complex afforded a series of one-dimen-tional homo- and heterometallic coordination polymers.[20]

Porphyrinic supramolecular assemblies can be obtained using hydrogen bonds. For instance, three triaminotriazine compounds bearing two porphyrin units form a supramo-lecular assembly containing six porphyrins self-organized due to hydrogen bonds with three molecules of dialkylbar-bituric acid.[26] The porphyrin units can be also assembled to linear arrays by hydrogen-hydrogen interactions between phenolic groups of 5,10,15,20-tetrakis(3,5-dimethyl-4-hy-droxyphenyl)porphyrin and inner imino nitrogen atoms.[27] Stable ./-aggregates of 2-N-methyl-5,10,15,20-tetrakis-(4'-sulfophenyl)-2-aza-21-carbaporphyrin were formed due

to hydrogen bonds between internal pyrrolic protons and sulfonic substituents.[28]

To the best of our knowledge, porphyrin metal complexes without functionalities at the porphyrin core, such as tetramesitylporphyrin (TMP), don't form supramolecular assemblies. The materials involving iron porphyrins are especially interesting since iron sites are responsible for catalytic properties of hemoprotein enzymes[29] and their biomimetic models.[30,31] In this context, assembling the iron porphyrin and phthalocyanine complexes in binuclear units provides catalysts with remarkable catalytic activity.[32-39] Although several crystal structures of iron(II) tetramesitylporphyrin complexes involving different pyridine and imidazole ligands,[40] 2-methylimidazole[41] as well as iron(III) tetramesitylporphyrin complexes with triphenyl- or triiso-propylsilanethiolate,[42] 5-methylimidazole[43] and cyanide[44] ligands have been described, no supramolecular assemblies formed by iron tetramesitylporphyrin complex is available. Herein, we report X-ray structural studies of unusual supramolecular assembly consisting of four molecules of iron(III) tetramesitylporphyrin hydrosulfate complex [Fe(TMP)(OSO3H)] and two molecules of sulfuric acid formed due to intermolecular hydrogen bonding interactions during recrystallization of Fe(TMP)Cl from toluene/ H2SO4 mixture.

Experimental

Materials. meso-Tetramesitylporphyrin (H2TMP) was prepared according to published procedure.[4546] The insertion of iron into the H2TMP ligand to obtain Fe(TMP)Cl was performed using literature method.[47] Spectral data were in agreement with those published in literature.

Preparation of crystals. The solution of Fe(TMP)Cl (500 mg, 0.71 mmol) in toluene (150 mL) was stirred at room temperature with 50 mL of concentrated sulfuric acid during 30 min. The organic phase was separated and ~100 mL of toluene was evaporated under reduced pressure at 60 °C. The concentrated iron porphyrin solution in toluene was left for crystallization at room temperature under aerobic conditions. After several days well shaped single crystals of the supramolecular complex [Fe(TMP) (OSO3H]2(H2SO4) (1) were grown. The crystals were separated by filtration, washed with methanol and air-dried. Yield 282 mg (49 %).

Instrumentation. UV-Vis spectra were recorded on a Agilent 8453 spectrophotometer. ESI-MS spectra were collected using a Bruker micrOTO-QII spectrometer.

X-Ray data collection and structure refinement. The measurements were made on a Bruker SMART APEX II diffrac-tometer with a CCD area detector (graphite monochromator, Mo-Ka radiation, X=0.71073 A, (»-scanning). The semi-empirical method SADABS was applied for the absorption correction. [48] The structures were solved by direct methods and refined by the full-matrix least-squares technique against F2 with the anisotropic displacement parameters for all non-hydrogen atoms. All the hydrogen atoms in the complex 1 were placed geometrically and included in the structure factors calculation in the riding motion approximation. The carbon atom of the methyl group of toluene solvate is disordered in two positions with a multiplicity of 0.5. All the data reduction and further calculations were performed using the SAINT and SHELXTL-97.[4950] CCDC reference number is CCDC 1456002. The data can be obtained free of charge from the Cambridge Crystallographic Data Centre

at www.ccdc.cam.ac.uk/data_request/cif. Brief crystal data are listed in Table 1.

Table 1. Crystal data and structure refinement for 1.

Empirical formula C„9Hn6Fe2N8Oi2S3

f.w. 2058.07

Colour brown

Temperature (K) 150(2)

Crystal system triclinic

Space group P-1

Unit cell dimensions (Ä, deg) a=17.5209(15)

¿=19.4972(17)

c=20.1876(17)

a=63.1650(10))

ß=80.1330(10)

Y=72.8590(10)

V (Ä3) 5874.3(9)

Z 2

d (calculated) (mg/m3) 1.164

Abs coeff (mm-1) 0.0360

F(000) 2164

Crystal size (mm) 0.28x0.26x0.2

0 range for data collection (deg) 2.19 to 29.88

Index ranges -24<=h<=24,

-27<=k<=27,

-28<=l<=28

Reflns collected 33822

Independent reflns 17397 [R(int)=0.0566]

data / restraints / params 17397/0 / 1334

Goodness-of-fit on F2 0.983

aFinal R indices [I>2sigma(I)] R1=0.0622,

wR2=0.1363

aR indices (all data) R1=0.1502,

wR2=0.1877

bLargest diff. peak and hole (e.A-3) 0.603 and -0.727

R=i||FJ-|FJ|/I|FJ; wR2={L[w(Fo2 -Fc2)2]/Iw(F/)2}1/2 bIn all structures the largest diff. peak is observed in the vicinity of heavy atom.

*) Two independent molecules.

Results and Discussion

Iron tetramesitylporphyrin has been widely used in many studies on cytochrome P-450 modelling[29"31] and several crystal structures of the Fe(TMP) complexes mostly bearing nitrogen ligands have been published.[40-44] However, to the best of our knowledge, no crystal structure of FeIII(TMP)X (X=anion) is available. We have found that the addition of sulfuric acid to toluene solution of Fe(TMP)Cl at room temperature followed by separation

of the organic phase and slow evaporation of the solvent during five days resulted in the formation of brown mono-crystals of [FeIII(TMP)(OSO3H]2(H2SO4) (1) with a 49 % yield. According to X-ray diffraction data for 1 (Figure 1, Table 1), an HSO4- anion is located in the axial position of the complex with Fe(1)-O(1) 1.8915(19) A, Fe(2)-O(5) 1.893(2) A, S(1)-O(1) 1.514(2) A, S(2)-O(5) A 1.515(2) distances in two independent molecules. The Fe-Np distances are practically equivalent, within 2.051(2)-2.060(2) A and 2.049(2)-2.062(2) A, respectively. It should be noted that pyrrolic nitrogen atoms are situated practically in the same plane with ±0.0115 A and ±0.0046 A deviations. The iron atom displacements from the macrocycle plane are 0.451 A and 0.468 A, respectively. The dihedral angles between the four mesityl rings and the mean porphyrin plane are 77.1, 81.9, 84.1 and 86.0° showing similar deviation pattern with that of previously published [Fe(TMP)(5-MeHIm)2]ClO4 structure with the dihedral angles of 80.9, 82.0, 84.2 and 84.3°.[43]

Figure 1. Structure of one of two independent molecules of iron tetramesitylporphyrin in the complex 1. Displacement ellipsoids are drawn at a 30 % probability level. Hydrogen atoms are omitted for clarity.

Axial position of FemTMP cation is occupied by HSO4-anion balancing the positive charge. Two independent Fe(TMP)HSO4 molecules are connected by hydrogen bonds between two HSO4- residues to form a dimeric structure (Figure 2).

Two porphyrin molecules forms dihedral angle of 53.3° with Fe(1) - Fe(2) distance of 9.250 A. This dimeric associate is formed due to the short intermolecular hydrogen bonds between two axial hydrosulfate anions having following bond lengths: S(1)-O(2) 1.555(2) A, S(1)-O(3) 1.500(2) A, S(1)-O(4) 1.574(2) A, S(2)-O(7) 1.507(2) A, S(2)-O(8) 1.550(2) A, S(2)-O(6) 1.565(2) A at the O(2)-O(7) 2.606(3), O(3)...O(8) 2.629(3) A distances. The unusual lengths of the S-O bonds in coordinated HSO4- anions with respect to the S-OH and S=O bonds of sulfuric acid, 1.574 and 1.442 A, respectively, occurs due to the formation of very strong intermolecular hydrogen bonding. The only published structure of iron porphyrin with anions of sulfu-ric acid represents a binuclear complex (FemTPP)2(^-SO4) where two iron tetraphenylporphyrin units are connected via one SO4 anion bridge with bond distances: Fe-O=1.894 A, Fe-N=2.058-2.074 A and S-O =1.513 A.[51]

Figure 2. Hydrogen bonding between two Fe(TMP)HSO4 molecules forming the supromolecular complex 1.

Additional hydrogen bonding with two molecules of sulfuric acid results in the supramolecular structure containing four Fe(TMP) cations, four HSO4- anions and two H2SO4 molecules situated within the interporphyrin voids w2th elongated S-O distances: S(3)-0(11)=1.5103(19) A, S(3)-0(10)=1.541(2) A, S(3)-O(12)=1.542(2) A, S(3)-O(9)=1.543(2) A (Figure 3). The tetramer structure shows following O-O distances between solvate sulfuric acid molecules and coordinated HSO4- anions: 0(10)... O(7A)=2.545, 0(10)...0(9)=2.507, 0(9)...0(11A)=2.590, 0(11).0(4)=2.790, 0(11)...0(6A)=2.790, O(11)... O(4)=2.758, O(11)...O(9)=2.518, 0(11)...0(9A)=2.590, O(12)...O(3)=2.582, O(12)...O(3)=2.582. As a consequence of the insertion of two molecules of sulfuric acid into cavity formed by four porphyrin molecules, the cluster structure with dihedral angle of 53.3° between adjacent porphyrin molecules Fe(1A)N4/Fe(2A)N4 and parallel Fe(1A)N4/Fe(1B) N4 and Fe(2A)N4/Fe(2B)N4 planes is formed (Figure 3).

In the crystal packing the Fe(1) porphyrin molecules are situated in the parallel head-to-head fashion with close contacts between methyl groups of mesityl substituents (Figure 4). Due to this interaction, the Fe(1)-Fe(1A) distance of 8.451 A is significantly shorter than the distance between Fe(2)-Fe(2A) head-to-head fragments without contacts between methyl groups (12.749 A). A disordered solvate molecule of toluene doesn't form any notable contacts with other molecules of the crystal packing.

This structure differs from the only related structure of iron porphyrin complex in the presence of sulfuric acid reported so far. Scheidt and co-workers prepared (^-sulfato)bis[meso-tetraphenylporphinato)iron(IH)] complex with monodentate bridging sulfate ligand using 1 M H2SO4 in benzene solution.[51] Consequently, using of the concentrated H2SO4 appears to be important factor for the formation of cluster structure in our case. The crystals suitable for X-ray diffraction studies were

Figure 3. Supramolecular structure formed by two fragments of the complex 1.

obtained by layering a saturated chloroform solution of (FeTPP)2SO4 on 50 % H2SO4 and allowing n-pentane to diffuse into the two-layered mixture. The dihedral angle between the two porphyrin moieties was 24° and the axial Fe-O bond distance was 1.894 Â. In turn, intramolecular Fe-Fe separation was 6.049 Â. The crystal structures of multiporphyrin assemblies formed from Mn(III) complex of 5,10,15,20-tetrakis(4-carboxyphenyl) porphyrin and phosphoric acid via hydrogen bonding were also different.[52] Phosphate anions act as bridges between porphyrin moieties via hydrogen bonding with peripheral carboxyl groups of the Mn(III) porphyrin molecules rather than via coordination with manganese sites. This resulted in open square-grid-type layers with alternating porphyrin and phosphate components.[52] Thus, strong hydrogen bonding via network of molecules of sulfuric acid provides assembling of iron(III) tetramesitylporphyrin fragments into unprecendented cluster-like supramolecular structure.

Conclusions

The simple synthetic procedure described here led to the formation of unusual cristalline material. Four iron tetramesitylporphyrin molecules have been assembled in the cluster via strong hydrogen bonding provided by four hydrosulfate axial ligands and two molecules of sulfuric acid. The interesting feature of the crystal structure is an absence of n-stacking of porphyrin moieties. It should be noted that organized porphyrin materials have usually

Figure 4. Views of the crystal packing in 1.

been prepared from elaborated porphyrin units bearing different functional groups at the periphery of the porphyrin ligand via covalent, coordination or electrostatic interactions. Supramolecular self-organization of simple porphyrin assemblies resulted mostly in linear structures involving axial coordination of the metal sites via bidentate ligands.[53] However, the structural parameters of such assemblies have been rarely published. Here, we used unfunctionalized tetramesitylporphyrin ligand which can be readily available. The system shows the important role of hydrogen bonding interactions occuring between the metal site and sulfate anions to stabilize this specific structure. Previously, the role of protonated water aggregates for assembling non-metalated porphyrin molecules to dimers has been reported on the basis IR and SEM data.[54,55] In this work, we have shown that hydrogen bonding can be successfully used for the preparation of much more elaborated organized

systems which were structurally characterized. Although a great number of supramolecular materials involving porphyrin complexes of different metals have been prepared and characterized,[2-4] iron porphyrin-based structures are still rare.[11] Taking into account redox properties of iron porphyrins and available axial position in each of four Fe(TMP) molecules forming the supramolecular cluster, this structure might be suitable for catalytic applications involving multielectronic processes.

Acknowledgements. This research was supported by CNRS, France (PICS project n° 6295) and Russian Foundation for Basic Research (RFBR, project 14-03-91054). The crystal X-ray diffraction analysis were performed at the User Facilities Center of IGIC RAS within the State Assignment on Fundamental Research to the Kurnakov Institute of General and Inorganic Chemistry.

References

1. de la Torre G., Claessens C.G., Torres T. Chem. Commun.

2007, 2000-2015.

2. Drain C.M., Varotto A., Radivojevic I. Chem. Rev. 2009, 109, 1630-1658.

3. de la Torre G., Bottari G., Sekita M., Hausmann A., Guldi D.M., Torres T. Chem. Soc. Rev. 2013, 42, 8049-8105.

4. Beletskaya I., Tyurin V.S., Tsivadze A.Y., Guilard R., Stem C. Chem. Rev. 2009, 109, 1659-1713.

5. Spitler E.L., Dichtel W.R. Nat. Chem. 2010, 2, 672-677.

6. Bezzu G., Helliwell M., Warren J.E., Allan D.R., McKeown N.B. Science 2010, 327, 1627-1630.

7. Gao W-Y., Chrzanowski M., Ma S. Chem. Soc. Rev. 2014, 43, 5841-5866.

8. Fateeva A., Clarisse J., Pilet G., Greneche J-M., Nouar F., Abeykoon B.K., Guegan F., Goutaudier C., Luneau D., Warren J.E., Rosseinsky M.J., Devic T. Cryst. Growth Des. 2015,

15, 1819-1826.

9. Sorokin A.B. Chem. Rev. 2013, 113, 8152-8191.

10. Mackintosh H.J., Budd P.M., McKeown N.B. J. Mater. Chem.

2008, 18, 573-578.

11. Abeykoon B., Devic T., Greneche J-M., Fateeva A., Sorokin A.B. Chem. Commun. 2018, 54, 10308-10311.

12. Durot S., Taesh J., Heitz V. Chem. Rev. 2014, 114, 8542-8578.

iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.

13. Bottari G., de la Torre G., Torres T. Acc. Chem. Res. 2015, 48, 900-910.

14. Bottari G., de la Torre G., Guldi D.M., Torres T. Chem. Rev. 2010, 110, 6768-6816.

15. Fuhrhop J-H. Langmuir 2014, 30, 1-12.

16. D'Souza F., Ito O. Chem. Commun. 2009, 4913-4928.

17. Ermakova E.V., Enakieva Yu.Yu., Zvyagina A.I., Gorbunova Yu.G., Kalinina M.A., Arslanov V.V. Macroheterocycles 2016, 9, 378-386.

18. Ermakova E.V., Enakieva Yu.Yu., Meshkov I.N., Baranchikov A.E., Zvyagina A.I., Gorbunova Yu.G., Tsivadze A.Yu., Kalinina M.A., Arslanov V.V. Macroheterocycles 2017, 10, 496-504.

19. Samaroo D., Soll C.E., Todaro L.J., Drain C.M. Org. Lett. 2006, 8, 4985-4988.

20. Uvarova M.A., Sinelshchikova A.A., Golubnichaya M.A., Nefedov S.E., Enakieva Y.Y., Gorbunova Y.G., Tsivadze A.Y., Stern C., Bessmertnykh-Lemeune A., Guilard R. Cryst. Growth Des. 2014, 14, 5976-5984.

21. Ragoussi M-E., Torres T. Chem. Asian J. 2014, 9, 2676-2707.

22. Enakieva Y.Y., Bessmertnych A.G., Gorbunova Y.G., Stern C., Rousselin Y., Tsivadze A.Y., Guilard R. Org. Lett. 2009, 11, 3842-3845.

23. Vinogradova E.V., Enakieva Y.Y., Nefedov S.E., Birin K.P., Tsivadze A.Y., Gorbunova Y.G., Bessmertnykh-Lemeune A.G., Stern C., Guilard R. Chem. Eur. J. 2012, 118, 1509215104.

24. Sinelshchikova A .A., Nefedov S.E., Enakieva Y.Y., Gorbunova Y.G., Tsivadze A.Y., Kadish K.M., Chen P., Bessmertnykh-Lemeune A., Stern C., Guilard R. Inorg. Chem. 2013, 52, 999-1008.

25. Zubatyuk R.I., Sinelshchikova A.A., Enakieva Y.Y., Gorbunova Y.G., Tsivadze A.Y., Nefedov S.E., Bessmertnykh-Lemeune A., Guilard R., Shishkin O.V. CrystEngComm 2014,

16, 10428-10438.

26. Drain C.M., Russell K.C., Lehn J-M. Chem. Commun. 1996, 337-338.

27. Hill J.P., Wakayama Y., Akada M., Ariga K. J. Phys. Chem. C 2007, 111, 16174-16180.

28. Sheinin V.B., Kulikova O.M., Aleksandriiskii V.V., Koifman O.I. Macroheterocycles 2016, 9, 353-360.

29. Ortiz de Montellano P.R. Chem. Rev. 2010, 110, 932-948.

30. Costas M. Coord. Chem. Rev. 2011, 255, 2912-2932.

31. Che C-M., Kar-Yan L., Zhou C.Y., Huang J-S. Chem. Soc. Rev. 2011, 40, 1950-1975.

32. Kudrik E.V., Afanasiev P., Alvarez L.X., Blondin G., Cle-mancey M., Latour J.-M., Bouchu D., Albrieux F., Nefedov S.E., Sorokin A.B. Nat. Chem. 2012, 4, 1024-1029.

33. Colomban C., Kudrik E.V., Afanasiev P., Sorokin A.B. J. Am. Chem. Soc. 2014, 136, 11321-11330.

34. I§ci Ü., Faponle A.S., Afanasiev P., Albrieux F., Briois V., Ahsen V., Dumoulin F., Sorokin A.B., de Visser S.P. Chem. Sci. 2015, 6, 5063-5075.

35. Alvarez L.X., Kudrik E.V., Sorokin A.B. Chem. Eur. J. 2011, 17, 9298-9301.

36. Afanasiev P., Sorokin A.B. Acc. Chem. Res. 2016, 49, 583-593.

37. Kudrik E.V., Sorokin A.B. Macroheterocycles 2011, 4, 154-160.

38. Kudrik E.V., Sorokin A.B. J. Mol. Catal. A: Chem. 2017, 426, 499-505.

39. Kudrik E.V., Afanasiev P., Bouchu D., Millet J.M.M., Sorokin A.B. J. Porphyrins Phthalocyanines 2008, 12, 1078-1089.

40. Safo M.K., Nesset M.J.M., Walker A., Debrunner P.G., Scheidt W.R. J. Am. Chem. Soc. 1997, 119, 9438-9448.

41. Hu C., Noll B.C., Schulz C.E., Scheidt W.R. Inorg. Chem. 2005, 44, 4346-4358.

42. Meininger D.J., Caranto J.D., Arman H.D., Tonzetich Z.J. Inorg. Chem. 2013, 52, 12468-12476.

43. Munro O.Q., Serth-Guzzo J.A., Turowska-Tyrk I., Mohanrao K., Shokhireva T.K., Walker F.A., Debrunner P.G., Scheidt W.R. J. Am. Chem. Soc. 1999, 121, 11144-11155.

44. Li J., Noll B.C., Schulz C.E., Scheidt W.R. Inorg. Chem. 2007, 46, 2286-2298.

45. Wagner R.W., Lawrence D.S., Lindsey J.S. Tetrahedron Lett. 1987, 28, 3069-3070.

46. Lindsey J.S., Wagner R.W. J. Org. Chem. 1989, 54, 828-836.

47. Adler A.D., Longo F.R., Kampus F., Kim J. J. Inorg. Nucl. Chem. 1970, 32, 2443-2445.

48. Sheldrick G., Bruker AXS Inc., Madison, WI-53719, USA. 1997.

49. Bruker SAINT: Area-Detector Integration Sofware, 2012, Madison, Wisconsin, USA, 2012.

50. SHELX-97, Program for the Refinement of Crystal Structures, University of Göttingen: Göttingen, Germany, 1997.

51. Scheidt W.R., Lee Y. J., Bartzcak T., Hatano K. Inorg. Chem. 1984, 23, 2552-2554.

52. George S., Goldberg I. Cryst. Growth Des. 2006, 6, 755-762.

53. Khodov I.A., Nikiforov M.Yu., Alper G.A., Mamardashvili G.M., Mamardashvili N.Zh., Koifman O.I. J. Mol. Struct. 2015, 1081, 426-430.

54. Udal'tsov A.V., Bolshakova A.V., Vos J.G. J. Mol. Struct. 2015, 1080, 14-23.

55. Udal'tsov A.V., Bolshakova A.V., Vos J.G. J. Mol. Struct. 2014, 1065-1066, 170-178.

Received 11.10.2018 Accepted 05.01.2019

i Надоели баннеры? Вы всегда можете отключить рекламу.