Научная статья на тему 'Superoxide and peroxynitrite production in gastric mucosa of rats under combined nitrate-fluoride intoxication'

Superoxide and peroxynitrite production in gastric mucosa of rats under combined nitrate-fluoride intoxication Текст научной статьи по специальности «Фундаментальная медицина»

CC BY
96
15
i Надоели баннеры? Вы всегда можете отключить рекламу.
Ключевые слова
NITRATES / FLUORIDES / PEROXYNITRITE / REACTIVE OXYGEN SPECIES / НИТРАТЫ / ФТОРИДЫ / ПЕРОКСИНИТРИТ / АКТИВНЫЕ ФОРМЫ КИСЛОРОДА

Аннотация научной статьи по фундаментальной медицине, автор научной работы — Akimov O. Ye., Kostenko V.O.

The aim of the research is to study influence of combined nitrate-fluoride intoxication on the production of peroxynitrite (ONOO-) and superoxide anion radical (O2•-) in gastric mucosa of rats. Material and methods. We carried out experiments on 52 mature rats. Intoxication was modeled by intragastric administration of sodium fluoride and nitrate in a dose of 10 mg/kg and 500 mg/kg respectively. Total production of O2•-, ONOOand concentration of thiobarbituric acid reactants (TBA-reactants) was determined in 10% homogenate of gastric mucosa. Results. We observed the highest ONOOproduction from fluoride intoxication, while O2•production was the highest under combined intoxication. The TBA-reactant concentration was the highest in fluoride intoxication group. Conclusion. Combined nitrate-fluoride intoxication intensifies lipid peroxidation by increased production of both O2•and ONOO-.

i Надоели баннеры? Вы всегда можете отключить рекламу.
iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.
i Надоели баннеры? Вы всегда можете отключить рекламу.

ПРОДУКЦИЯ СУПЕРОКСИДА И ПЕРОКСИНИТРИТА В СЛИЗИСТОЙ ОБОЛОЧКЕ ЖЕЛУДКА КРЫС В УСЛОВИЯХ ХРОНИЧЕСКОЙ НИТРАТНО-ФТОРИДНОЙ ИНТОКСИКАЦИИ

Целью исследования является изучение влияния сочетанной нитратно-фторидной интоксикации на продукцию пероксинитрита (ONOO-) и супероксидного анион-радикала (O •-) в слизистой оболочке желудка крыс. Материал и методы. Мы провели эксперименты на 52 зрелых крысах. Интоксикация была смоделирована путем внутрижелудочного введения натрия фторида и нитрата в дозе 10 мг/кг и 500 мг/кг соответственно. Общую продукцию O •-, ONOOи концентрацию веществ, реагирующих с тиобарбитуровой кислотой (TБК-реактанты), определяли в 10% гомогенате слизистой оболочки желудка. Результаты. Мы наблюдали наивысшую продукцию ONOOпри фторидной интоксикации, а продукция O •была самой высокой при сочетанной интоксикации. Концентрация TБК-реактантов была самой высокой в группе фторидной интоксикации. Вывод. Комбинированная нитратно-фторидная интоксикация усиливает перекисное окисление липидов за счет увеличения O •и ONOO-.

Текст научной работы на тему «Superoxide and peroxynitrite production in gastric mucosa of rats under combined nitrate-fluoride intoxication»

УДК 577.125:616.33-018.25:615.916:546.16./33]-092.9

doi: 10.25298/2221-8785-2018-16-6-730-734 superoxide and peroxynitrite production in gastric mucosa

of rats under combined nitrate-fluoride intoxication

Akimov O. Ye. (riseofrevan5@gmail.com), Kostenko V. O. (patofiziolog@umsa.edu.ua) Higher State Educational Institution of Ukraine "Ukrainian medical stomatological academy",

Poltava, Ukraine

The aim of the research is to study influence of combined nitrate-fluoride intoxication on the production of peroxynitrite (ONOO-) and superoxide anion radical (O2•-) in gastric mucosa of rats.

Material and methods. We carried out experiments on 52 mature rats. Intoxication was modeled by intragastric administration of sodium fluoride and nitrate in a dose of 10 mg/kg and 500 mg/kg respectively. Total production of O2•-, ONOO- and concentration of thiobarbituric acid reactants (TBA-reactants) was determined in 10% homogenate of gastric mucosa.

Results. We observed the highest ONOO- production from fluoride intoxication, while O2•- production was the highest under combined intoxication. The TBA-reactant concentration was the highest in fluoride intoxication group.

Conclusion. Combined nitrate-fluoride intoxication intensifies lipid peroxidation by increased production of both O2•- and ONOO-.

Keywords: nitrates, fluorides, peroxynitrite, reactive oxygen species.

Introduction

The groundwater pollution has become critical in recent years due to agricultural over application of fertilizers, various salts to increase crop production. The ammonium nitrate, potassium nitrate, sodium nitrate can serve as examples of such fertilizers. Excess concentrations of nitrates in groundwater can result in the shifts in its mineral composition, can replace chloride ions from their sodium salts and reduce the concentration of calcium ions. There are a number of reports devoted to negative effects produced by nitrate intoxication on the functioning of antioxidant enzymes that intensifies the processes of peroxidation of biological polymers [1, 2].

Another, not less dangerous, the pollutant of water resources is fluorine. Fluoride can enter groundwater with mineral compounds or wastes, formed during aluminum production or various types of steel. Fluoride ions, like nitrate ions, can enhance the processes of lipid peroxidation and reduce the activity of antioxidant enzymes [3-6].

Ukraine has some areas with a high content of fluoride in ground water. Poltava, Lviv and Kirovograd regions can be classified as such areas also known as the most promising from the point of view of intensive agriculture. Accordingly, in these areas, there is the possibility of simultaneous effects produced by two potentially dangerous factors -nitrates and fluorides - on the humans and animals. An intake of excessive amounts of nitrates and fluorides with water primarily affects the metabolic processes in the gastric mucosa. In our previous works, we investigated changes in the functioning of the nitric oxide cycle that enabled us to establish a decrease in the peroxynitrite pool under nitrate intoxication and its increase under combined nitrate-fluoride intoxication [7]. Peroxynitrite (ONOO-) is considered to be a major agent leading to nitrosylation of proteins and increase in lipid peroxidation. Peroxynitrite is formed under physiological conditions during inflammatory process in order to provide the body with antimicrobial protection. There is little information available on sources of

ONOO- production in rats' gastric mucosa during combined excessive intake of both fluorides and nitrates.

The aim of the research is to study influence of combined nitrate-fluoride intoxication on the production of ONOO- and superoxide anion radical (O2") in gastric mucosa of rats.

Material and methods

The study was carried out on 52 white rats of the Wistar line (180-220 g) kept under standard conditions. The animals were divided into 4 groups: the first was made up of intact animals (n=10) which received intragastrically 1 ml of distilled water, the second included animals on which we modeled fluoride intoxication by administering 10 mg/kg sodium fluoride intragastrically via special probe once a day before feeding for 30 days (n=13). The third group, the nitrate intoxication group, consisted of 14 animals, which received a solution of 500 mg/kg of sodium nitrate for 30 days. The fourth group was made up by animals that simultaneously received nitrate and sodium fluoride at doses of 500 mg/kg and 10 mg/kg, respectively (n=15) for 30 days. Doses of nitrates and fluorides used in modeling chronic intoxications were developed by the department of Pathophysiology of Ukrainian medical stomatological academy [9]. The exact dosage was chosen depending on animals' body weight. Maximal volume of infusion was no more than 1 ml per day to avoid stomach overstretching. The animals were killed by withdrawing blood from the right atrium under thiopental anesthesia. All manipulations with animals were carried out in accordance with the "European Convention for the Protection of Vertebrates used for research and other scientific purposes". All manipulations with animals were approved by bioethical committee of Ukrainian medical stomatological academy (Protocol № 141 from 7.09.2016).

Biochemical studies were carried out immediately after removing animals from experiment in 10% homogenate of the gastric mucosa. The gastric

mucosa was removed from underlying layers with the scalpel and was rinsed with 0.9% sodium chloride solution. Then it was homogenized with 0.1 M Tris-buffer (pH=7.4) in cold to obtain 10% tissue homogenate.

In this study we determined basic level of the superoxide radical anion (O2") production spectrophotometrically by the formation of diformazan in the reaction of O2" with tetrazolium nitro blue (TNB) after a 30-minute incubation in a buffer solution containing in 1 liter 5.37 g of anhydrous monosodium phosphate, 8.5 g of sodium chloride and 1.5 g of sodium hydroxide (pH = 7.4) and in presence of inductors such as 0.1 ml of a 3% aqueous solution of NADH+(H+) and 0.1 ml of 3% aqueous solution of NADPH(H) [8].

To determine the sources of ONOO- production we used a modification of existing method [10]. We carried out the determination as follows: in 0.1 ml of 10% homogenate of the gastric mucosa, the initial concentration of peroxynitrites of alkali and alkalineearth metals was determined by the concentration of I3- formed in the reaction of ONOO- with potassium iodide (KI). Then, 3 aliquots of 0.1 ml of 10% tissue homogenate were taken. To first aliquot 0.1 ml of a buffer solution (containing 5.37 g of anhydrous monosodium phosphate, 8.5 g of sodium chloride, 1.5 g of sodium hydroxide in 1 liter) was added; 0.1 ml of a 3% aqueous solution (450 nmol) of NADH+(H+) was added to the second aliquot; 0.1 ml of 3% aqueous solution of NADPH+(H+) was added to the third aliquot. All three aliquots were incubated for 5 min at t=37°C. Then 3.8 ml of a phosphate buffer solution (pH = 7.0) and 1 ml of a 5% solution of potassium iodide were added to each aliquot. Absorption of the corresponding aliquot was determined at a wavelength of 355 (Absorbance of corresponding aliquot, Ax), after which the final concentration of peroxynitrite was calculated in each aliquot according to the formula Cx = 20^Ax

^mol / g (where g stands for gram of tissue) [7].

The peroxynitrite production was evaluated using the formulae: basal production = (C1-Cb) / 300 ^mol/s per g of tissue; production of peroxynitrite induced by NADPH(H) = (C2-Cb) / 300 ^mol/s per g of tissue; production of peroxynitrite induced by NADH+(H+) = (C3-Cb) / 300 ^mol/s per g of tissue. Where C1-3 stand for concentrations of peroxynitrite in 1-3 aliquots after incubation, Cb is initial concentration of peroxynitrite, 300 is incubation time in seconds. The lipid peroxidation was assessed by measuring thiobarbituric acid reactive substances (TBA-reactants) levels. The quantification was based on measuring formation of TBA-reactants according to the method described by Wills (1969) with modifications made by P. V. Prabhakar et al [6]. All spectrophotometric studies were performed by using an Ulab 101 spectrophotometer.

The results were statistically processed by the Microsoft Office Excel software package and the Real Statistics 2007 extension. The data was checked for dispersion normality by the Shapiro-Wilk test. We used ANOVA test during normal trait distribution, followed by analysis by Games-Hovel. In the case of a distribution other than normal, the Khruskal-Wallis ANOVA test was used, followed by paired comparisons by Mann-Whitney U test. To avoid effect of multiple comparisons Bonferroni correction was used. Differences between the groups were considered statistically significant if p <0,05.

Results and Discussion

Fluoride intoxication increases the basic production of O2- by 52.5% (p<0,001; Table), the base production of ONOO- increases by 44.5% (p<0.05) compared with control group. Fluoride intoxication does not affect the production of ONOO- induced by NADH+(H+) and decreases NADPH(H) stimulated one by 8.5% (p<0.05). However fluoride intoxication increased nadh+(h+)

Table. - Reactive oxygen and nitrogen species production in rats' gastric mucosa (M±m)

Parameters Groups

Intact animals, n=10 Fluoride intoxication, n=13 Nitrate intoxication, n=14 Combined intoxication, n=15

Basal peroxynitrite production, nmol/s per g of tissue 2.81±0.15 4.06±0.27* 2.73±0.15** 3.44±0.14*/***

NADPH-induced peroxynitrite production, nmol/s per g of tissue 36.99±0.85 33.84±0.72* 33.1±0.42* 41.87±0.98*/**/***

NADH-induced peroxynitrite production, nmol/s per g of tissue 40.89±0.24 39.93±0.45 32.42±0.23*'** 43.08±0.38*/**/***

Base superoxide anion generation nmol/s per g of tissue 0.4±0.01 0.61±0.02* 0.82±0.02*'** 1.18±0.01*/**/***

NADPH-induced superoxide anion production, nmol/s per g of tissue 7.17±0,16 11.4±0.09* 10.0±0.16*/** 8.04±0.22*/**/***

NADH-induced superoxide anion production, nmol/s per g of tissue 4.9±0.23 5.32±0.08* 9.4±0.12*/** 8.15±0.22*/**/***

TBA-reactants concentration ^mol 6.1±0,25 17.35±0.44* 8.93±0.2*/** 13.65±0.nw"

* - the data are statistically significant different (p <0.05) from the intact group

** - the data are statistically significant different (p <0.05) from the group of fluoride intoxication

*** - the data are statistically significantly different (p <0.05) from the nitrate intoxication group

induced production of O2'- by 8.5% (p<0,05) and NADPH(H) induced production of O2'- by 59% (p<0.05).

Nitrate intoxication increases the base production of O2'- by 105% (p<0.001), but does not affect the base production of ONOO-. Nitrate intoxication reduces the production of ONOO- induced by NADPH(H) and NADPH(H) by 20.7% (p<0.05) and 10.5% (p<0.05), respectively. In the same time NADH+(H+) increase production of O2'- by 91,83% (p<0.00l) compared to control group. Induction by NADPH+(H+) increases formation of O2'- by 39.47% (p<0.05). Nitrate intoxication increases concentration of TBA-reactants by 46.39% (p<0.05) compared to control group.

Combined intoxication increases the base production of O2'- by 195% (p<0.001) compared to the intact group, b y 91.8% (p<0.001) compared to the fluoride intoxication group and by 43.9% (p<0.05) compared to the nitrate intoxication that indicates a synergistic effect of nitrates and fluorides on the base production of O2'-. Production of O2'- in presence of NADPH(H) increases by 11.57% (p<0.05) in presence of NADH+(H+) by 66.33% (p<0.05) compared to control group. nadph+(h+) stimulated O2'- production during chronic combined nitrate-flu2oride intoxication decreases compared to fluoride intoxication by 29.47% (p<0.05) and compared to nitrate intoxication by 19.6%. NADH+(H+) stimulated O2'- production during chronic combined intoxication increases by 53.2% (p<0.05) compared to fluoride and drops by 13.3% (p<0.05) compared to nitrate intoxication. The base production of ONOO-does not statistically significantly change under conditions of combined intoxication compared to fluoride intoxication group, elevates by 22/4% (p<0.0) compared to control and by 26% (p<0.05) compared to nitrate intoxication. These changes indicate that the main agent inducing peroxynitrite formation under combined intoxication is fluoride. Production of ONOO- induced by NADPH+(H+) increases by 13.2% (p<0.0) compared to the intact group, by 23.7% (p<0.05) compared to the fluoride intoxication group and by 26.5% (p<0.05) compared to nitrate intoxication. The ONOO- production induced by NADH+(H+) increases by 5.4% (p<0.05) compared to the intact group, by 7.9% (p<0.05) compared to the fluoride intoxication group and by 32.9% (p<0.05) compared to nitrate intoxication. The concentration of TBA-reactants during chronic combined nitrate-fluoride intoxication increases by 123.8% (p<0.01) compared to control group, but drops by 21.3% (p<0.05) compared to fluoride intoxication. Combined intoxication elevates concentration of TBA-reactants by 52.9% (p<0.05) compared to nitrate intoxication.

NADH+(H+) is an electron donor for mitochondrial electron transport chains (ETC) and NADPH+(H+) is an electron donor for microsomal ETC. Mitochondrial ETC is necessary for production of both O and NO (from cytochromes) [4], necessary for ONOO- formation in mitochondria. Microsomal ETC is necessary for production of O2'- and NO from NOS [11, 12]. In presence of excessive amounts of electron donors for ETCs there is an increase in

their activity, which can lead to ONOO- formation. But in presence of electron donors the production of ONOO- does not increase under fluoride intoxication that allows as exclude mitochondrial and microsomal ETCs as sources of peroxynitrite. Fluorine ions tend to activate the inducible form of NOS, which activity increases, as shown in previous study, this isoform is expressed predominantly in phagocytic leucocytes [7, 11, 12]. The peroxynitrite formed during fluoride intoxication may be viewed as the result of fluoride-induced inflammation. The reactive nitrogen species are necessary as the part of antimicrobial protection during infections. However, during fluoride induced inflammation there are no microbial agents, thus, reactive oxygen and nitrogen species formed by NADPH-oxidase will lead to oxidative and nitrosative stress. We can observe the results of oxidative and nitrosative stress due to increase of TBA-reactant concentration by 86.1% compared to control group.

Since there are two components necessary for ONOO- formation, an absence of the increase in base peroxynitrite formation under conditions of chronic nitrate intoxication can be explained by insufficient NO formation by NOS. Our previous study showed that during chronic nitrate intoxication NOS activity is reduced while nitrite reductases activity is increased [7]. Peroxynitrite ability to spontaneously isomerize to nitrate and increase in the activity of nitrate reductase, shown in previous study, contributes to a decrease in the total amount of peroxynitrite of alkali and alkaline earth metals under nitrate intoxication [7, 13].

The effect of fluoride ions during combined intoxication on NADH+(H+) stimulated ONOO-production can be explained by the increase in the O2'- induced by fluoride intoxication and the decrea2se in the absorption by mitochondria of O2 [14]. This leads to increased generation of one of the necessary products for ONOO- formation. Since cytochromes have nitrate-nitrite reduction ability, they can provide the second necessary product, namely NO via NO3-NO2-NO reductive pathway [4]. As we have already established the increase in NOS activity in our preceding work, we can suggest that an increase in the production of ONOO-stimulated by NADPH+(H+) is associated with inhibition of the activity of calmodulin-dependent NOS isoforms and activation of the inducible form [7]. Calmodulin-dependent NOS isoforms use microsomal ETC to create spare electron necessary for NO' production. Since their activity decreases under fluoride ions' influence and the electron transport is not stopped, the spare electron formed in ETC is used for O2'- creation. The effectiveness of nitrate-nitrite redu2ctases as a mechanism for neutralizing peroxynitrite (after its isomerization to nitrate) under conditions of combined intoxication is not as effective as in isolated nitrate intoxication.

Conclusions

Combined nitrate-fluoride intoxication intensifies lipid peroxidation by increased production of O and ONOO-. Nitrate intoxication limits ONOO-production but does not limit lipid peroxidation.

Fluoride intoxication's tissue damaging agents are leading to tissue damage by combined nitrate-ONOO- and O2". Further studies on mechanisms fluoride intoxication are needed.

Литература

1. Ansari, F. A. Sodium nitrate induces reactive oxygen species that lower the antioxidant power, damage the membrane, and alter pathways of glucose metabolism in human erythrocytes / F. A. Ansari, R. J. Mahmood // Agric Food Chem. - 2015. - Vol. 63 (48). - P. 10372-10379. - doi: 10.1021/acs.jafc.5b04898.

2. Hyparrhenia hirta: A potential protective agent against he-matotoxicity and genotoxicity of sodium nitrate in adult rats / H. Bouaziz-Ketata [et al.] // Environ Toxicol. - 2015.

- Vol. 30 (11). - P. 1275-1284. - doi: 10.1002/tox.21998.

3. Hamza, R. Z. Protective effects of blackberry and querce-tin on sodium fluoride-induced oxidative stress and histological changes in the hepatic, renal, testis and brain tissue of male rat / R. Z. Hamza, N. S. El-Shenawy, H. A. Ismail // J. Basic Clin Physiol Pharmacol. - 2015. - Vol. 26 (3). -P. 237-251. - doi: 10.1515/jbcpp-2014-0065.

4. Nitrate and nitrite in biology, nutrition and therapeutics / J. O. Lundberg [et al.] // Nat Chem Biol. - 2009. - Vol. 5 (12). - P. 865-9. - doi: 10.1038/nchembio.260.

5. Nabavi, S. F. Protective effects of curcumin against sodium fluoride-induced toxicity in rat kidneys / S. F. Nabavi, A. H. Moghaddam, S. Eslami // Biol Trace Elem Res. -2012. - Vol. 145 (3). - P. 369-374. - doi: 10.1007/s12011-011-9194-7.

6. Oxidative stress induced by aluminum oxide nanoma-terials after acute oral treatment in Wistar rats / P. V. Prabhakara [et al.] // J Appl Toxicol. - 2012. - Vol. 32.

- P. 436-445. - doi: 10.1002/jat.1775.

7. Akimov, O. Y. Functioning of Nitric oxide cycle in gastric mucosa of rats under excessive combined intake of sodium nitrate and fluoride / O. Y. Akimov, V. O. Kostenko // Ukr Biochem J. - 2016. - Vol. 88 (6). - P. 70-75. - doi: 10.15407/ubj88.06.070.

8. Костенко, В. О. Продукцш супероксидного анюн-ра-дикала та оксиду азоту у тканит нирок тсля хiрургiч-ного втручання / В. О. Костенко, О. I. Цебржинський // Фiзiологiчний журнал. - 2000. - Т. 46, № 5. - С. 56-62.

9. Стасюк, О. А. Вплив скевенджерiв пероксинггриту на окиснювальт процеси у тканинах слинних залоз бших щурiв за умов стльного надлишкового надход-ження нгграту та фториду натрта / О. А. Стасюк, В. О. Костенко // Проблемы экологии и медицины. - 2012.

- Т. 16, № 5-6. - С. 30-33.

10. Шрайбман, Г. Н. Спектрофотометрические методики определения пероксинитрита и нитрита / Г. Н. Шрайбман, Е. П. Дягилева, А. В. Скибина // Вестник Кемеровского государственного университета. - 2011.

- №. 1 (45). - С. 200-206.

11. Effects of sodium fluoride on immune response in murine macrophages / B. De la Fuente [et al.] // Toxicol In Vitro. - 2016. - Vol. 34. - P. 81-87. - doi: 10.1016/j. tiv.2016.03.001.

12. Chronic fluoride exposure-induced testicular toxicity is associated with inflammatory response in mice / R. Wei [et al.] // Chemosphere. - 2016. - Vol. 153. - P. 419-425.

- doi: 10.1016/j.chemosphere.2016.03.045.

13. Дягилева, Е. П. Изомеризация и диссоциация перок-сонитрит иона при растворении кристаллического нитрата калия, облученного светом длиной волны 253.7 нм / Е. П. Дягилева, М. Б. Миклин // Вестник

KeMepoBCKoro rocygapcTBeHHoro yHHBepcHTera. - 2015.

- T. 3, № 4 (64). - C.233-236.

14. Sodium Fluoride Induces Apoptosis in H9c2 Cardiomyocytes by Altering Mitochondrial Membrane Potential and Intracellular ROS Level / X. Yan [et al.] // Biol Trace Elem Res. - 2015. - Vol. 166 (2). - P. 210-215.

- doi: 10.1007/s12011-015-0273-z

References

1. Ansari FA, Mahmood RJ. Sodium nitrate induces reactive oxygen species that lower the antioxidant power, damage the membrane, and alter pathways of glucose metabolism in human erythrocytes. Agric Food Chem. 2015;63(48):10372-10379. doi: 10.1021/acs. jafc.5b04898.

2. Bouaziz-Ketata H, Salah GB, Mahjoubi A, Aidi Z, Kallel C, Kammoun H, Fakhfakh F, Zeghal N. Hyparrhenia hirta: A potential protective agent against hematotox-icity and genotoxicity of sodium nitrate in adult rats. Environmental Toxicology. 2015;30(11):1275-84. doi: 10.1002/tox.21998.

3. Hamza RZ, El-Shenawy NS, Ismail HA. Protective effects of blackberry and quercetin on sodium fluoride-induced oxidative stress and histological changes in the hepatic, renal, testis and brain tissue of male rat. J Basic Clin Physiol Pharmacol. 2015;26(3):237-251. doi: 10.1515/ jbcpp-2014-0065.

4. Lundberg JO, Gladwin MT, Ahluwalia A, Benjamin N, Bryan NS, Butler A, Cabrales P, Fago A, Feelisch M, Ford PC, Freeman BA, Frenneaux M, Friedman J, Kelm M, Kevil CG, Kim-Shapiro DB, Kozlov AV, Lancaster JR Jr, Lefer DJ, McColl K, McCurry K, Patel RP, Petersson J, Rassaf T, Reutov VP, et al. Nitrate and nitrite in biology, nutrition and therapeutics. Nat Chem Biol. 2009;5(12):865-9. doi: 10.1038/nchembio.260.

5. Nabavi SF, Moghaddam AH, Eslami S. Protective effects of curcumin against sodium fluoride-induced toxicity in rat kidneys. Biol Trace Elem Res. 2012;145(3):369-374. doi: 10.1007/s12011-011-9194-7.

6. Prabhakar PV, Reddy UA, Singh SP, Balasubramanyam A, Rahman MF, Indu Kumari S, Agawane SB, Murty US, Grover P, Mahboob M. Oxidative stress induced by aluminum oxide nanomaterials after acute oral treatment in Wistar rats. J Appl Toxicol. 2012;32(6):436-445. doi: 10.1002/jat.1775.

7. Akimov OY, Kostenko VO. Functioning of Nitric oxide cycle in gastric mucosa of rats under excessive combined intake of sodium nitrate and fluoride. Ukr Biochem J. 2016;88(6):70-75. doi: 10.15407/ubj88.06.070.

8. Kostenko VO. Cebrzhynskyj OI. Produkcija superok-sydnogo anion-radykala ta oksydu azotu u tkanyni nyrok pislja hirurgichnogo vtruchannja. Fiziologichnyj zhurnal. 2000;46(5):56-62. (Ukrainian).

9. Stasjuk OA, Kostenko VO. Vpliv skevendzheriv perok-sinitritu na okisnjuvalni procesi u tkaninah slinnih zaloz bilih shhuriv za umov spilnogo nadlishkovogo nad-hodzhennja nitratu ta ftoridu natriju. Problemy jekologii i mediciny [Problems of ecology and medicine]. 2012;16(5-6):30-33. (Ukrainian).

10. Shrajbman GN, Djagileva EP, Skibina AV. Spektrofotometricheskie metodiki opredelenija peroksi-nitrita i nitrita. Vestnik Kemerovskogo gosudarstvennogo

universiteta [Bulletin of the Kemerovo State University]. 2011;1(45):200-206. (Russian).

11. De la Fuente B, Vazquez M, Rocha RA, Devesa V, Velez D. Effects of sodium fluoride on immune response in murine macrophages. Toxicology in Vitro. 2016;34:81-87. doi: 10.1016/j.tiv.2016.03.001.

12. Wei R, Luo G, Sun Z, Wang S, Wang J. Chronic fluoride exposure-induced testicular toxicity is associated with inflammatory response in mice. Chemosphere. 2016;153:419-425. doi: 10.1016/j.chemosphere.2016.03.045.

13. Djagileva EP, Miklin MB. Izomerizacija i dissociacija peroksonitrit iona pri rastvorenii kristallicheskogo nitra-ta kalija, obluchennogo svetom dlinoj volny 253.7 nm

[Isomerization and dissociation of the peroxynitrite ion formed by dissolving crystalline potassium nitrate irradiated with 253.7 nm light]. Vestnik Kemerovskogo go-sudarstvennogo universiteta [Bulletin of the Kemerovo State University]. 2015;3(4):233-236. (Russian).

14. Yan X, Yang X, Hao X, Ren Q, Gao J, Wang Y, Chang N, Qiu Y, Song G. Sodium Fluoride Induces Apoptosis in H9c2 Cardiomyocytes by Altering Mitochondrial Membrane Potential and Intracellular ROS Level. Biol Trace Elem Res. 2015;166(2):210-215. doi: 10.1007/ s12011-015-0273-z.

продукция супероксида и пероксинитрита в слизистой оболочке желудка крыс в условиях хронической

нитратно-Фторидной интоксикации

Акимов О. Е. , Костенко В. А.

Высшее государственное учебное заведение Украины «Украинская медицинская стоматологическая академия», Полтава, Украина

Целью исследования является изучение влияния сочетанной нитратно-фторидной интоксикации на продукцию пероксинитрита (ONOO-) и супероксидного анион-радикала (O •') в слизистой оболочке желудка крыс.

Материал и методы. Мы провели эксперименты на 52 зрелых крысах. Интоксикация была смоделирована путем внутрижелудочного введения натрия фторида и нитрата в дозе 10 мг/кг и 500 мг/кг соответственно. Общую продукцию O^-, ONOO- и концентрацию веществ, реагирующих с тиобарбитуровой кислотой (ТБК-реактанты), определяли в 10% гомогенате слизистой оболочки желудка.

Результаты. Мы наблюдали наивысшую продукцию ONOO- при фторидной интоксикации, а продукция O •' была самой высокой при сочетанной интоксикации. Концентрация ТБК-реактантов была самой высокой в группе фторидной интоксикации.

Вывод. Комбинированная нитратно-фторидная интоксикация усиливает перекисное окисление липидов за счет увеличения O2" и ONOO-.

Ключевые слова: нитраты, фториды, пероксинитрит, активные формы кислорода.

Поступила: 06.06.2018 Отрецензирована: 12.11.2018

i Надоели баннеры? Вы всегда можете отключить рекламу.