11. European convention for the protection of vertebrale animals used for experimental and other scientific purposes. Council of Europe, Strasburg; 1986. EST. 123. 53 p.
12. Upendra Rao M. [et al.]. Herbal Meicines for Diabetes Mellitus. International Journal of ChemTech Research. 2010; 2 (3): 1883-1892.
13. Wild S., Roglie G., Green A., Sicree R., King H. Global prelevance of diabetes. Estimates for the year 2000 and projections for 2030. Diabetes Care. 2004; 27 (5): 1047-1053.
ИССЛЕДОВАНИЕ КОРРИГИРУЮЩЕГО ВЛИЯНИЯ РАСТИТЕЛЬНОГО ЭКСТРАКТА С САХАРОСНИЖАЮЩИМИ СВОЙСТВАМИ НА ГИСТОСТРУКТУРУ ПОДЖЕЛУДОЧНОЙ ЖЕЛЕЗЫ КРЫС СО СМОДЕЛИРОВАННЫМ ДИАБЕТОМ 2-ГО ТИПА Марчишин С.М., Гудзь Н. А., Крицкая Г. А., Андриишин А.П., Твердохлиб Н.О.
В опытах на крысах исследована гистологическая структура поджелудочной железы в условиях экспериментального сахарного диабета после введения растительного экстракта корневых клубней якона и препаратов сравнения "Арфазетин" и метформин. Выявлено, что исследуемый растительный экстракт имеет выразительное защитное влияние на микроскопическое строение поджелудочной железы: деструктивные изменения в эндокринных островках уменьшались, количество морфологически полноценных инсулиноцитов существенно увеличивалось. Полученные морфологические и морфометрические данные показали, что растительный экстракт корневых клубней якона значительно уменьшает диабетогенное действие дексаметазона и оказывает лучший положительный эффект на эндокринный аппарат поджелудочной железы по сравнению с препаратом "Арфазетин" и почти не уступает метформину.
Ключевые слова: густой эстракт корневых клубней якона, экспериментальный сахарный диабет, дексаметазон, поджелудочная железа, эндокринные клетки, гистологическое исследование.
Стаття надшшла 29.12.17р.
RESEARCH OF THE CORRECTIVE INFLUENCE OF PLANT EXTRACT WITH ANTIDIABETIC PROPERTIES ON THE HISTOLOGICAL STRUCTURE OF RATS PANCREAS WITH TYPE 2 DIABETES
Marchyshyn S. M., Gudz N.A., Krytska G. A., Andriyishyn A.P., Tverdohlib N.O.
In experiments on rats, the histological structure of the pancreas under the conditions of experimental diabetes mellitus was studied after administering the plant extract of the yacon's fleshy roots and the reference preparations of "Arphazetin" and Methformin. It was found that the plant extract tested had a pronounced protective effect on the microscopic structure of the pancreas: destructive changes in the endocrinous islands were getting reduced, the number of morphologically complete insulinocytes was increasing significantly. The obtained morphological and morphometric data showed that the plant extract of the yacon's fleshy roots significantly reduces the diabetogenic action of dexamethasone and has a better effect on the pancreas'es endocrinous mechanism compared to "Arphazetin" drug and is practically no worse than Methformin.
Key words: solid extract of yacon's fleshy roots, experimental diabetes mellitus, dexamethasone, pancreas, endocrinous cells, histological study.
Рецензент Бшаш С.М.
DOI 10.26724 / 2079-8334-2018-2-64-165-169
UDC 616.24-091.8-02:616-001.17-[085.324:591.477:599.731.1+085.37]-092.9
SUBMICROSCOPIC CHANGES OF THE RESPIRATORY ALVEOLAR MACROPHAGES AT THE LATE PERIOD AFTER EXPERIMENTAL THERMAL INJURY AND IN COMBINED USE OF LYOPHILIZED XENOGRAFT SUBSTRATE AND SURFACTANT
E-mail: nebesna_zm@tdmu.edu.ua
Experimental studies of the mature male rats' lungs have been carried out at the late period following the simulated thermal injury in conditions of early necrectomy and application of minced substrate of the lyophilized xenograft and simultaneous administration of exogenous surfactant. Significant changes in the ultrastructure of the majority of macrophages, expressed by the reduced number of microvilli, pyknotic nuclei, destructed organelles in their cytoplasm and accumulation of secondary lysosomes were noted after the burn injury. It has been found that the combined use of the above agents on the 14 and 21 day of the experiment reduced the degree of destructive changes and the established normalization of the alveolar macrophages of the alveolar macrophages of the pulmonary alveoli greatly improved their morphofunctional state; young and phagocytising cells prevailed in their population composition.
Keywords: pulmonary alveolar macrophages, ultrastructural changes, thermal injury, lyophilized xenograft substrate, surfactant.
The paper has been written within the planned research scientific work, entitled "Identification of features of reparatory processes of the burn wound and morphofunctional changes of the internal organs and clinicopathogenetic grounds of application of cryolyophilized xenotissues in burn injury" (State registration No. 0115U001531).
The problem of management of patients after a severe thermal injury is relevant to date. Currently, the incidence of burns in the developed countries reaches 1:1000 of the population per year, and mortality rate of the burn patients remains rather high, ranging from 5.9% to 21.2%, regardless of application of the advanced methods of treatment [3,5,10]. A severe thermal injury can cause the onset of
© Z.M. Nebesna, K.S. Volkov, 2018 i 65
sepsis and multiorgan failure, namely, microcirculation, presence of necrotic tissue in wounds inhabited by microflora, endogenous intoxication, activation of the lipid peroxidation, the development of systemic inflammatory response syndrome, DIC-syndrome, etc. [3, 10, 15]. Publications devoted to the management of severe burn injuries are mainly focused on treatment of sepsis and multiorgan failure. Therefore, the main efforts should be directed at elimination of the above complications.
Minced substrate of the lyophilized xenograft is considered a novel and effective factor for temporary closure of a burn wound, which absorb a considerable amount of toxins and microorganisms by its small particles with a big surface of contact that contributes to elimination of the toxins from the wound, reducing its entering to blood, enhances the course of burn disease, ensures effective regeneration of damaged tissues, which, in turn, positively influences on the morphofunctional state of the organs, affected by burns, particularly, the lungs [8].
In burn injury the risk for the occurrence of pathogenic changes is largely associated with the development of the restrictive forms of respiratory failure, namely, the acute lung injury and its most severe manifestation: the acute respiratory distress syndrome (ARDS) [9]. Many authors assume that pathogenesis of the ARDS in burn injury is multifactorial, and damage to the surfactant lung system is one of its possible links, taking into account the impact of the thermal factor [7,12].
It is known that alveolar macrophages are one of the major cells that provide local defense in the lungs [1,14]. The onset, progress and elimination of inflammatory processes in the lungs in multiple pathological states is greatly dependent on the state of its functional activity [6,13]. Despite the numerous publications, which explored the structural changes of the pulmonary macrophages in various pathological states, no sufficient data on the morphofunctional features of restructuring of such cells in thermal injury and during the correction have been found to date.
The purpose of the study was to determine the morphological state of respiratory alveolar macrophages in animals after thermal injury and in combined use of the minced substrate of the lyophilized xenograft and exogenous surfactant.
Material and methods. The total of 30 mature outbred white male rats were involved into the experiments. The experimental studies were performed in compliance with the "theoretical and practical recommendations on the housing of laboratory animals and experiments on them" [4] and the European Convention on the protection of laboratory animals [11] and the Law of Ukraine No. 3447- IV "On the Protection of Animals from Cruelty" as of 21.02.2006. No violations of ethical standards in the conduct of scientific research have been revealed by the commission on bioethics at SHEI "I. Horbachevsky Ternopil State Medical University of MOH of Ukraine" (Minutes No. 31 as of 19.10.2015).
Burn injury was induced by placing of two 14,5 cm2 copperplates, heated in boiled water to 97100 °C on the epilated rat skin surface on the back during 15 minutes under ketamine anesthesia. The damaged area covered 18-20% of the surface of the rat body. The findings of the histological studies of the damaged skin confirmed the damage depth, corresponding to the third-degree burn. The early necrectomy of damaged skin areas was carried out within a day following the burn induction. The originated wound was covered with minced substrate of the lyophilized xenografts. Single intratracheal instillation of 300 mg/kg Curosurf surfactant was performed simultaneously with application of xenograft substrate onto burn wound under general anesthesia. The animals were decapitated on day 14 and 21 of the experiment. Small pieces of respiratory portion of lungs were collected for ultrastructural studies, fixed subsequently in 2.5-3% glutaraldehyde solution and postfixed in 1% osmium tetraoxide solution on the pH 7.2-7.4 phosphate buffer, followed by dehydration in alcohol and propylene oxide and then embedded into mixture of epoxy resins [2]. Ultrathin sections were contrasted with uraniacetate and lead citrate according to Reynolds and studied in the PEM - 125K electron microscope.
Results of the study and their discussion. The resulting submicroscipical studies of the respiratory portion of the lungs have found a considerable amount of alveolar macrophages in the alveoli lumen at the stage of the late toxemia (day 14 of the experiment), which are characterized by the polymorphism of their state. Highly phagocytising cells with single or several nuclei and destructed macrophages have been noted. Plasmolemma of the highly phagocytising cells contains numerous cytoplasmic protrusions and invaginations. The nuclei are of irregular shape and with invaginations of karyolemma where the contours of nuclear membranes are not clear and perinuclear spaces are poorly expressed. Heterochromatin, located mainly beneath the karyolemma, prevails in the karyoplasms and no nucleoli have been detected. Numerous small mitochondria with electron dense matrix and partially reduced cristae have been noted in the cytoplasm. Golgi apparatus is represented by the enlarged cisterns and vesicles. Canaliculi of the granular endoplasmic reticulum are thickened and fragmented with single ribosomes on the outer surface of the membranes. Numerous primary lysosomes and phagosomes of
various shape, size and contents are specific for cytoplasm of such cells. Phagocytized material contains fragments of surfactant and debris of the destroyed cells.
The number of highly phagocytising alveolar macrophages reduces in the lumen of the alveoli, whereas the cells with destructive-degenerative changes prevail. Their plasmolemma have few and medium-sized microprotrusions and invaginations. The nuclei are pyknotic, osmiophilic, deformed with invaginations of karyolemma. Karyoplasm contains big aggregations of marginal heterochromatin. The cytoplasm is locally cleared and includes numerous vacuole-like structures. Canaliculi of the granular endoplasmic reticulum and cisterns of the Golgi apparatus are dilated and fragmented; single ribosomes and polysomes are also noted. Mitochondria have cleared matrix and reduced cristae. Single lysosomes and giant phagosomes with osmiophilic material of heterogenous electron density and fragments of destroyed cells have been found (Figure 1).
Submicroscopically, in combined use of the substrate of the lyophilized xenograft and exogenous surfactant, a moderate number of the alveolar macrophages, in which population the highly phagocytising, biosynthesizing and young cells prevailed and single destructed cells were noted, have been detected in the lumen of the alveoli on day 14 of the experiment.
Fig. 1. Submicroscopic structure of the alveolar macrophage on day 21 after experimental Fig. 2. Ultrastructural state of the respiratory alveolar macrophage on day 14 after thermal thermal injury. Cytoplasmic projections of plasmolemma (1), destructed mitochondria injury in combined used of corrective agents. Cytoplasmic projections of plasmolemma (2), lysosomes (3), giant phagosomes (4). x 10 000 magnification. (1), nuclei (2), lysosomes (3), phagosomes (4). x 9 000 magnification.
Plasmolemma of the phagocytising cells forms numerous thickened cytoplasmic projections and invaginations. Their nuclei are orbicular with moderately osmiophilic karyoplasms and invaginations of karyolemma membranes. Synthetic apparatus of the macrophages is represented by the numerous free ribosomes and polysomes, moderately dilated canaliculi of the endoplasmatic reticulum and hypertrophied
dictyosomes of the Golgi apparatus (Fig.2).
Ultrastructurally, on day 21 of the experiment, a well-pronounced lysosomal apparatus was detected in the alveolar macrophages, represented by the fine osmiophilic primary lysosomes and single giant phagosomes, containing osmiophilic lamellar fragments. Their plasmolemma formed thin, medium-sized cytoplasmic projections (Fig. 3).
Such condition of the macrophages indicates about their moderate functional activity, confirming the minor manifestations of damage to the structures of the respiratory portion of rats' lungs in combined use of corrective agents after thermal injury.
Fig. 3. Submicroscopic structure of the alveolar macrophage on day 21 after experimental thermal injury in combined use of corrective agents. Cytoplasmic projections of plasmolemma (1), nucleus with invaginations (2), numerous lysosomes (3), single phagosomes (4). x 9 000 magnification.
1. Thermal injury, considered as a significant pathogenic factor, causes considerable ultrastructural changes in the alveolar macrophages of the respiratory portion of rats' lungs. At the stage of late toxemia and septic
toxemia the profound irreversible destructive-degenerative changes in the majority of the alveolar macrophages are developed, indicating about the suppression of their phagocytic activity. 2. Combined use of minced substrate of the lyophilized xenograft and surfactant at the late period after thermal injury has a positive apparent impact on the state of the alveolar macrophages of the pulmonary alveoli, significantly enhances their morphofunctional state; young and highly phagocytising cells prevail in their population composition. It has a positive effect on the respiratory portion of the lungs and increases the resistance of the lung tissue to the damaging factors.
Perspectives for further research will encompass the study of the progress of morphological changes in the structural components of the lungs in thermal injury in conditions of the use of other corrective factors.
1. Herasymchuk MR, Zayets LM. Ultrastruktura alveolyarnykh makrofahiv pry eksperymentalnomu rozlytomu perytoniti ta za umov korektsiyi lipinom. Halytskyy likarskyy visnyk. 2014; 1: 17-0. [in Ukrainian]
2. Horalskyi LP, Khomych VT, Kononskyi OI. Osnovy histolohichnoyi tekhniky i morfofunktsionalni metody doslidzhen u normi ta pry patolohiyi. Zhytomyr: 2011. 288 s. [in Ukrainian]
3. Klymenko MO, Netyukhaylo MO, Klymenko L H. Opikova khvoroba (patohenez i likuvannya). Poltava: 2009. 118 s. [in Ukrainian]
4. Kozhemyakin YuM. Naukovo-praktychni rekomendatsiyi z utrymannya laboratornykh tvaryn ta roboty z nymy. Kyyiv: 2002. 156 s. [in Ukrainian]
5. Netyukhaylo LH, Kharchenko SV, Kostenko AH. Patohenez opikovoyi khvoroby. Svit medytsyny ta biolohiyi. 2011; 1: -127 31, 131 3 [in Ukrainian]
6.Oleksynska OO. Makrofahalna aktyvnist lehenevoyi tkanyny pry multyrezystentnomu fibrozno-kavezrnomu tuberkulyozi z morfolohichnymy proyavamy riznoyi aktyvnosti zapalnoho protsesu. Mizhnarodna naukovo-praktychna konferentsiya studentiv ta molodykh vchenykh, Sumy: 10-12 kvitnya 2013; 61-2. [in Ukrainian]
7. Pylaev AV, Babanyn AA, Pylaeva NYu. Prymenenye ekzohennogo yestestvennogo surfaktanta u patsientov s termoingalyatsyonnym porazheniyem. Bil, znebolyuvannya i intensyvna terapiya. 2010; 2: 183-85. [in Russian]
8. Tsymbalyuk AV, Huda NV, Kyryk OO. Vykorystannya podribnenoho substratu liofilizovanoho ksenodermoimplantata dlya mistsevoho likuvannya opikovykh khvorykh z infikovanymy ranamy III-IV stupeniv. Shpytalna khirurhiya. 2013; 1: 81-4. [in Ukrainian]
9. Yershov A. Povrezhdeniye i zameshcheniye surfaktanta pri respiratornom distress-sindrome vzroslykh. Rezhim dostupu: http://www.critical.ru/actual/IT/surfactant.htm [in Russian]
10. Bala S, Das S, Guha D. An autopsy study of morphological changes of lung in burn patients with duration of hospital stay and total body surface area burned. International Journal of Research in Health Sciences. 2014; 2, (2): 494-00.
11. European convention for the protection of vertebrate animals used for experimental an others scientific purposes. Strasbourg: Council of Europe, 1986. No 123. 52 p.
12. Dreyer N, Muhlfeld N, Fehrenbach СА. Exogenous surfactant application in a rat lung ischemia reperfusion injury model: effects on edema formation and alveolar type II cells. Respiratory Research. 2008; 9 (1): 5. - Режим доступу до журн. http://respiratory-research.com/content/9/1/5
13. Lepekha LN, Alexandrova EA, Erokhina MV. In vitro effects of pulmonary surfactant on macrophage morphology and function. Bulletin of Experimental Biology and Medicine. 2012; 152: 489-93.
14. Lin Zhu, Amanda M, Andrey A. Assessment of human lung macrophages after exposure to multi-walled carbon nanotubes part I. cytotoxicity. Nanoscience and Nanotechnology Letters. 2011; 3: 88-3.
15. Pham TN, Kramer CB, Klein MB. Risk factors for the development of pneumonia in older adults with burn injury. Burn Care Res. 2010; 1 (31): Р. 105-15.
СУБМ1КРОСКОП1ЧН1 ЗМ1НИ АЛЬВЕОЛЯРНИХМАКРОФАГ1В РЕСП1РАТОРНОГО В1ДД1ЛУ ЛЕГЕНЬ В ПОЗДНИЕ ТЕРМ1НИ П1СЛЯ ЕКСПЕРИМЕНТАЛЬНО1 ТЕРМ1ЧНО1 ТРАВМИ
I В УМОВАХ СИЛЬНОГО ВИКОРИСТАННЯ СУБСТРАТУ Л1ОФ1Л1ЗОВАНИЙ КСЕНОШК1РИ I ПРЕПАРАТУ СУРФАКТАНТ Небесна З.М., Волков К. С., Боднар П. Я., Шутурма Е. Я., Крамар С. Б.
В експеримент на статевозрших бших щурах-самцях проведено дослщження легень в тзш термши тсля експериментально! термiчноl травми; в умовах проведення ранньо! некректомп i застосування подрiбненого субстрату люфшзовано! ксеношюри з одночасним введенням екзогенного препарату сурфактанта. Пюля отково! травми встановлено значш змши ультраструктури бшьшост макрофапв, вони мають набагато менше мжровиросив, включають ткнотично змшеш ядра, а в !х цитоплазмi деструктивно пошкоджеш органели i накопичення вторинних лiзосом.
СУБМИКРОСКОПИЧЕСКИЕ ИЗМЕНЕНИЯ АЛЬВЕОЛЯРНЫХ МАКРОФАГОВ РЕСПИРАТОРНОГО ОТДЕЛА ЛЕГКИХ В ПОЗДНИЕ СРОКИ ПОСЛЕ ЭКСПЕРИМЕНТАЛЬНОЙ ТЕРМИЧЕСКОЙ ТРАВМЫ И В УСЛОВИЯХ СОВМЕСТНОГО ИСПОЛЬЗОВАНИЯ СУБСТРАТА ЛИОФИЛИЗИРОВАННОЙ КСЕНОКОЖИ И ПРЕПАРАТА СУРФАКТАНТА Небесная З.М., Волков К. С., Боднар П. Я., Шутурма Е. Я., Крамар С. Б.
В эксперименте на половозрелых белых крысах-самцах проведены исследования легких в поздние сроки после экспериментальной термической травмы; в условиях проведения ранней некрэктомии и применения измельченного субстрата лиофилизированной ксенокожи с одновременным введением экзогенного препарата сурфактанта. После ожоговой травмы установлены значительные изменения ультраструктуры большинства макрофагов, они имеют гораздо меньше микровыростов, включают пикнотически измененные ядра, а в их цитоплазме деструктивно поврежденные органеллы и накопление вторичных лизосом. Обнаружено, что
Виявлено, що одночасне застосування даних препараив на 14 i 21 добу дослщу зменшуе стутнь деструктивних змiн i встановлюеться нормалiзацiя альвеолярних макрофагiв альвеол легешв, значно полiпшуеться !х морфофункцюнальний стан, в !х популяцiйному складi переважають молодi та активно фагоцнтукге клiтини.
Ключовi слова: альвеолярнi макрофаги легешв, ультраструктурш змiни, термiчна травма, субстрат люфшзовано! ксеношкiри, сурфактант.
Стаття надшшла: 12.04.18р.
DOI 10.26724 / 2079-8334-2018-2-64-169-172 УДК:616.62-085.356:577.161.3:504.5
сочетанное применение данных препаратов на 14 и 21 сутки опыта уменьшает степень деструктивных изменений и установлена нормализация альвеолярных макрофагов альвеол легких, значительно улучшается их морфофункциональное состояние, в их популяционном составе преобладают молодые и активно фагоцитирующие клетки.
Ключевые слова: альвеолярные макрофаги легких, ультраструктурные изменения, термическая травма, субстрат лиофилизированной ксенокожи, сурфактант.
Рецензент Срошенко Г.А.
РЕАДАПТАТИВШ ЗМ1НИ У СЕЧОВОМУ М1ХУР1 П1СЛЯ В1ДМ1НИ ВЖИВАННЯ СОЛЕЙ ВАЖКИХ МЕТАЛ1В ТА ЗА УМОВ КОРЕКЦП В1ТАМ1НОМ Е
E-mail: v.sikora@med.sumdu.edu.ua
У статп представлено результати дослiдження реадаптативних змш у сечовому Mixypi щурiв, що розвиваються на 30 добу тсля тривалого вживання солей важких металiв, а також ефективностi використання втмшу Е в якостi коректора. Виявлено помipновиpаженi моpфологiчнi змiни у структурних компонентах дослщжуваного органа, швелювання морфометричних показникiв та вмiстy xiмiчниx елементiв у стiнцi мixypа, що тдтверджуеться наявнiстю односпрямованих коpеляцiйниx зв'язюв. Характер реадаптативних змiн вiдpiзняэться у тварин з piзним експериментальним сценаpieм. Нами встановлено, що вживання втмшу Е сприяе стимуляцп вiдновниx процеав та прискоренню редукци стану сечового мыхура до контрольно! серп у перюд реадаптацп.
Ключовi слова: сечовий мixyp, солi важких металiв, реадаптащя, вiтамiн Е.
Робота виконана у рамках НДР «Морфогенез загальнопатологiчних процеЫв» (№ держ. реестраци 013и003315) та «Закономiрностi вжових i конститущональних морфологiчних перетворень за умов впливу ендо- i екзогенних чиннитв i шляхи IX корекци» (№ 0113и001347).
Сьогодення кшшчно! та експериментально! медицини характеризуеться недосконалим розумшням складносп патогенезу багатьох захворювань сечового м1хура (СМ), так як теорй причин !х виникнення значно розширилися з плином часу. Вщомо, що СМ выводиться виршальне значення у контрольованому виведеш сеч1, вщ чого залежить збалансоване функцюнування цшого оргашзму [5]. Нажаль, захворювання запального та онколопчного характеру цього органа вражають своею чисельнютю, а вар1ацп розвитку патологи залежать вщ провокуючих чинниюв [5,8].
Все частше з'являються вщомосп щодо зв'язку розвитку патологи окремих оргашв та систем з несприятливим станом навколишнього середовища. Серед широкого спектру екзогенних забруднюючих фактор1в, особливу увагу привертають сол1 важких метатв (СВМ), оскшьки !х кшьюсть у екосистем1 планети неухильно зростае та досягае небезпечного рубежу еколопчно! трагедп [6,7]. Забруднення довкшля в основному вщбуваеться через зростання антропогенних викид1в за рахунок прогресивно! урбашзацп промислових мют. Ц полютанти здатш циркулювати та накопичуватися у вс1х шарах бюсфери, що супроводжуеться !х поширенням на значш вщсташ { надходженням до оргашзм1в [7]. Важю метали (ВМ) у низьких концентращях е необхщними життево-важливими елементами, проте дисбаланс !х р1вня знаходить негативне вщображення у зростанш ризиюв для здоров'я населення та може призвести до непередбачуваних наслщюв [2]. Сьогодш доведено негативну д1ю СВМ, як на оргашзм [6,2], так { на СМ [9], однак шформащя щодо детального опису вщновних мехашзм1в тсля впливу полютанпв практично не зустр1чаеться. За умов постшно! ди р1зномаштних екзогенних фактор1в на оргашзм виникае необхщшсть пошуку ефективних протекторних засоб1в. Наявна значна кшьюсть даних про захисш властивост в1тамшу Е та його здатнють протистояти ВМ, що пов'язують з його потужними антиоксидантними можливостями [4].
Метою роботи було вивчити законом1рностей реадаптативних змш у СМ тсля припинення навантаження оргашзму СВМ та дослщження ефективносп вживання в1тамшу Е.
Матер1ал 1 методи дослщження. Експериментальне дослщження проведене на лабораторних щурах (п=24), як попередньо протягом 90 дшв вживали воду з шд1браною комбшащею найпоширешших { потенцшно небезпечних солей цинку (2п804х7И20 - 5 мг/л), мщ
© А.М. Романюк, В.В. Сiкоpа, 2018