Научная статья на тему 'STUDY OF THE MECHANICAL CHARACTERISTICS OF FDM (3D PRINTED) PARTS: EMPIRICAL AND COMPUTATIONAL METHODS'

STUDY OF THE MECHANICAL CHARACTERISTICS OF FDM (3D PRINTED) PARTS: EMPIRICAL AND COMPUTATIONAL METHODS Текст научной статьи по специальности «Механика и машиностроение»

CC BY
39
9
i Надоели баннеры? Вы всегда можете отключить рекламу.
Ключевые слова
additive technology / fused deposition modelling (FDM) / PLA / mechanical properties / analytical model / аддитивные технологии / метод послойного наплавления (FDM) / PLA / механические свойства / аналитическая модель

Аннотация научной статьи по механике и машиностроению, автор научной работы — Rakishev Asset, Donenbayev Bakytzhan, Jamaludin Khairur Rijal

Fused deposition modelling, alternatively referred to as Fused Filament Fabrication, is an additive manufacturing technique that has garnered significant attention across various industries due to its diverse applications. This research investigates the ultimate tensile strength and elastic modulus of 3D-printed Polylactic acid samples, following the ISO-527-2-2012 standard. The mechanical performance of the created parts is considered from both experimental and computational points of view. The finite element method within the ANSYS environment was employed for computer-based load and strength calculations. Tensile specimens are fabricated using the Fused deposition modelling approach. The experimental outcomes were utilised to derive all the essential engineering constants required for evaluating the mechanical behaviour. The validity of the theoretical model has been confirmed through a comprehensive comparison with a substantial volume of experimental data, exhibiting mean errors of approximately 1 %. The objective of this research is to assess the effectiveness and efficacy of analytical models in predicting the structural and mechanical behaviour of components produced through fused deposition modelling.

i Надоели баннеры? Вы всегда можете отключить рекламу.
iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.
i Надоели баннеры? Вы всегда можете отключить рекламу.

ИССЛЕДОВАНИЕ МЕХАНИЧЕСКИХ ХАРАКТЕРИСТИК FDM ДЕТАЛЕЙ (3D ПЕЧАТИ): ЭМПИРИЧЕСКИЕ И КОМПЬЮТЕРНЫЕ МЕТОДЫ

Моделирование с наплавлением, также называемое изготовлением наплавленных нитей, представляет собой метод аддитивного производства, который привлек значительное внимание в различных отраслях промышленности из-за его разнообразных применений. В этой работе исследуются предельная прочность на разрыв и модуль упругости образцов полимолочной кислоты (PLA), напечатанных на 3D-принтере, в соответствии со стандартом ISO-527-2-2012. Механические характеристики созданных деталей рассматриваются как с экспериментальной, так и с расчетной стороны. Метод конечных элементов в среде ANSYS использовался для компьютерных расчетов нагрузки и прочности. Образцы для растяжения изготавливаются с использованием подхода моделирования наплавления. Экспериментальные результаты были использованы для получения всех основных инженерных констант, необходимых для оценки механического поведения. Обоснованность теоретической модели была подтверждена путем всестороннего сравнения со значительным объемом экспериментальных данных, демонстрирующих средние ошибки примерно 1 %. Целью данного исследования является оценка эффективности и действенности аналитических моделей при прогнозировании структурного и механического поведения компонентов, полученных с помощью моделирования методом послойного наплавления.

Текст научной работы на тему «STUDY OF THE MECHANICAL CHARACTERISTICS OF FDM (3D PRINTED) PARTS: EMPIRICAL AND COMPUTATIONAL METHODS»

SRSTI 55.24.99

https://doi.org/10.48081/MFBQ8991

*A. Rakishev1, B. Donenbayev2, K. R. Jamaludin3

1,2Abylkas Saginov Karaganda Technical University,

Republic of Kazakhstan, Karaganda;

3Universiti Teknologi Malaysia, Malaysia, Kuala Lumpur;

*e-mail: a.rakishev@kstu.kz

STUDY OF THE MECHANICAL CHARACTERISTICS OF FDM

(3D PRINTED) PARTS: EMPIRICAL AND COMPUTATIONAL METHODS

Fused deposition modelling, alternatively referred to as Fused Filament

Fabrication, is an additive manufacturing technique that has garnered significant

attention across various industries due to its diverse applications. This research

investigates the ultimate tensile strength and elastic modulus of 3D-printed Polylactic

acid samples, following the ISO-527-2-2012 standard. The mechanical performance

of the created parts is considered from both experimental and computational points

of view. The finite element method within the ANSYS environment was employed for

computer-based load and strength calculations.

Tensile specimens are fabricated using the Fused deposition modelling approach.

The experimental outcomes were utilised to derive all the essential engineering constants

required for evaluating the mechanical behaviour. The validity of the theoretical model

has been confirmed through a comprehensive comparison with a substantial volume of

experimental data, exhibiting mean errors of approximately 1 %.

The objective of this research is to assess the effectiveness and efficacy

of analytical models in predicting the structural and mechanical behaviour of

components produced through fused deposition modelling.

Keywords: additive technology, fused deposition modelling (FDM), PLA,

mechanical properties, analytical model.

Introduction

Achieving optimal product quality and affordability, coupled with rapid

production timelines and competitive pricing while adhering to safety standards and

other benchmarks, is essential for maintaining competitiveness in the worldwide

manufacturing arena. A crucial aspect of product development is the engineering design

journey, beginning with requirement identification and culminating in a prototype primed

for manufacturing. The industrial perspective has shifted from conventional product

development approaches to additive technology, owing to the substantial capacity of

additive manufacturing techniques to curtail product development cycles and expenses.

Additive technologies, commonly known as 3D printing, have demonstrated

significant relevance and potential across various scientific disciplines. These

technologies involve creating three-dimensional objects by adding material layer by

layer, as opposed to traditional subtractive manufacturing methods that involve cutting

away material from a solid block.

Additive technologies are extensively used in scientific research for rapid prototyping

and iterative design. Scientists and researchers can quickly create physical models of

complex structures, devices, or experimental setups, allowing them to visualise and test

ideas more effectively. Also, additive technologies can fabricate intricate and complex

geometries that are challenging or impossible to produce using traditional manufacturing

methods. This is particularly valuable in fields such as aerospace, materials science, and

nanotechnology. It should also be noted that 3D printing enhances science education

by providing tangible, hands-on experiences. It enables students and the general public

to interact with physical models, enhancing understanding and engagement in various

scientific concepts. One of the main advantages Additive technologies are explored

for sustainable practices, such as recycling plastics to create 3D printing filament and

fabricating energy-efficient components. Overall, additive technologies have a broad

and transformative impact on scientific research, offering innovative solutions across

diverse disciplines and fostering new avenues for exploration and discovery.

There are seven categories of additive manufacturing (AM) processes [1]. These

categories are based on the type of energy source and the materials used. Thus, parts

can be printed using various additive manufacturing processes, including Material

Extrusion, Photopolymerization, Jetting, Lamination, and other techniques. Each of

these processes has its own unique characteristics, advantages, and limitations, making

them suitable for different applications and industries. These processes offer a wide

range of options for AM. As mentioned earlier each process has its own advantages,

such as speed, accuracy, material compatibility, and post-processing requirements. The

choice of which process to use depends on factors like the intended application, material

requirements, part complexity, and production volume.

As technology continues to evolve, new AM processes and variations are being

developed, expanding the possibilities for creating complex and functional parts through

additive manufacturing. It’s essential to stay up-to-date with the latest advancements

in the field to make informed decisions about which process to use for a particular

project [2].

Among AM processes Material Extrusion is an inexpensive, faster printing method

and widely used technique. It is often referred to as Fused Deposition Modelling (FDM)

or Fused Filament Fabrication (FFF). There are several reasons for its popularity,

namely, accessibility and affordability, material variety, ease of use, build volume and

scalability, diverse applications, post-processing options, open-source community.

FDM uses a variety of thermoplastic materials that are extruded through a heated

nozzle to build up layers and create 3D objects. The choice of material depends on the

specific application, functional requirements, and desired properties of the final part.

The mechanical properties of different Fused Deposition Modelling materials can vary

significantly. Each material has its own set of strengths, weaknesses, and characteristics

that make it suitable for specific applications.

This article uses Polylactic Acid (PLA) material as an example. PLA is a widespread

and environmentally friendly bioplastic derived from renewable resources like cornstarch

or sugarcane. It’s easy to print, has low warping, and is suitable for a wide range of

applications. The print material plays a key role in the mechanical properties of the

manufactured part. This article proposes to conduct a study in order to determine the

mechanical properties of parts manufactured by FDM and compare the results with a

computer model. Currently, numerous studies have been made by different researchers

[3-7]. Kumar and Singh [3] use multi-objective optimization to examine mechanical

characteristics of PLA. The accepted mechanical properties of PLA were unified by

optimising the FDM process parameters using Taguchi method. Croccolo et al. [8]

compares obtained experimental data with an analytical model which was developed

to predict the strength and the stiffness characteristics of FDM parts. Obtained model

was compared with experimental and affirmed.

Current study investigates simulation models of specimens that previously were

tested under different axial loads. Considering the works observed earlier, the relevance

of the work is proved by the theoretical and practical significance of the topic.

Materials and Methods

This article mainly explores the mechanical properties of parts that are made using

3D printing. The experimental process includes samples made of polylactic acid, as

was mentioned earlier a widely used material for FDM parts. The selected filament

iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.

belongs to Filamentive and has a diameter of 2.85 mm in white colour. All samples

were printed on an Ultimaker S5 printer with one nozzle. The nozzle was 0.8 mm in

diameter. A Cura program was used to obtain the G-code. It is also known that print

settings have an impact on part quality [9–11]. For this reason, all print parameters

were constant for all samples. At the same time, past experience and recommendations

from equipment producers were taken into account in order to set parameters. Sample

density was set at 100 %.

The schematic diagram and dimensions of the samples were indicated in Figure 1.

ISO-527-2-2012 standard was taken into consideration to prototype the 3D model of

the tensile test specimens in the CAD software. The experiments were conducted on a

Hounsfield-H10Ks universal testing machine with a capacity of 10 kN. The uniaxial

test is one of the most commonly performed tests in the field of mechanical testing

of materials. This test is designed to assess the mechanical properties of a material

under different forces. It provides valuable information about how a material responds

to applied loads, allowing it to determine various mechanical characteristics. This

information is crucial for material selection, design, and ensuring the safety and reliability

of various engineering applications.

Figure 1 – Tensile specimen dimensions (mm)

In addition to the experimental model for strength assessment, a computer model

was also built by means of the ANSYS program. Computer simulations can be utilised to

predict and analyse the behaviour of material and structures under different conditions.

This software program is based on the finite element method (FEM). The finite element

method is a numerical technique used to solve complex engineering and mathematical

problems by breaking down a continuous system into smaller, more manageable

elements. However, it’s important to note that the accuracy of the simulation heavily

relies on the accuracy of the input data and assumptions made during the modelling

process.

Calculation scheme of the sample outlined on Figure 2. One end of the part is rigidly

fixed, the second end is subjected to a vertical tensile force of 2466 N.

Figure 2 – Specimen boundary conditions for tension

Young’s modulus was adopted on the basis of engineering tests of 5 samples

and corresponds to the arithmetic mean. Other values of the boundary conditions are

presented in Table 1.

Table 1 – Linear parameters of PLA specimens

Result and Discussion

The aim of this research is to assess the mechanical characteristics of components

produced using the FDM technique through a combination of experimental and

computational approaches. Tensile, flexural and compression loads were applied to

the specimens in figure 1.

Figure 3 represents the tensile and flexural test results for the set of specimens

investigated in this study. As indicated in this diagram, the specimens exhibit tensile

strengths of 61, 62.5, 61.9, 61.9, and 61.5 MPa (with a standard deviation of 0.5 MPa).

In this manner, it can be asserted that the trials are reliable.

Figure 3 – Stress-strain curves for PLA samples

Additionally, the empirical results align with the values presented in previous studies

conducted by other researchers [12, 13].

The numerical technique yielded a normal stress of 62.43 MPa along the Y-axis at

the midpoint of the estimated sample length (Figure 4). Thus, the value of the numerical

method slightly exceeds the arithmetic mean value of the stress obtained on the basis

of the experiment on 0.67 MPa.

Figure 4 – Y-axis normal stress and its value

at the midpoint of the estimated sample length

This problem was solved in a linear formulation, where Hooke’s law is satisfied, and

this is obvious from Figure 5. For evaluation purposes, we can determine the Young’s

Modulus utilising the following equation:

As a result, the same average value is obtained, which was obtained empirically.

Figure 5 – Graph of stress versus relative longitudinal strain

at the midpoint of a PLA sample

Conclusions

The primary outcome of the research paper revolves around the potential to forecast

the mechanical characteristics of Fused Deposition modelled components through the

utilisation of empirical data. Using experimentally derived mechanical attributes, a linear

formulation was employed to conduct a numerical computation. The variance between

the two techniques was negligible, constituting a mere 1 % disparity.

The suggested analytical model holds the potential to serve as a valuable instrument

for FDM designers and manufacturers. Specifically, it can offer guidance in assessing

attainable strength or stiffness by adjusting parameters related to the components.

Hence, it is feasible to employ analytical models for foreseeing the structural

performance of FDM components or similar types of AM components, relying on

material characteristics. As a result, these analytical models can support the 3D

printing procedure, thereby mitigating the necessity for time-intensive and expensive

conventional experimental methods.

REFERENCES

1 ISO/ASTM52900 Additive Manufacturing – General Principles – Terminology.

West Conshohocken, PA: ASTM International; 2015.

2 Parikh, H. H., Jadav, R., Joshi, P. 3-D Printing: A Review of Manufacturing

Methods, Materials, Scope and Challenges, and Applications//Lecture Notes in

Mechanical Engineering, 2023 P. 243–256.

3 Kumar, K., Singh, H. Multi-Objective Optimization of Fused Deposition

Modeling for Mechanical Properties of Biopolymer Parts Using the Grey-Taguchi

Method//Chinese Journal of Mechanical Engineering. 2023. – 36:30

4 Khalili, A., Kami, A., Abedini, V. Tensile and Flexural Properties of 3D-Printed

Polylactic Acid/Continuous Carbon Fiber Composite // Mechanics of Advanced

Composite Structures 10. 2023. – 407 – 418.

5 Cerda-Avila, S. N., Medellín-Castillo, H. I. and Lim, T. Analytical models

to estimate the structural behaviour of fused deposition modelling components//Rapid

Prototyping Journal, 2021. – Vol. 27 № 4, P. 658–670.

6 Cuan-Urquizo, E., Barocio, E., Tejada-Ortigoza, V., Pipes, R. B.,

Rodriguez, C. A., Roman-Flores, A. Characterization of the Mechanical Properties

of FFF Structures and Materials : A Review on the Experimental, Computational and

Theoretical Approaches//Materials 2019, 12(6), 895.

7 Bragaglia, M., Cecchini, F., Paleari, L., Ferrara, M., Rinaldi, M., Nanni, F.

Modeling the fracture behavior of 3D-printed PLA as a laminate composite : Influence

of printing parameters on failure and mechanical properties // Composite Structures,

Volume 322, 2023, 117379.

8 Croccolo, D., De Agostinis, M., Olmi, G. Experimental characterization and

analytical modelling of the mechanical behaviour of fused deposition processed parts

made of ABS-M30//Comput. Mater. Sci. 79, 506–518. – 2013.

9 Xu, J., Xu, F., Gao, G. The Effect of 3D Printing Process Parameters on the

Mechanical Properties of PLA Parts//Journal of Physics: Conference Series, 2133 (2021)

iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.

012026, doi:10.1088/1742-6596/2133/1/012026.

10 Chacón, J. M., Caminero, M. A., García-Plaza, E. and Núñez, P. J. Additive

manufacturing of PLA structures using fused deposition modelling: Effect of process

parameters on mechanical properties and their optimal selection//Materials & Design,

(2017) Volume 124, P.143–157.

11 Chen, Y. K., Shi, T. C. and Zhang, J. H. Influence of Printing Parameters

on Properties of Fused Deposition Modeling ABS Samples Engineering Plastics

Application, 2019. – 47. – 47–52.

12 Laureto, J. J., Pearce, J. M. Anisotropic mechanical property variance between

ASTM D638-14 type i and type iv fused filament fabricated specimens. Polym. Test.

2018, 68, 294–301.

13 Dobos, J., Hanon, M. M., Oldal, I. Effect of infill density and pattern on the

specific load capacity of FDM 3D-printed PLA multi-layer sandwich, J Polym Eng

2022. – 42(2), 118–128.

Material received on 30.08.23.

*A. Ракишев1, Б. Доненбаев2, Х. Р. Джамалудин3

1,2Әбілқас Сағынов атындағы Қарағанды техникалық университеті,

Қазақстан Республикасы, Қарағанды қ.;

3Малайзия технология университеті, Малайзия, Куала-Лумпур.

Материал 30.08.23 баспаға түсті.

FDM (3D БАСЫЛҒАН) БӨЛШЕКТЕРІНІҢ МЕХАНИКАЛЫҚ

СИПАТТАМАЛАРЫН ЗЕРТТЕУ: ЭМПИРИКАЛЫҚ

ЖӘНЕ КОМПЬЮТЕРЛІК ӘДІСТЕР

Балқытып тұндырумен үлгілеу, сонымен қатар жіпті балқытумен

жасау әдісі, аддитивті өндіріс әдісі болып табылады. Әртүрлі пайдалану

мүмкіндіктеріне байланысты өндірістің әр саласында үлкен қызығушылыққа

ие. Бұл жұмыста ISO-527-2-2012 стандартына сәйкес 3 D басып шығарылған

полилактикалық қышқыл (PLA) үлгілерінің созылу күші мен серпімділік

модулі зерттеледі. Жасалған бөлшектердің механикалық сипаттамалары

тәжірибелік жағынан да, есептелген жағынан да қарастырылады.

Компьютердің жүктемесі мен беріктігін есептеу үшін ANSYS бағдарламасында

соңғы элементтер әдісі қолданылды.

Тәжірибе үлгілері балқытып тұндыру тәсілі арқылы дайындалды.

Тәжірибе нәтижелері механикалық сипаттамаларды бағалау үшін қажетті

барлық негізгі инженерлік константаларды алу үшін пайдаланылды.

Теориялық модельдің дұрыстығы шамамен 1 % орташа қателерді көрсететін

эксперименттік деректердің мәнімен жан-жақты салыстыру арқылы

расталды.

Бұл зерттеудің мақсаты балқытып тұндырумен үлгілеу арқылы алынған

компоненттердің механикалық қасиетерін болжаудағы аналитикалық үлгінің

тиімділігін бағалау болып табылады.

Кілтті сөздер: аддитивті технологиялар, балқытып тұндыру әдісі

(FDM), PLA, механикалық қасиеттер, аналитикалық үлгі.

*A. Ракишев1, Б. Доненбаев1, Х. Р. Джамалудин2

1,2Карагандинский технический университет имени

Абылкаса Сагинова, Республика Казахстан, г. Караганда;

3Университеты технологий Малайзии, Малайзия, Куала-Лумпур.

Материал поступил в редакцию 30.08.23.

ИССЛЕДОВАНИЕ МЕХАНИЧЕСКИХ ХАРАКТЕРИСТИК FDM

ДЕТАЛЕЙ (3D ПЕЧАТИ): ЭМПИРИЧЕСКИЕ

И КОМПЬЮТЕРНЫЕ МЕТОДЫ

Моделирование с наплавлением, также называемое изготовлением

наплавленных нитей, представляет собой метод аддитивного производства,

который привлек значительное внимание в различных отраслях

промышленности из-за его разнообразных применений. В этой работе

исследуются предельная прочность на разрыв и модуль упругости образцов

полимолочной кислоты (PLA), напечатанных на 3D-принтере, в соответствии

со стандартом ISO-527-2-2012. Механические характеристики созданных

деталей рассматриваются как с экспериментальной, так и с расчетной

стороны. Метод конечных элементов в среде ANSYS использовался для

компьютерных расчетов нагрузки и прочности.

Образцы для растяжения изготавливаются с использованием подхода

моделирования наплавления. Экспериментальные результаты были

использованы для получения всех основных инженерных констант, необходимых

для оценки механического поведения. Обоснованность теоретической модели

была подтверждена путем всестороннего сравнения со значительным

объемом экспериментальных данных, демонстрирующих средние ошибки

примерно 1 %.

Целью данного исследования является оценка эффективности и

действенности аналитических моделей при прогнозировании структурного и

механического поведения компонентов, полученных с помощью моделирования

методом послойного наплавления.

Ключевые слова: аддитивные технологии, метод послойного наплавления

(FDM), PLA, механические свойства, аналитическая модель.

i Надоели баннеры? Вы всегда можете отключить рекламу.