Научная статья на тему 'Study of kinetic and structural characteristics of membranes in purification process of copper-containing solutions by electrodialysis'

Study of kinetic and structural characteristics of membranes in purification process of copper-containing solutions by electrodialysis Текст научной статьи по специальности «Химические технологии»

CC BY
43
17
i Надоели баннеры? Вы всегда можете отключить рекламу.
Ключевые слова
ELECTRODIALYSIS / ION EXCHANGE MEMBRANES / COPPER-CONTAINING SOLUTIONS / STRUCTURAL CHARACTERISTICS / KINETIC CHARACTERISTICS / ЭЛЕКТРОДИАЛИЗ / ИОНООБМЕННЫЕ МЕМБРАНЫ / МЕДЬСОДЕРЖАЩИЕ РАСТВОРЫ / СТРУКТУРНЫЕ ХАРАКТЕРИСТИКИ / КИНЕТИЧЕСКИЕ ХАРАКТЕРИСТИКИ

Аннотация научной статьи по химическим технологиям, автор научной работы — Shestakov Konstantin V., Lazarev Sergey I., Polyanskiy Konstantin K.

This paper presents the analyzed results of the study of structural and kinetic characteristics of ion-exchange membranes MA-40, MK-40, PC Acid 60 and CM(H) (RALEX®) during separation and concentration of copper-containing solutions in the electrodialysis process. In particular, the sizes of amorphous and crystalline regions of the membrane material structure and the degree of crystallinity were determined, the retention factor of cation Cu2+ and anions NO3- and SO42- were calculated. It was found that for mA-40 and MK-40 membranes the structure of the membrane material changes during water saturation, what in turn can affect the kinetics of mass transfer through the membrane. In addition a low sensitivity of membrane material to mechanical and thermal loads under cyclic operating conditions is detected. This is confirmed by the coincidence of diffraction angles at which peaks of dry and water-saturated samples of membranes are observed, and by a non-significant change in the x-ray degree of crystallinity of the membrane material within 5-7% in the smaller side for water-saturated samples. The data, which were obtained during this work, indicate a relatively good cleaning of copper-containing solutions by electrodialysis from extraneous ions (NO3- and SO42-) at high values of Cu2+ cations concentration. In the initial section, slightly less than 90% of Cu2+ cations are retained, while NO3- and SO42- anions remain significantly less - about 16.7% and 25.7%, respectively. It should be noted that the most optimal parameters of electrodialysis are required for maximizing the efficiency of concentration.

i Надоели баннеры? Вы всегда можете отключить рекламу.
iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.
i Надоели баннеры? Вы всегда можете отключить рекламу.

ИССЛЕДОВАНИЕ КИНЕТИЧЕСКИХ И СТРУКТУРНЫХ ХАРАКТЕРИСТИК МЕМБРАН В ПРОЦЕССЕ ЭЛЕКТРОДИАЛИЗНОЙ ОЧИСТКИ МЕДЬСОДЕРЖАЩИХ РАСТВОРОВ

В данной работе приведены проанализированные результаты исследования структурных и кинетических характеристик ионообменных мембран МА-40, МК-40, PC Acid 60 и CM(H) (RALEX®) при разделении и концентрировании компонентов медьсодержащих растворов в процессе электродиализа. В частности, определены размеры аморфных и кристаллических областей структуры материала мембран, рентгеновская степень кристалличности, рассчитаны коэффициенты задержания мембранами катионов Cu2+, и анионов NO3- и SO42-. Для мембран МА-40 и МК-40 обнаружено, что в процессе насыщения водой структура материала мембран изменяется, что в свою очередь может влиять на кинетику массопереноса через мембрану, но при этом наблюдается малая чувствительность к механической и термической нагрузкам при циклических условиях эксплуатации. Это подтверждается совпадением углов дифракции, при которых наблюдаются пики сухих и водонасыщенных образцов мембран, и незначительным изменением рентгеновской степени кристалличности материала мембран в пределах 5-7% в меньшую сторону для водонасыщенных образцов. Данные, которые были получены в ходе выполнения работы, свидетельствуют об относительно хорошей очистке электродиализом медьсодержащих растворов от посторонних ионов (NO3- и SO42-) при высоких показателях концентрирования катионов Cu2+. В первой секции электродиализного аппарата удерживаются чуть меньше 90% катионов Cu2+, при этом анионов NO3- и SO42- в ней остается значительно меньше - около 16,7% и 25,7% соответственно. При этом стоит отметить, что с целью максимального повышения эффективности концентрирования требуется дальнейшие исследования оптимальных параметров электродиализа.

Текст научной работы на тему «Study of kinetic and structural characteristics of membranes in purification process of copper-containing solutions by electrodialysis»

DOI: 10.6060/ivkkt.20196207.5827

УДК: 66.087.97

ИССЛЕДОВАНИЕ КИНЕТИЧЕСКИХ И СТРУКТУРНЫХ ХАРАКТЕРИСТИК МЕМБРАН В ПРОЦЕССЕ ЭЛЕКТРОДИАЛИЗНОЙ ОЧИСТКИ МЕДЬСОДЕРЖАЩИХ РАСТВОРОВ

К.В. Шестаков, С.И. Лазарев, К.К. Полянский

Константин Валерьевич Шестаков *, Сергей Иванович Лазарев

Кафедра прикладной геометрии и компьютерной графики, Тамбовский государственный технический университет, ул. Советская, 106, Тамбов, Российская Федерация, 392000 E-mail: kostyanshestakov@mail.ru *, sergey.lazarev.1962@mail.ru

Константин Константинович Полянский

Кафедра коммерции и товароведения, Воронежский филиал РЭУ им. Г.В. Плеханова, ул. Карла Маркса, 67А, Воронеж, Российская Федерация, 394030 E-mail: kkpolyansky@mail.ru

В данной работе приведены проанализированные результаты исследования структурных и кинетических характеристик ионообменных мембран МА-40, МК-40, PC Acid 60 и CM(H) (RALEX®) при разделении и концентрировании компонентов медьсодержащих растворов в процессе электродиализа. В частности, определены размеры аморфных и кристаллических областей структуры материала мембран, рентгеновская степень кристалличности, рассчитаны коэффициенты задержания мембранами катионов Cu2+, и анионов NO3- и SO42-. Для мембран МА-40 и МК-40 обнаружено, что в процессе насыщения водой структура материала мембран изменяется, что в свою очередь может влиять на кинетику массопере-носа через мембрану, но при этом наблюдается малая чувствительность к механической и термической нагрузкам при циклических условиях эксплуатации. Это подтверждается совпадением углов дифракции, при которых наблюдаются пики сухих и водонасыщенных образцов мембран, и незначительным изменением рентгеновской степени кристалличности материала мембран в пределах 5-7% в меньшую сторону для водонасыщенных образцов. Данные, которые были получены в ходе выполнения работы, свидетельствуют об относительно хорошей очистке электродиализом медьсодержащих растворов от посторонних ионов (NO3-и SO42-) при высоких показателях концентрирования катионов Cu2+. В первой секции электродиализного аппарата удерживаются чуть меньше 90% катионов Cu2+, при этом анионов NO3- и SO42- в ней остается значительно меньше - около 16,7% и 25,7% соответственно. При этом стоит отметить, что с целью максимального повышения эффективности концентрирования требуется дальнейшие исследования оптимальных параметров электродиализа.

Ключевые слова: электродиализ, ионообменные мембраны, медьсодержащие растворы, структурные характеристики, кинетические характеристики

STUDY OF KINETIC AND STRUCTURAL CHARACTERISTICS OF MEMBRANES IN PURIFICATION PROCESS OF COPPER-CONTAINING SOLUTIONS BY ELECTRODIALYSIS

K.V. Shestakov, S.I. Lazarev, K.K. Polyanskiy

Konstantin V. Shestakov *, Sergey I. Lazarev

Department of Applied Geometry and Computer Graphics, Tambov State Technical University, Sovetskaya st., 106, Tambov, 392000, Russia

E-mail: kostyanshestakov@mail.ru *, sergey.lazarev.1962@mail.ru Konstantin K. Polyanskiy

Department of Commerce and Commodity Science, Voronezh Branch of RUE named after G.V. Plekhanov, Karl Marks st., 67, Voronezh, 394030, Russia E-mail: kkpolyansky@mail.ru

This paper presents the analyzed results of the study of structural and kinetic characteristics of ion-exchange membranes MA-40, MK-40, PC Acid 60 and CM(H) (RALEX®) during separation and concentration of copper-containing solutions in the electrodialysis process. In particular, the sizes of amorphous and crystalline regions of the membrane material structure and the degree of crystallinity were determined, the retention factor of cation Cu2+ and anions NO3- and SO42- were calculated. It was found that for mA-40 and MK-40 membranes the structure of the membrane material changes during water saturation, what in turn can affect the kinetics of mass transfer through the membrane. In addition a low sensitivity of membrane material to mechanical and thermal loads under cyclic operating conditions is detected. This is confirmed by the coincidence of diffraction angles at which peaks of dry and water-saturated samples of membranes are observed, and by a non-significant change in the x-ray degree of crystallinity of the membrane material within 5-7% in the smaller side for water-saturated samples. The data, which were obtained during this work, indicate a relatively good cleaning of copper-containing solutions by electrodialysis from extraneous ions (NO3- and SO42-) at high values of Cu2+ cations concentration. In the initial section, slightly less than 90% of Cu2+ cations are retained, while NO3- and SO42- anions remain significantly less - about 16.7% and 25.7%, respectively. It should be noted that the most optimal parameters of electrodialysis are required for maximizing the efficiency of concentration.

Key words: electrodialysis, ion exchange membranes, copper-containing solutions, structural characteristics, kinetic characteristics

Для цитирования:

Шестаков К.В., Лазарев С.И., Полянский К.К. Исследование кинетических и структурных характеристик мембран в процессе электродиализной очистки медьсодержащих растворов. Изв. вузов. Химия и хим. технология. 2019. Т. 62. Вып. 7. С. 65-71

For citation:

Shestakov K.V., Lazarev S.I., Polyanskiy K.K. Study of kinetic and structural characteristics of membranes in purification process of copper-containing solutions by electrodialysis. Izv. Vyssh. Uchebn. Zaved. Khim. Khim. Tekhnol. 2019. V. 62. N 7. P. 65-71

INTRODUCTION

During a long period electrodialysis was mainly used for desalination and demineralization of water. However, in recent decades there is an interest in the use of electrodialysis in other sectors of industry related to the separation and purification of liquid and gas mixtures: hydrometallurgy, electroplating, food processing, medicine, etc. [1-5].

One of the main directions of electrodialysis processes development as well as devices design improvement and process parameters optimization is increasing in plant capacity. The analysis of the kinetic and structural membrane characteristics allows to study the possibility of process parameters optimizing because the structure and composition of membranes define the basis of processes mechanisms taking place in the system "membrane - environment" [6-9]. In addition, the ratio of crystal and amorphous phases, which is found in this study, is important for the mechanical properties of polymer membranes, which may be associated with such operating characteristics as permeability decreasing rate during experimental studies [10].

The aim of this work is to study the structural and kinetic characteristics of ion-exchange membranes MA-40, MK-40, PC Acid 60 and CM(H) (RALEX) in

the separation and concentration of copper-containing solutions during electrodialysis, the study of which will help to determine and use the optimal parameters of the most effective electrodialysis process in the separation of copper-containing solutions.

EXPERIMENTAL PART

Domestic ion-exchange membranes MK-40, MA-40 produced by "Schekinoazot" Ltd., as well as PCAcid 60 and CM(H) (RALEX), which are produced by the German company PCCell GmbH and the Czech company MEGA respectively, were chosen for the research. The choice is justified by the fact that these membranes are widely used in industry and therefore research will be relevant.

Heterogeneous ion-exchange membranes MK-40 and MA-40 are a mechanical composition consisting of particles of milled granulated ionite in size from 5 to 50 ^m, which are pressed into the low-pressure polyethylene matrix and reinforced with capron fabric [11, 12]. Membranes PC Acid 60 and CM(H) (RALEX), in turn, are made of polyethylene and dispersed particles of the ionite, the size of which no more than 10-12 ^m, by the method of hot rolling [13]. In more detail, the characteristics of the membranes are presented in table 1 [14-16].

K.B. fflecraKOB, C.H. ,Ha3apeB, K.K. no^HHCKHÜ

One of the stages of the research work was the study of kinetic characteristics of ion-exchange membranes PC Acid 60 and CM(H) (RALEX) in the process of electrodialysis separation of copper-containing

solution. The studies were carried out on an electrodialysis plant comprising a membrane cell and four independent lines - one for dilute and electrode washing and two are for the concentrate of the substances from which the initial solution is purified.

Table 1

Characteristics of membranes

Membrane type MA-40 MK-40 PC Acid 60 CM(H) (RALEX®)

Thickness, mm 0.3-0.5 0.3-0.5 0.16-0.2 < 0.45

Tensile strength, Mpa, not less than 11.9 11.9 0.39-0.49 -

Surface electrical resistivity: Ohms per cm2, max 10.0 11.0 2 8

Ionic group -N3- SO3H - R-SO3

Ionic form - counter ion Cl- Na+ Cl- Na+

Inert binder polyethylene polyethylene polyethylene polyethylene

Reinforcing material polyamide polyamide polyester polyester

As a model solution was selected an aqueous solution of CuSO4 (0,01 M/l) with addition of 0,012 M/l of disodium salt of ethylenediaminetetraacetic acid CK)H14N2Na2O8-2H20 (EDTA-N2) to prevent precipitation of metals and for creating complex cations, which had to retain the cations of the metals in the primary section for diluate. Besides, NaNO3 (0,05 M/l) was added to the solution for a more stable electrodialysis process as well as a few drops of HNO3 for the pH level decreasing. This solution was initially placed into the section for diluate; deionized water was added to the concentrate section and NaSO4 (0,5 M/l) was added to the electrode washing section. The initial volume of liquid in each section was 5 liters.

The separation process was carried out at a voltage of 30 V. During the experiment samples of 50 ml were collected from all sections every 15 min to measure the substance concentration.

After the concentration measuring retention factors R were calculated for each membrane for the relevant ions by the equation [20]:

R = (l --^V 100%, (1)

where Cf - the concentration of the solute in the final solution, kg/m3; Cn - the concentration of the solute in the initial solution, kg/m3.

Another stage of the work was the structural characteristics study of the samples of ion-exchange membranes MA-40 and MK-40. These membranes were chosen to study structural characteristics due to their greater availability and due to the similarity with the membranes PCAcid 60 and CM(H) (RALEX), as they have the same inert binder.

Prior to the experimental studies, two samples were prepared for each type of membrane - one dry and one water-saturated. These samples were analyzed

using diffractometer Dron-3. Radiographs were recorded in the region of high angles of 29 (2° to 40°), and the radiation was CuKa (A = 1,54 A).

Then the size of amorphous and crystalline regions was determined by the Scherrer equation [17, 18]:

L = A(/3cos™y\ (2)

where X - the wavelength of x-ray radiation, 2d - the angle of diffraction, / - the width of the reflex at half-height of the peak.

The calculation of the x-ray degree of crystal-linity (DC) was carried out by the method of S.L. Ag-garwal and G.P. Tilley [19]:

CK = -^•100%, (3)

where Ic - the integral intensity of the crystalline phase; Ia - the integral intensity of the amorphous phase.

RESULTS AND DISCUSSIONS

Analysis of ion concentrations in samples and calculation of retention factors (table 2 and Fig. 1) revealed that the creation of complex Cu - EDTA-Na2 cations allows to hold a little less than 90% Cu2+ cations in the diluate section, while the amount of anions NO3" and SO42" are significantly less - about 16.7% and 25.7%, respectively.

This indicates a relatively good purification from extraneous ions and the possibility of electrodial-ysis application for the simultaneous concentration of valuable Cu2+ cations and their purification from extraneous ions, in particular NO3- and SO42

The following x-ray diffractograms for membrane dry and water saturated samples were obtained as a result of experiments, which were carried out to study the structural characteristics of chosen membranes (Fig. 2).

Table 2

Contents of the studied components in the section for

diluate before and after the experiment Таблица 2. Содержание исследуемых компонентов до и после проведения эксперимента в секции для дилюата

Time, s Concentration, mg/l %

Cu2+

0 460 100

2700 440 89.91

NO3-

0 3715.24 100

2700 658.2 16.65

SO42-

0 1182.2 100

2700 322.64 25.65

The detected coincidence of diffraction angles indicates a low sensitivity of macromolecules to mechanical and thermal workloads under cyclic operating conditions.

Parameters of supramolecular structure of MA-40 and MK-40 membranes are calculated and presented in the table 2.

The data, which are obtained as a result of the DC calculation according to the equation (2), have shown that for the dry sample of the MA-40 membrane DC is 70.66% and for the water-saturated one it is 63.58%. For the MK-40 membrane these parameters are 68.26% and 63.81% respectively. The obtained DC results do not contradict the literature data as DC of polyethylene, which is an inert binder in membranes, varies within 40-80% [21, 22].

Fig. 1. The dependence of the retention factors of ion-exchange membranes on time: 1 - cations Cu2+ by anion exchange membrane PC Acid 60, 2 - anions NO3- by cation exchange membrane CM(H) (RALEX®), 3 - anions SO42- by cation exchange membrane CM(H) (RALEX®) Рис. 1. Зависимости коэффициента задержания ионообменных мембран от времени: 1 - катионов Cu2+ анионообменной мембраной PCAcid 60, 2 - анионов NO3" катионооменной мембраной CM(H) (RALEX®), 3 - анионов SO42" катионооменной мембраной CM(H) (RALEX®)

The diffractograms for the dry and water-saturated samples of the MA-40 membrane depict that they have two pronounced maximum at diffraction angles of 21° and 23.5° and one unobtrusive maximum at an angle of 20°. In the dry sample the maximum at an angle of 21 ° is more intensive, while the peaks of both samples at an angle of 23.5° are the same. The hardly noticeable maximum (20°) is more intensive in the water-saturated sample.

All peaks obtained for the membrane MK-40 samples are the same as for the membrane MA-40, excepting the amorphous peak located at an angle of diffraction 19° instead of 20°. It is worth noting that all the peaks on the diffractogram for the dry sample are more intensive than for the water-saturated one.

b

Fig. 2. X-ray diffractograms of samples of ion-exchange membranes MA-40 (a) and MK-40 (б) in geometry for reflection in

dry (1) and water-saturated (2) membrane states Рис. 2. Рентгеновская дифрактограмма образцов ионообменных мембран МА-40 (а) и МК-40 (б) в геометрии на отражение при сухом (1) и водонасыщенном (2) состояниях мембраны

b

Fig. 3. Results of full-profile analysis of experimental diffractogram for dry (a) and water-saturated (б) samples of MA-40 membrane Рис. 3. Результаты профильного анализа экспериментальной дифрактограммы для сухого (а) и водонасыщенного (б) образцов мембраны МА-40

Table 3

Structural parameters of МA-40 и М^40 membranes Таблица 3. Структурные характеристики мембран МК-40 и МА-40

Membrane sample The position of the maximum 20, ° The half-width of peak ß, rad L, nm

МА-40

Crystalline phase

Dry 0.44 14.4

Water-satu- 21.5 0.46 13.77

rated

Dry 0.61 5.22

Water-satu- 23 0.71 4.49

rated

Amorphous phase

Dry 0.14 13.11

Water-satu- 20 0.43 4.27

rated

МК-40

iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.

Crystalline phase

Dry 0.32 19.8

Water-saturated 21.5 0.47 13.48

Dry 0.81 3.93

Water-satu- 23 0.7 4.55

rated

Amorphous phase

Dry 0.14 11.03

Water-saturated 19 0.17 9.08

It is necessary to note that the DC values of dry and water-saturated membrane samples of each type are smaller for water-saturated ones in the range of 57%. This fact confirms the previously mentioned assumption about low sensitivity of membrane material macromolecules to mechanical and thermal loads under cyclic operating conditions.

l,a.u. 800

600

400

200

10

20

30

40

50

60 20°

b

Fig. 4. Results of full-profile analysis of experimental diffractogram for dry (a) and water-saturated (б) samples of MK-40 membrane Рис. 4. Результаты профильного анализа экспериментальной дифрактограммы для сухого (а) и водонасыщенного (б) образцов мембраны МК-40

а

The full-profile analysis of the dry and water-saturated samples was performed to quantify the observed changes in the MA-40 and MK-40 polymer membranes, which are caused not only because of the multilayered composition, but also because of the variety of possible conformations of polyethylene macro-molecules. To do this the background of incoherent scattering from the primary x-ray diffractograms was previously deducted by traditional method: by drawing a tangent to the points of the x-ray scattering intensity curve at the angles 29 from 10° to 40°. The profiles of wide-angular scattering and the possible conformations of the polyethylene macromolecules are presented in Fig. 3 and 4. Features of x-ray spectra in the specified range of diffraction angles were simulated by five or six gaussians (see Fig. 3 and 4).

CONCLUSIONS

The obtained data demonstrate a relatively good purification of copper-containing solutions from extraneous ions by electrodialysis.

ЛИТЕРАТУРА

1. Заболоцкий В.И., Березина Н.П., Никоненко В.В., Шудренко А. А. Развитие мембранных технологий на основе электродиализа в России. Наука Кубани. 2010. № 3. С. 4-10.

2. Dubrawski M., Czaplicka M., Mrozowski J. The application of electrodialysis to the treatment of industrial copper and zinc electrolytes. Desalin. Water Treat. 2015. V. 55. N 2. P. 389-400. DOI: 10.1080/19443994.2014.913995.

3. Peraki M., Ghazanfari E., Pinder G.F., Harrington T.L. Electrodialysis: An Application for the Environmental Protection in Shale-gas Extraction. J. Sep. Purif. Technol. 2016. V. 161. P. 96-103. DOI: 10.1016/j.seppur.2016.01.040.

4. Локшин А.А., Володин Д.Н., Локшина А.А. Установки электродиализа для повышения эффективности систем оборотного водоснабжения промышленных предприятий. Трансп. и хран. нефтепр. и углевод. сырья. 2014. № 3. С. 33-36.

5. Нифталиев С.И., Козадерова О.А., Ким К.Б., Вельо Ф. Применение электродиализа для получения кислоты и щелочи из концентрированного раствора сульфата натрия. Вестн. ВГУИТ. 2014. № 4 (62). С. 175-178.

6. Котовенко Е.А., Мирошниченко Е.Ю. Один из подходов к исследованию и моделированию процессов в системе полимерная мембрана - вода. Матем. мет. в техн. и технол. -ММТТ. 2013. № 4. С. 48-50.

7. Morgan J.M., Datta R. Understanding the gas diffusion layer in proton exchange membrane fuel cells. I. How its structural characteristics affect diffusion and performance. J. Power Sources. 2014. N 251. P. 269 - 278. DOI: 10.1016/j.jpowsour.2013.09.090.

8. Кувардина Е.М., Ниязи Ф. Ф., Дебердеев Р. Я., Заиков Г. Е., Кувардин Н. В. Влияние полиамидных мембран на производительность процессов ультрафильтрации. Вестн. Казан. технол. ун-та. 2014. Т. 17. № 3. С. 131-134.

9. Абдуллин И.Ш. Особенности физико-химического модифицирования мембранных материалов. Вестн. технол. унтер. 2015. Т. 18. № 11. С. 137-143.

10. Свирская С.Н., Трубников И.Л. Строение и классификация полимеров. Ростов-на-Дону: ЮФУ. 2007. 24 с.

The structure of ion-exchange membranes MK-40 and MA-40 material varies slightly within 57% in the process of water saturation. This fact and the detected coincidence of diffraction angles of membrane dry and water-saturated sample peaks indicate a low sensitivity of the membrane material macromole-cules to mechanical and thermal workloads under cyclic operating conditions.

The results of the study can be part of further and deeper studies of the optimal parameters of elec-trodialysis, which will maximize the efficiency of concentration.

The authors express their gratitude to the staff of the laboratory 326 of the Department of Chemistry and Industrial Chemistry of the University of Genoa (Italy), and the staff of the scientific and educational center "Waste-free and low-waste technologies" (Russia) for their help in doing this work.

REFERENCES

1. Zabolotskiy V.I., Berezina N.P., Nikonenko V.V., Shudrenko A.A. The evolution of membranous technologies on the base of electrodialysis method in Russia. Nauka Ku-bani. 2010. N 3. P. 4-10 (in Russian).

2. Dubrawski M., Czaplicka M., Mrozowski J. The application of electrodialysis to the treatment of industrial copper and zinc electrolytes. Desalin. Water Treat. 2015. V. 55. N 2. P. 389-400. DOI: 10.1080/19443994.2014.913995.

3. Peraki M., Ghazanfari E., Pinder G.F., Harrington T.L. Electrodialysis: An Application for the Environmental Protection in Shale-gas Extraction. J. Sep. Purif. Technol. 2016. V. 161. P. 96-103. DOI: 10.1016/j.seppur.2016.01.040.

4. Lokshin A.A., Volodin D.N., Lokshina A.A. Installation electrodialysis to improve recycling systems industrial enterprises. Transp. Khran. Neftepr. Uglevod. Syr'ya. 2014. N 3. P. 33-36 (in Russian).

5. Niftaliev S.I., Kozaderova O.A., Kim K.B., Vel'o F. Electrodialysis in the conversion step of the concentrated salt solutions in the process of battery scrap. Vestn. VGUIT. 2014. N 4 (62). P. 175-178 (in Russian).

6. Kotovenko E.A., Miroshnichenko E.Yu. One of the approaches to research and modeling of processes in the "system polymer membrane - water". Matem. Met. Tekhn. Tekhnol. -MMTT. 2013. N 4. P. 48-50 (in Russian).

7. Morgan J.M., Datta R. Understanding the gas diffusion layer in proton exchange membrane fuel cells. I. How its structural characteristics affect diffusion and performance. J. Power Sources. 2014. N 251. P. 269 - 278. DOI: 10.1016/j.jpowsour.2013.09.090.

8. Kuvardina E.M., Niyazi F.F., Deberdeev R.Ya., Zaikov G.E., Kuvardin N.V. The influence of polyamide membranes on the performance of ultrafiltration. Vestn. Kaz. Tekhol. Univ. 2014. V. 17. N 3. P. 131-134 (in Russian).

9. Abdullin ISh., Nefed'ev E.S., Ibragimov R.G., Gallyamov R.T. Features of physical and chemical modification of membrane materials. Vestn. Tekhnol. Univ. 2015. V. 18. N 11. P. 137-143 (in Russian).

11. Нифталиев С.И., Козадерова О.А., Власов Ю.Н., Ким К.Б., Матчина К.С. Структурно-кинетические параметры ионообменных мембран МК-40 и МА-41 в растворах нитрата аммония. Сорбц. и хром. проц. 2015. Т. 15. Вып. 5. С. 708-713.

12. Акберова Э.М., Малыхин М.Д. Структурные и физико-химические характеристики анионообменных мембран МА-40 и МА-41 после термохимического воздействия. Сорбц. и хром. проц. 2014. Т. 14. Вып. 2. С. 232-239.

13. Желонкина Е.А., Шишкина С.В. Физико-химические свойства ионообменных мембран в растворах, содержащих многозарядные ионы. Вестн. технол. универ. 2016. Т. 19. № 9. С. 132-136.

14. ООО «Щекиноазот». Монополярные мембраны [Электронный ресурс]. URL: http://www.azotom.ru/monopoly-arnye-membrany/ (Дата доступа 8.04.18).

15. PCCell GmbH [Электронный ресурс]. URL: http://www.pca-gmbh.com/publi/PCAMembranes.pdf (Дата доступа 8.04.18).

16. Mega [Электронный ресурс]. URL: https://www.mega.cz/ files/datasheet/MEGA-RALEX-CMH-PES-en.pdf (Дата доступа 8.04.18).

17. Лазарев С.И., Головин Ю.М., Яновская Э.Ю., Лазарев Д.С., Шестаков К.В. Анализ структурных характеристик ацетатцеллюлозной мембраны МГА-95 при их различном физическом состоянии рентгенодифрактометрическим методом. Вестн. ТГТУ. 2016. Т. 22. № 4. С. 624-632.

18. Monshi A., Foroughi M.R., Monshi M.R. Modified Scherrer Equation to Estimate More Accurately Nano-Crystallite Size Using XRD. World J. Nanosci. Eng. 2012. N 2. P. 154-160. DOI: 10.4236/wjnse.2012.23020.

19. Арисова В.Н. Структура и свойства КМ. Волгоград: ВолгГТУ. 2008. 96 с.

20. Шестаков К.В., Лазарев С.И. Исследование кинетических характеристик обратноосмотического разделения промышленных растворов, содержащих никель. Матер. междун. науч.-практич. конф. «В.И. Вернадский: устойчивое развитие регионов». Тамбов: Изд-во ТГТУ. 2016. С. 73-78.

21. Fukurawa T., Sato H., Kita Y., Matsukawa K., Yamaguchi H., Ochai S., Siesler H.W., Ozaki Y. Molecular Structure, Crystallinity and Morphology of Polyethylene/Polypropylene Blends Studied by Raman Mapping, Scanning Electron Microscopy, Wide Angle X-Ray Diffraction, and Differential Scanning Calorimetry. Polym. J. 2006. V. 38. N. 11. P. 1127-1136. DOI: 10.1295/polymj.PJ2006056.

22. Деев И. А., Бурындин В.Г., Ельцов О. С. Исследование возможности применения данных НПВО ИК-Фурье спектроскопии для оценки степени кристалличности полиэтилена. Вестн. Казан. технол. ун-та. 2011. Т. 14. № 1. С. 90-99.

10. Svirskaya S.N., Trubnikov IL. Structure and classification of polymers. Rostov-na-Donu: YuFU. 2007. 24 p.

11. Niftaliev S.I., Kozaderova O.A., Vlasov Yu.N., Kim K.B., Matchina K.S. Structural and kinetic parameters of the ion exchange membranes МС-40 and MA-41 in solutions of ammonium nitrate. Sorbts. Khrom. Prots. 2015. V. 15. N 5. P. 708-713 (in Russian). DOI: 10.17308/sorpchrom.2015.15/324.

12. Akberova E.M., Malykhin M.D. Structural and physico-chemical characteristics of the anion-exchange membranes MA-40 and MA-41 after thermochemical treatment. Sorbts.Khrom. Prots. 2014. V. 14. N 2. P. 232-239 (in Russian).

13. Zhelonkina E.A., Shishkina S.V. Physico-chemical properties of ion-exchange membranes in solutions containing multi-charged ions. Vestn. Tekhnol. Univ. 2016. V. 19. N 9. P. 132-136 (in Russian).

14. Ltd. "Innovative Enterprise" Shchekinoazot". Monopolar membranes. URL: http://www.azotom.com/monopolyarnye-membrany/

15. PCCell GmbH [Электронный ресурс]. URL: http://www.pca-gmbh.com/publi/PCAMembranes.pdf (Дата доступа 8.04.18).

16. Mega. URL: https://www.mega.cz/files/datasheet/MEGA-RALEX-CMH-PES-en.pdf .

17. Lazarev S.I., Golovin Yu.M., Yanovskaya E.Yu., Lazarev D.S., Shestakov K.V. The analysis of structural characteristics of mga-95 membrane in different physical conditions by x-ray scattering method. Vestn. TGTU. 2016. V. 22. N 4. P. 624-632 (in Russian). DOI: 10.17277/vestnik.2016.04.pp.624-632

18. Monshi A., Foroughi M.R., Monshi M.R. Modified Scherrer Equation to Estimate More Accurately Nano-Crystallite Size Using XRD. World J. Nanosci. Eng. 2012. N 2. P. 154-160. DOI: 10.4236/wjnse.2012.23020.

19. Arisova V.N. Structure and properties of composite materials. Volgograd: VolgGTU. 2008. 96 p.

20. Shestakov K.V., Lazarev S.I. The study of kinetic characteristics of reverse osmosis separation of industrial solutions containing nickel. Conference proceedings «V.I. Vernadskii: ustoichivoe razvitie regionov». Tambov: Izd-vo TGTU. 2016. P. 73-78.

21. Fukurawa T., Sato H., Kita Y., Matsukawa K., Yamaguchi H., Ochai S., Siesler H.W., Ozaki Y. Molecular structure, crys-tallinity and morphology of polyethylene/polypropylene blends studied by raman mapping, scanning electron microscopy, wide angle x-ray diffraction, and differential scanning calorimetry. Polym. J. 2006. V. 38. N. 11. P. 1127-1136. DOI: 10.1295/polymj.PJ2006056.

22. Deev I. A., Buryndin V.G., El'tsov O.S. The study of the possibility of using IR-Fourier spectroscopy data for assessing the degree of crystallinity of polyethylene. Vestn. Kazan. Tekhnol. Univ. 2011. V. 14. N 1. P. 90-99 (in Russian).

Поступила в редакцию (Received) 07.05.2018 Принята к опубликованию (Accepted) 22.04.2019

i Надоели баннеры? Вы всегда можете отключить рекламу.