UDC 532.51
Siberian Journal of Science and Technology. 2017, Vol. 18, No. 3, P. 499-504
STUDY OF HYDRODYNAMICS FEATURES IN THE APPARATUSES WITH MOVABLE NOZZLE
V. P. Danko1, 2*, V. V. Karnauh3, А. S. Titlov4
1Plekhanov Russian University of Economics 360, Severnaya Str., Krasnodar, 350002, Russian Federation
2Kuban State Technological University 2, Moskovskaya Str., Krasnodar, 350072, Russian Federation 3Donetsk National University of Economy and Trade named after Mykhajlo Tugan-Baranovskogo
31, Schorsa Str., Donetsk, 83050 4Odessa National Academy of Food Technologies 112, Kanatnaya Str., Odessa, 65039, Ukraine E-mail: [email protected]
Apparatuses for the heat and mass transfer processes must be designed so that they have a maximum contact surface. Classification of heat-mass exchange apparatuses provides geometric features of the apparatus and the hydrodynamic condition they create. However, the main trend which remains dominant in the design of such apparatus is to create a thin film of liquid on the surface of the nozzle.
The work was aimed at choosing the solution in which the MN of the heat-mass exchange apparatuses can be used to implement the contact handling process of gases and liquids with density values clarification of the nozzle elements (Pne) and the column dynamic height (Нст) and obtain the specified calculated dependences which describe the hydrodynamics and mass transfer in the apparatuses with a movable nozzle, that is to create bases for engineering calculations.
Research methods were theoretical study and experimental studies on heat and mass transfer devices with movable nozzle.
The best ranger for mass transfer processes implementation is that of pneII (p = 200-700 kg/m3), which is distinguished by a wide working area according to wg, acceptable values of fluid withdrawal and a relatively small dynamic layer height. Within the described mode, we can distinguish the area wg = 4.7-6.0 m/s, where there is no dependence of Hp on wg
Specified calculated dependence obtained which describes the hydrodynamics and heat and mass transfer in the apparatuses with a movable nozzle.
Keywords: movable nozzle, fluidization, heat-mass exchange apparatus, critical speed, loss of pressure in the work area, dynamic height of nozzle layer, stationary mode
Сибирский журнал науки и технологий. 2017. Т. 18, № 3. С. 499-504 ИЗУЧЕНИЕ ОСОБЕННОСТЕЙ ГИДРОДИНАМИКИ В АППАРАТАХ С ПОДВИЖНОЙ НАСАДКОЙ
В. П. Данько1, 2*, В. В. Карнаух3, А. С. Титлов4
Российский экономический университет имени Г. В. Плеханова Российская Федерация, 350002, г. Краснодар, ул. Северная, 360
2Кубанский государственный технологический университет Российская Федерация, 350075, г. Краснодар, ул. Московская, 2 3Донецкий национальный университет экономики и торговли имени М. Туган-Барановского
83050, г. Донецк, ул. Щорса, 31 4Одесская национальная академия пищевых технологий Украина, 65039, г. Одесса, ул. Канатная, 112 E-mail: [email protected]
Аппараты для проведения процессов тeпломасcообмeна должны конструироваться так, чтобы у них была максимально развитая поверхность контакта. Классификация теплообменных аппаратов (ТМА) предусматривает как геометрические особенности аппарата, так и создаваемую в них гидродинамическую обстановку. Однако основная тенденция при конструировании таких аппаратов - создание тонкой пленки жидкости на поверхности насадки - остается доминирующей. Целью работы - выбрать решения, при которых ТМА с РН может быть использован для реализации процессов контактной обработки газов и жидкостей с уточнением значений плотности элементов насадки (рэн) и динамической высоты столба (Нст), а также получение уточненных расчетных зависимостей, описывающих гидродинамику и тепломассоперенос в аппаратах с подвижной насадкой АРН, т. е. создать базы для инженерных расчетов. Методами исследования были теоретическое изучение и экспериментальное исследование на натурных образцах тепломассообменных аппаратов
с подвижной насадкой. Было установлено, что лучшим для реализации массообменных процессов представляется диапазон плотности элементов насадки рэн = 200-700 кг/м3, отличающийся широким диапазоном рабочей скорости ^г, приемлемыми значениями вынесенной жидкости и сравнительно небольшой динамической высотой слоя. Диапазон 2,5 < wг < 6,0 м/с обеспечивает возможность устойчивой эксплуатации АРН в режиме высоких нагрузок. Практическая значимость заключается в получении уточненных расчетных зависимостей, описывающих гидродинамику и тепломассоперенос в аппаратах с подвижной насадкой.
Ключевые слова: подвижная насадка, псевдосжижение, тепломассообменный аппарат, критическая скорость, потеря напора в рабочей зоне, динамическая высота насадочного слоя, стационарный режим.
Introduction. The defining feature of heat and mass transfer processes, which occurs in the three-phase flows, is the interaction phase, which determines the value of the interfacial surface. Therefore, apparatuses for the heat and mass transfer processes must be designed so that they have a maximum contact surface. Classification of heat-mass exchange apparatuses (HMEA) provides geometric features of the apparatus and the hydrodynamic condition they create. However, the main trend which remains dominant in the design of such apparatus is to create a thin film of liquid on the surface of the nozzle.
Apparatuses with a movable nozzle (AMN) were developed in relation to the implementation process of dedusting and degassing and absorption in a number of countries: Canada, the USA, Germany, Japan, CIScountries [1; 2]. AMN advantages over other types of contact devices, which determined their widespread occurrence: steady operation in the polluted environments of self-cleaning nozzle surfaces and walls of casing, low sensitivity of the device characteristics to sudden load fluctuations of gas and liquid; indiscriminateness to the initial liquid distribution, which is important for industrial AMN; high lateral uniformity simplifying scalability; a wide range of workload (in [3-7] a value ql up to 200 m3/(m2-h is reported) and wg up to 8 m/s at an empty AMN intersection); high intensity of exchange processes in the layer; constructive design simplicity; compactness; low weight and cost of the nozzle.
So far published information about the interaction of the three phases in the HMEA varies by the difference in the representation quality and experimental data discrepancies in all major aspects of the movable layers behaviour, so that its practical use in the engineering calculations is complicated. The study of the quite complex
"gas-liquid-solid" system behaviour remains largely experimental. Prospects of AMN use for evaporative water cooling require special consideration. AMN is advisable to apply for the organization of such mass transfer processes in which the main resistance of mass transfer is focused in the gas phase, typical for the process of evaporation cooling in the cooling towers [4].
Therefore, the work was aimed at choosing the solution in which the MN of the HMEA can be used to implement the contact handling process of gases and liquids with density values clarification of the nozzle elements (pne) and the column dynamic height (Hdh) and obtain the specified calculated dependences which describe the hydrodynamics and mass transfer in AMN, that is to create bases for engineering calculations [8-12].
Studying of evaporative water cooling processes was carried. Studying of evaporative water cooling processes was carried on a laboratory model using different nozzle elements (see table).
From a scientific and practical point of view, the issue concerning the nature of the transit of nozzle layer from a stationary to a moving condition seems important. The issue is complex and poorly studied. Typical modes of movable nozzles (MN) behaviour in the apparatuses are shown in fig. 1.
Fixed layer porosity does not depend on the load of the gas and the liquid. Traditionally, the critical transition velocity (w0, w0r) is determined by visual pseudo-fluidization curve analysis that is described by the dependence A p = (wg, q). We conducted its specification by constructing selective La (wg, q) under the following conditions: Hdh = 0,1 m, dne = 0,04 m, p = 300 kg/m3, qi = 15 m3/(m2h) (fig. 2).
Studied nozzle elements characteristics
№ NE type Nozzle material Geometry Pne, kg/m3 Note
dne, mm
1 Ш Foamed polypropylene 40.1 248 Commercialization of elements
2 40.3 305
3 36.6 335
4 35.6 367
5 ^ne Empty celluloid ball which is partly filled with water 37.1 100-1000 in increments of 100 units Size pne for the empty element 91 kg/m3
ЛГлгЛГлг ЛГлгалагЛЛлтлГлг
1
G
L
L
L
b
d
а
Fig. 1. Typical AMN modes: a - stationary; b - stationary nozzle flooding; c - initial pseudo-fluidization; d - developed pseudo-fluidization
Рис. 1. Характерные режимы АПН: а - стационарный; б - захлебывание стационарной насадки; в - начальное псевдоожижение; г - развитое псевдоожижение
Speed wg is given to the empty column crossing; fixed (1, a) and initially compacted layer of nozzle elements (1, b) having the ability to expand is considered. Value wg *: w0Tp - the maximum speed at which the curves coincide Ap for fixed and movable layers; w3 - the beginning of stationary nozzle flooding; wo, wo' - the beginning of pseudo-fluidization; w1 - the beginning of active pseudo-fluidization; wt - inversion beginning. Let us specify some definitions through the variety of existing formulations for wg*: w3 corresponds to the intensive growth Ap, layer turbidity, foam formation atop of the layer (partially inverted cocurrent). For the fixed layer speed w3 is unchanged for specific loadings; for an extending layer w3 depends on the porosity and cannot be described by the known dependencies; wo is the minimum gas velocity at which steady vertical oscillations of several adjacent NE are observed; w1 corresponds to the active movement and mixing of NE; w{ is the beginning of NE inversion -their concentration near restrictive gates. The latter mode is almost immediately transformed into "upper" NE flooding, which is typical for the fixed layer (fig. 1, b).
Value wo' is clearly recorded on vibrocurve La (wg) as a leap ( s 20 dB or 30 %) and mild stated on fluidization curve (column walls vibroacceleration is defined by the movable nozzles state). Almost constant vibroacceleration level (La = 5.5 wg0 08 ) corresponds to the
stationary layer state. The NE transition to movable state was much more difficult, as compared to the traditional presentation. If wg s wo' then the described unstable pseudo-stationary NE states are formed during periodic movement of an individual NE (layer alteration with changing porosity) at a constant load. Their duration ranges from tens of seconds to several minutes. The layer structure is changing and fluid retention therein varies, i. e. the wo' value is characterized by a certain range of existence. The width of this range depends on the initial layer density which is determined by NE own weight and the action of external loads and vibrations. For example, for NE with pne = 300 kg/m3 and dne = 0,037 m, this value is 0.4 m/s.
We found that the elements with pne < 200 kg/m transferred to a moving state, bypassing flooding in a stationary state, for pne > 200 kg/m3 pseudo-fluidization is carried out in pseudo-stationary flooding condition of the extending layer; for pne > 700 kg/m3 this pattern persists for larger values of Hp, and the part of liquid is taken outside of the layer and placed on top of its upper limit as the layer of foam with thickness Hn over 0.02 meters.
Gas and liquid layer load effecting movable nozzles retaining ability Hdh = 0.1 m is shown in fig. 3.
The best range to implement mass transfer processes seems to be that of pneII (pne = 200-700 kg/m3). Partial fixed layer flooding precedes the beginning of pseudo-fluidization; the nature of the transition determines the entire future behaviour of the system. The speed of the apparatus starting to flood w3 is quite high (~ 6 m/s); liquid withdrawal AGl from the working area is slow until the speed value is w3. This range differs by a wide work area of speed wg, acceptable values of fluid withdrawal AGl and a relatively small dynamic height of the layer Hl.
Regarding this area let us consider the characteristic pseudo-fluidization modes:
1. 0 < wg < 2.0 m/s - Stationary system state with characteristic local restructuring of fixed layer structure and some porosity growth. Linear growth Hl (wg) until the beginning of the pseudo-fluidization speed w0' with the progressive flooding of the fixed reconstructed layer.
2. 2.0 < wg < 2.5 m/s - Initial pseudo-fluidization mode (transitional mode). There is a characteristic peak Hp by the speed of gas w0' (fig. 3, a) with the consequent restoration to the previous value; the system is unstable, the part of the layer remains stationary and its periodic restructuring occurs. Fluid retention for ql < 5 m3/ (m2-h) (fig. 3, b) in active pseudo-fluidization mode decreases to values which are characteristic of the stationary layer. This is a border q* for cooling towers with movable nozzle (CTMN) related to layer drainage; here CTMN operation is not feasible, despite the liquid being in the layer for a long time.
3. 2.5 < wg< 6.0 m/s - Developed pseudo-fluidization mode. The entire nozzle layer is movable, the system is homogeneous. Comparison of system characteristics with the similar mode for the zone pneI shows that the new transition patterns to mobility impacted the behaviour of the system as a whole: the initial flooding state is supported. However, it does not further develop with the increase of wg to the developed flooding due to a mechanism that compensates the layer expansion. This kind of situation when the initial flooding supported in a wide range of wg, provides the possibility of stable AMN operation in the high loads mode. Within the described mode, we can distinguish the area wg = 4.7-6.0 m/s, where there is no dependence of Hl on wg. This new area precedes a sharp increase of Hl.
4. 6.0 < wg < 8.0 m/s. In fact, that is the previous mode with a sharp increase of flooding component. Con-
ventionally, it can be called a movable layer flooding mode, noting a significant difference from the same mode with a stationary nozzle. Whereas, under the latter conditions, the flooding mode means the practical impossibility of further employment, but concerning the apparatuses with a movable nozzle this possibility remains, due to the liquid capacity of the apparatus and very high intensity of the process.
Processing of experimental information. The most important hydrodynamic characteristics of cooling towers with movable nozzle (CTMN), which are required for engineering calculations, are critical speeds (w0', wi), pressure loss in the working area (Ap), fluid retention (Hl) and dynamic layer height (H^). This information allows selecting the operating mode of heat-mass exchange apparatus (HMEA), calculating the height of the columns and fan power [13-15].
La-> ' dB Ар, kPa . 1
110 - 0.3
90 - 0.2
70 - 0.1 - /
50 0 1 1 1 >
1
2
3
4 wg, m/s
Fig. 2. Experimental dependences: 1 - pseudo-fluidization curve Ар = f (wg); 2 - vibrocurve La = f (wg) Рис. 2. Экспериментальные зависимости: 1 - кривая псевдоожижения Ар = f (wg); 2 - виброкривая La = f (wg)
Н,-102,
4 -
2 -
D Н/,-102, m
4 a
wg, m/s
2 -
10
20 b
50 q, m3/m2h
Fig. 3. Dependence of retaining ability of the movable nozzle on gas and liquid loads at Hdh = 0.1 m:
1 - pne = 100 kg/m3, 2 - pne = 500 kg/m3; 3 - pm = 800 kg/m3; a - H, = F (wg); b - H, = f (qg)
Рис. 3. Зависимость удерживающей способности слоя подвижной насадки от нагрузок по газу и жидкости при НЛ = 0,1 м: 1 - рпе = 100 кг/м3; 2 - рпе = 500 кг/м3; 3 - рпе = 800 кг/м3; а - Н{ = б - Н{ = / (д^
6
4
0
6
2
For non-irrigated layers the equation is obtained:
Reo =-
ro0dn
Arg
130-
. 1 -e0
Arg
(1)
where, in order to record the peculiarities of the compressed flow of balls with gas stream the stationary layer porosity is used. Equation (1) provides the calculation wo for the layer of balls with diameter of the nozzle elements dne = 35...42 mm and density pen = 90...1000 kg/m3 for Hcm > dne. Nozzle irrigation leads to a decrease of wg (wo), and with the increase of pne the wo' value decreases. With regard to the influence of ql and pHe let us write down:
, 4320 -p^21 .Bo
Cl0 =-:-
4320p^21 + q (-1,25'10-4 p«e+0,275)
(2)
Hd = Hhd + Hhd
( -B0 )>
c[16,2exp(0,002p„e - 70dw ) + 0,007qi ]. (4)
then value Hd = Hdh. This formula provides a calculation of Hd for dry layer of MN, as well; it is
If wg = wo
fair in the range of wg = wo - 4.5 m/s;
qt < 25 m3 /(m2-h); H, = 0.5-0.2 m; pne = 90-1000 kg/m3, dne = 0,035-0,042 m.
The gas stream pressure loss value Ap determines the capacity of the electric fan motor (excluding energy consumption for separation and loss in communication).
Traditionally the ratio
V Hhd J
is used, but the main MN
layer characteristic is its dynamic height Hdh. Complex leads to a distortion of the physical scene, as,
( Ар ^
V Hhd J
for example, with pne = 1000 kg/m3 this value exceeds 104 Pa/m. This maximum value corresponds to the weight of the fixed layer NE, where voids are completely filled with liquid. This should result in the inverted cocurrent if losses are greater than 10 Pa/m, which in practice is not observed even at wg >8 m/s. So it is worthy using
the specific dynamic pressure loss, i. e. the value
V H d J
It consists of a dynamic specific NE weight
gMn
V Fk Hd J
and
pressure loss Apd, that characterize the contribution to the general value of the detained fluid pressure loss and friction due to the elements mixing in the pseudo-fluidized layer:
gMne
Др = ДрdHd +
F,
Арd = 0,8Н
hd
(5)
ехр(1,85-10-3 pne +1,56 -10-2 qt + 2,86),
This equation is fair for 200 < pne < 1000 kg/m and 5 < qt < 25 m3/(m2-h). For pne <200 kg/m3 dependence of w0' = F (pne) appears to be bigger. The wi value characterizes the transition to the developed pseudo-fluidization, i. e. to the uniformly pseudo-fluidized layer:
raj = 1,4 - ®0. (3)
The width of the area of initial pseudo-fluidization sharply increases with pne growth and the layers of nozzle elements (NE) with density pne > 500 kg/m3 operate in practice only in this mode.
Dynamic height is characterized by a mean value of oscillating movable nozzle (MN) level, and was determined visually. In the stationary state, these oscillations are characterized by constant amplitude:
where Mne - NE layer mass.
The equation is adequate to the experimental data with an average relative error 0.11 and is fair in the ranges: 0.05 < Hdh < 0.2 m; wo < wg < 4.5 m/s; 5 < qt < 25 m3/ (m2 • h); 200 < pne < 1000 kg/m3.
Increase of Hdh leads to the decrease of Apd, which indicates pseudo-fluidization quality deterioration. For the elements with pne = 90 kg/m3 the Apd value does not depend on wg; for wg = wo' the smallest difference of Apd occurs, which was obtained for different densities pne. Heavier NE correspond to the greater value Apd, which match physical presentations. For ql < 5 m3/(m2-h) the exponential nature of equation (5) is disturbed.
Conclusion. The apparatuses with a movable nozzle are a promising solution of column HMEA, which enables operation in the extreme conditions (contaminated environment, sharp fluctuations of loads), increased limit loads, high lateral uniformity of fluid (scaling task simplification), and lack of demands to the flow distribution quality. The best ranger for mass transfer processes implementation is that of Pnen (Pen = 200-700 kg/m3), which is distinguished by a wide working area according to wg, acceptable values of fluid withdrawal and a relatively small dynamic layer height.
Necessary dependencies for engineering calculation were obtained, which determine the critical speed value (w0'), the pressure loss in the working area (Ap) and the dynamic NE layer height (Hg).
It remains necessary to study the dynamics of gas-droplet flows in the system to provide for calculation of fluid distribution units, drop moisture separation, environmental emission and scattering therein, to consider the issues of the applied nature (scale factor, work in long-term inclines and tossing; the accumulation of impurities in the recirculation liquid, etc. An improved constructive design of devices with the movable nozzle shall be developed.
References
1. Veselov F. V., Novikova T. V., Khorshev A. A. [Technological updating of power system as long-term factor of control of increase in prices of the electric power]. Teploenergetika. 2015, No. 12, P. 3 (In Russ.).
2. Ginzburg A. S., Belova I. N., Reshetar O. A. [Impact of climatic factors on energy consumption during the heating season]. Teploenergetika. 2016, Vol. 63, No. 9. P. 621-627 (In Russ.).
g
3. Arakelyan V. B., Danko V. P., Grigoryan R. P. Influence of the external noise intensity on the kinetics of ligands binding to receptors. Influence of the external noise intensity on the kinetics of ligands binding to receptors. Journal of Contemporary Physics. 2017, Vol. 52, no. 1.
4. Gorin А. N., Doroshenko A.V., Danko V. P. Teplo-masso obmenniye apparati s podviznoy nasadkoy dla tra-dicionnich I alternativnich energetiheskich system [Heat-mass exchangers with movable nozzle for traditional and alternative energy systems. Evaporative cooling. Dehu-midification and conditioning for air (theory, experiment. practice]. Donetsk, Svit knigi Publ., 2013, 327 p.
5. Karnaukh V. V. Intensifikacia teplo-massoobmen-nich proceccov v ventilatornich gradirnach plonocnogo tipa [Intensification of heat-mass transfer processes in water cooling tower film-type]. Donetsk, DonNUET Publ., 2010, 159 p.
6. Kaiser A. S., Lucas M., Viedma A., Zamora B. Numerical model of evaporative cooling processes in a new type of cooling tower. International Journal of Heat and Mass Transfer. 2005, No. 2, P. 986-999.
7. Kroshilin A. E., Kroshilin V. E. [Correct numerical simulation of a two-phase coolant]. Teploenergetika. 2016, Vol. 63, No. 2, P. 98-106 (In Russ.).
8. Danko V. P., Karnaukh V. V. [Experimental researches of heat transfer in a layer moving fitting stripping contour solar systems]. Vestnik Mezhdunarodnoi Akademii Kholoda. 2016, No. 3, P. 73-77 (In Russ.).
9. Danko V. P., Kudrin A. B., Radionenko V. N. Ispol'zovanie al'ternativnyh istochnikov energii i vtorichnyh energoresursov v holodil'noy otrasli [Use of alternative energy sources and secondary energy resources in refrigerating branch]. Samara, Lada-Print Publ., 2015, 157 p.
10. Poddubnyi I. I., Razuvanov N. G. [Research of hydrodynamics and heat exchange at a lowering current of liquid metal in the channel of rectangular section in a coplanar magnetic field]. Teploenergetika. 2016, No. 2, P. 13 (In Russ.).
11. Shestova T. D., Markvart A. S., Lozovsky T. L., Zhelezny V. P. Cubical equations of state for predicting the phase equilibria of poorly studied substances. Russian JournalofPhysical. Chemistry A. 2013, Vol. 87, No. 6, P. 883.
12. Doroshenko A. V., Vasyutinskii S. Yu., Danko V. P., Glauberman M. A. [Research of processes in the teplo-massoobmennykh devices with a mobile nozzle for solar multipurpose systems]. Fizika aerodispersnykh system. 2012, No. 49, P. 14-26 (In Russ.).
13. Valueva E. P., Purdin M. S. [Hydrodynamics and heat exchange of the pulsing laminar stream in channels]. Teploenergetika. 2015, No. 9, P. 24.
14. Imre A. R., Hazi G., Horvath A., Maraczy C., Mazur V., Artemenko S. The effect of low-concentration inorganic materials on the behaviour of supercritical water. Nuclear Engineering and Design. 2011, Vol. 241, No. 1, P. 296-300.
15. Danko V. P. [Solar collectors with a metal-polymeric absorber for systems of heatcold supply]. Nauchnye trudy Odesskoi natsional'noi akademii pishchevykh proizvodstv. 2014, Vol. 45, No. 1, P. 88-94.
Библиографические ссылки
1. Веселов Ф. В., Новикова Т. В., Хоршев А. А. Технологическое обновление теплоэнергетики как
долгосрочный фактор сдерживания роста цен электроэнергии // Теплоэнергетика. 2015. № 12. С. 3.
2. Гинзбург А. С., Решетарь О. А., Белова И. Н. Влияние климатических факторов на энергопотребление в отопительный сезон // Теплоэнергетика. 2016. № 9. С. 20-27.
3. Arakelyan V. B., Danko V. P., Grigoryan R. P. Influence of the external noise intensity on the kinetics of ligands binding to receptors. Influence of the external noise intensity on the kinetics of ligands binding to receptors // Journal of Contemporary Physics, 2017. Vol. 52, № 1.
4. Горин А. Н., Дорошенко А. В., Данько В. П. Тепломассообменые аппараты с подвижной насадкой для традиционных и альтернативных энергетических систем. Испарительное охлаждение, осушение и кондиционирование воздуха: теория, эксперимент, практика. Донецк : Свгг книги, 2013. 327 с.
5. Карнаух В. В. Интенсификация тепломассообмeн-ных процессов в вeнтиляторных градирнях плeночно-го типа : монография. Донецк : ДонНУЭТ, 2010. 159 с.
6. Numerical model of evaporative cooling processes in a new type of cooling tower / A. S. Kaiser [et al.] // International Journal of Heat and Mass Transfer. 2005. № 2. Pp. 986-999.
7. Крошилин А. Е., Крошилин В. Е. Корректное численное моделирование двухфазного теплоносителя // Теплоэнергетика. 2016. № 2. С. 22.
8. Данько В. П., Карнаух В. В. Исследование влияния концентрации раствора абсорбента на охлаждающую способность тепломассообменных аппаратов с подвижной насадкой // Вестник Международной академии холода. 2016. № 3. С. 73-77.
9. Данько В. П., Кудрин А. Б., Радионенко В. Н. Использование альтернативных источников энергии и вторичных энергоресурсов в холодильной отрасли. Самара : Лада-принт, 2015. 157 с.
10. Поддубный И. И., Разуванов Н. Г. Исследование гидродинамики и теплообмена при опускном течении жидкого металла в канале прямоугольного сечения в компланарном магнитном поле // Теплоэнергетика. 2016. № 2. С. 13.
11. Cubical equations of state for predicting the phase equilibria of poorly studied substances / T. D. Shestova [et al.] // Russian Journal of Physical Chemistry A. 2013. Vol. 87, no. 6. p. 883.
12. Исследование процессов в тепломассообмен-ных аппаратах с подвижной насадкой для солнечных многофункциональных систем / А. В. Дорошенко [и др.] // Физика аэродисперсных систем. 2012. № 49. С. 14-26.
13. Валуева Е. П., Пурдин М. С. Гидродинамика и теплообмен пульсирующего ламинарного потока в каналах // Теплоэнергетика. 2015. № 9. С. 24.
14. The effect of low-concentration inorganic materials on the behaviour of supercritical water / A. R. Imre [et al.] // Nuclear Engineering and Design. 2011. Vol. 241, no. 1. P. 296-300.
15. Данько В. П. Солнечные коллекторы с металло-полимерным абсорбером для систем теплохладоснаб-жения // Научные труды Одесской национальной академии пищевых производств. 2014. Вып. 45, т. 1. С. 88-94.
© Danko V. P., Karnauh V. V., Titlov А. S., 2017