Технические науки _Engineering sciences_
УДК 550.83 https://doi.org/10.21440/2307-2091-2019-3-90-97
Study of genesis of productive series based on integrated well data (in case of Pirallahi field)
Kifayat Aladdin KERIMOVA*, Reyhanxanim Yashar GANIYEVA**
Azerbaijan State Oil and Industry University, Baku, Azerbaijan
Relevance. It is known that over than 90 % of oil produced in Azerbaijan is extracted from the South Caspian Basin. The South Caspian basin is one of the largest deeply buried basins. Sedimentation process here is characterized by high rate as 25 km for 150-170 mln years (0.6-0.7 km/mln years). For the last years due to wider scope of exploration works in the South Caspian basin and evaluation of its hydrocarbon perspectives the study of genesis of Productive Series gain more interest.
Purpose of work. The purpose of the work is to study genesis of sediments and sedimentation environment on the basis of quantitative and qualitative interpretation of logging curves, make correlation of facies in various wells and perform comparative analysis.
Research methodology. Applying "Quantitative and qualitative models of log facies" on the basis of well logging data the analysis of lithology, facies and genesis of sedimentary rocks in Pirallahi structure have been done and results were derived. Within the framework of the study by use of Neuralog software based on LL, SP, GL, NGL and other log types the data have been transformed into the LAS format, then the permeability, porosity, oil and gas saturation, bulk clay coefficient alteration models have been designed by use of Petrel software.
Conclusions. Study of sedimentation environment constantly draws the interest of geoscientists due to the direct dependence of structure and identification of oil and gas traps on sedimentation environment. This paper deals with study of genesis of Productive Series deposits based on quantitative and qualitative analysis of logging curves. The study target is Kirmaky suite across Pirallahi field of Absheron oil-gas bearing region.
Keywords: facies analysis, log facies, genesis, flow, bar, coastal plain.
^^ elevance
In Azerbaijan more than 90 % of oil is produced from fields of the South Caspian basin. The South Caspian basin is one of the basins subsided to the large depths.
Sedimentation process here is characterized by high rate and reaches approximately 25 km per 150-170 million years (0.60.7 km/mln years). Characteristic features of the South Caspian basin involves compression of its sedimentation components and overpressure in some areas [1]. The major role in the III period sedimentation played fluvial-deltaic, avandeltaic sediments, turbidites and contourites accumulated mainly in river deltas, faults and paleogeographic plains [2-5].
In general, the morphology of negative relief (river-channels, channel, cliffs) where sediments are accumulated depends mostly on dip angle, sediments thickness, climate, tectonic features, etc. [6]. Reservoirs generated at various time periods and in changing environment vary in time depending on morphology of negative releif (river, river-bed, cliff). Thus, fluvial-deltaic system is not constant through a definite stratigraphic unit. The problem consists in generation of facies alteration and unconformity surfaces in fluvial systems [7].
Purpose of work
In this respect, the study of sedimentation environment and genesis of sedimentation process is always in the sphere of interest of petroleum geoscientists. For the last years the lithological traps are also studied along with structural and stratigraphic traps.
This study is devoted to analysis of genesis and environment of sedimentation process done through quantitative and qualitative interpretation of logging curves.
The study target is Kirmaky suite in sections of conditionally numbered wells X1, X2, X3, X4 and X5 in Pirallahi area.
Productive Series (PS) deposits of Absheron oil-gas bearing region consist mostly of alternation of sandstone, sandstone clay, aleurolites, argilltes and clay layers and have vast hydrocarbon reserves. It is known that Productive Series in Pirallahi field consists of alternation of sand, sandstone, aleurite and clay. Its maximum thickness is 1380 m. Due to erosion of upper part of PS, it is mainly represented by lower part (Gala, Post-Kirmaky, Kirmaky, Upper-Kirmaky sand, Upper-Kirmaky clay suites). Of these the oil presence is identified in Post- Kirmaky, Kirmaky and partially in Gala series (in the south Pirallahi fault) [8].
According to results of geophysical studies covering Kirmaky suite of PS in Pirallahi area the study of genesis of PS deposits drives attention from the point of view of hydrocarbon presence.
It is known that several factors influencing the form of logging curves must be taken into account while facies interpretation. These include granulometric composition, porosity, clay content, brine water, drilling mud composition, borehole diamater, etc. In this respect, analysis of spontaneous polarization and GL (Gamma Log) curves for evaluation of sedimentation are not clear [9, 10].
https://orcid.org/0000-0001-8753-8791 "[email protected]
https://orcid.org/0000-0003-2808-3760
Research methodology
Well logging techniques applying jointly with quantitative evaluations, well logging curves, effective porosity of layers, curves of variation of bulk clay versus depth allow to derive more accurate lithological composition, as well as genesis and sedimentation environment of deposits. In distinction to other techniques this method is based on accurate values of oil-field geophysical parameters while analysis of lithological characteristics of rocks [11].
Due to this, comparative analysis of lithological features of rocks in Kirmaky suite (Productive Series) by use of "quantitative and qualitative models of log facies" allowed to derive their genesis and the results is expounded in this paper [12, 13].
The Table shows effective porosity and bulk clay in reservoir layers defined by use of log diagrams across studied sections.
Based on Table the bulk clay and effective porosity versus depth histograms has been drawn and genesis of sediments has been studied by the display forms of these histograms. By display form of these histograms the conditional well N1 section in Binagadi field is characterized for genetic origin of rocks as the following (Fig.1).
It can be seen from Fig. 1 that rocks of Kirmaky suite in conditional X4 well section in Pirallahi field consists of alluvial and deltaic sediments which are characterized by gradual replacement of near-coastal marine facies by flow-originated facies in upward direction. Flow-originated facies are overlaid by thin bar facies, replaced again by flow facies. Near-coastal marine facies are observed at 459-467 m depth interval. These facies are again replaced by flow-bar originated facies.[14, 15]
Similar analysis has been done for sections of conditionally numbered wells X1, X2, X3 and X5 of Pirallahi field.
It can be seen from the Fig. 2 that Kirmaky suite rocks studied in conditional X1 well consist of alluvial and deltaic deposits with upward gradual replacement of bar-originated facies by coastal plain facies. Coastal plain facies are also overlaid by flow and bar-originated facies. At 775-625 m depth interval the coastal plain facies are alternating with flow-originated facies. From 625 m depths the bar-originated, coastal plain facies are observed.
Fig. 2 displays correlation of similar facies of Kirmaky suite in sections of conditionally numbered wells X1, X2, X3 and X5 of Pirallahi field. It can be seen from the figure that flow and bar orginated, as well as coastal plain facies are traced along well X5 section. However, it must be noted that coastal marine facies are observed only in two various intervals of X4 well section. These features of sedimentation process can be related to sea level regression and transgression.
Evaluation of effective porosity and bulk clay variation in rocks versus depth according to integrated interpretation of log diagrams acquired for well sections of Pirallahi field.
Оценка эффективной пористости и вариации глины в горных породах в зависимости от глубины согласно интегрированной интерпретации каротажных диаграмм, полученных для скважинных участков месторождения Пираллахи.
Number Top Foot Porosity Clay
1 555.6 559.0 0.225 0.075
2 559.7 561.9 0.224 0.173
3 565.3 566.5 0.222 0.186
4 567.0 568.2 0.192 0.268
5 568.9 570.5 0.209 0.277
6 572.8 574.1 0.185 0.354
7 577.2 581.7 0.167 0.353
8 590.2 591.3 0.199 0.324
9 596.0 597.2 0.189 0.328
10 606.2 607.5 0.164 0.309
11 608.6 611.1 0.182 0.286
12 613.7 617.1 0.163 0.352
13 619.9 621.1 0.177 0.355
14 624.9 629.6 0.159 0.353
15 634.9 639.1 0.194 0.221
16 643.3 645.4 0.201 0.358
17 646.4 648.4 0.217 0.224
18 649.6 651.9 0.181 0.357
19 652.9 657.8 0.158 0.350
20 663.2 667.7 0.154 0.359
21 670.7 673.0 0.159 0.355
22 676.1 676.9 0.206 0.352
23 680.5 685.0 0.168 0.350
24 697.0 699.7 0.167 0.349
25 702.2 704.7 0.184 0.188
26 706.9 709.1 0.203 0.169
27 710.4 713.2 0.169 0.354
28 718.5 720.4 0.207 0.295
29 721.8 723.2 0.175 0.350
30 725.7 727.0 0.204 0.317
31 734.5 736.0 0.191 0.353
32 737.2 738.5 0.198 0.336
33 748.6 749.8 0.229 0.294
34 751.1 754.0 0.177 0.351
35 756.4 759.3 0.160 0.349
36 765.0 766.5 0.172 0.319
The study also covered analysis of sedimentation environment by GL curves with further correlation (Fig. 2). Comparative analysis of Fig. 2 and Fig. 3 by use of quantitative analysis allowed to group sediments as flow-originated, bar and coastal facies. Based on features of GL curves these groups have been further divided into sub-groups of facies.
For conditionally numbered X1 well Upper-Kirmaky sand suite involves mainly bar-originated facies. Gala suite facies are featured as the following: 525-575 m depth involves bar-originated facies, 575-625 m depth interval consists of coastal plain and bar originated facies, 675-725 m depth interval involves bar-coastal-flow facies, 725-775 m depth interval consists of alternation of bar-flow-coastal-bar facies.
Facies variation in section of conditionally numbered well X2 is observed only is Gala series: 400-450 m interval consists of alternation of bar-flow-bar facies, 450-500 m - bar-coastal marine-flow facies, 500-550 m depth interval - flow originated facies.
Similar to X2 the section of conditionally numbered well X3 is interpreted only for Gala suite. 450-500 m depth interval involves bar facies, 500-600 m depths interval involves alternation of bar and flow originated facies, 600-650 m depth interval the coastal-bar-flow originated facies and 650-700 m depth interval bar-flow originated facies are observed.
Gala suite has been analysed for conditionally numbered X4 well. The interpretation sequence is as the following: 300-400 m depth interval is characterised by alternation of flow-bar facies, 400-450 m depth interval consists of bar-flow originated-coastal facies, 450-500 m depth interval consists of coastal - bar, at 500-600 m depth interval the flow originated facies are dominating.
Sedimentation environment of Gala and Post-Kirmaky suites has been analysed for section of conditionally numbered X5 well. Facies vary as the following: 450-500 m involves bar-originated facies, 500-600 m depth interval is featured by the dominance of flow originated facies and we may observe the alternation of coastal plain and bar facies also. At 600-700 m depth interval of Gala suite the alternation of bar facies is observed. In Post-Kirmaky suite and at 750 m depth interval the coastal plain facies were identified.
Bulk clay and effective porosity are dynamic parameters of reservoirs. These two parameters are depends on some factors. There are intensive and dynamic relation between these parameters. Fig. 4 shows the correlation relation between bulk clay and effective porosity for any 1st well sections of Pirallahi field on studied KS suite.
Figure 1. Analysis of lithological characteristics of rocks attributed to Kirmaky suite (KS) of Productive Serie (PS) studied in conditional X1 well section in Pirallahi field. Kclay - clayiness coefficient; K or - porosity coefficient.
Рисунок 1. Анализ литологических характеристик пород, относящихся к Кирмаки свите (КС) продуктивной толщи (ПТ), изученной в условном разрезе скважины Х1 месторождения Пираллахи. Kc|ay - коэффициент глинистости; Кпор - коэффициент пористости.
Figure 2. Lithlogy and facies of Kirmaky suite (KS) rocks of Productive Series (PS) studied based on well data from Pirallahi field. Kc|ay -
clayiness coefficient; Kpor - porosity coefficient; PK - Post-Kirmaky; KUS - Kirmaky Upper Sand; KUC - Kirmaky Upper Clay.
Рис. 2. Литология и фации пород кирмакской свиты (КС) продуктивной серии (ПС), изученных на основе данных скважин с
месторождения Пираллахи. Kclay - коэффициент глинистости; Верхний Песок; КВГ - Кирмаки Верхняя Глина.
К
коэффициент пористости; ПК - Пост-Кирмаки; КВП - Кирмаки
Figure 3. Analysis and tracing of facies based on qualitative interpretation of data acquired from well sections of Pirallahi field. Kclay -
clayiness coefficient; K ог - porosity coefficient.
Рисунок 3. Анализ и отслеживание фаций на основе качественной интерпретации данных, полученных из скважинных участков месторождения Пираллахи. Kc|ay - коэффициент глинистости; Кпор - коэффициент пористости.
It can be seen from dependence graph that regression equation Kpor = -2,537 Kclay + 0,7689 characterized between bulk clay and effective porosity with high correletion coefficient (r = 0,716) is getting. This correletion relation is also significancy for dividing litotypes of cross-section. As can be seen from the figure that litotype with 35,9 % of bulk clay has 15,4 % of porosity, the effective porosity of the lithotype with a bulk clay of 7.5 % was estimated at 22.5 %.
Integrated well logging data acquired in five wells in the study area have been processed by use of Neuralog software and data acquired by LL, SP, GL, NGL and other log diagrams have been transformed into LAS format. Then by use of Petrel software package the permeability (Fig. 5), porosity (Fig. 6), oil-gas saturation (Fig. 7), bulk clay (Fig. 8) models have been designed applying appropriate formula. It can be seen from Fig. 5 that the scale is logarithmic and permeability varies within 10-100 mD range.
Fig. 6 displays porosity characteristics in various wells. The lowest porosity value is within 2-10 %, while the highest value is within 22-34 % range.
Figure 4. Correlation relation between bulk clay and effective porosity for any 1st well sections of Pirallahi field.
Рисунок 4. Соотношение корреляции между глиной и эффективной пористостью для любых участков 1-й скважины месторождения Пираллахи.
Figure 5. Permeability model of Upper-Kirmaky sand (UKS), Gala suite (GS), Post-Kirmaky (PK) and Lower part of PS deposits. Рисунок 5. Модель проницаемости верхне-кирмакских песков (UKS), Гала-свиты (GS), Пост-Кирмаки (PK) и нижней части месторождений ПС.
Figure 6. Porosity model of Upper-Kirmaky sand (UKS), Gala suite (GS), Post-Kirmaky (PK) and lower part of PS deposits. Рисунок 6. Модель пористости верхне-кирмакского песка (UKS), Гала-свиты (GS), Пост-Кирмаки (PK) и нижней части месторождений ПС
Ht-r-J-HiU^ hüll im rwi
L Hb El С1П
ÇJ HU
■iiwih
Figure 7. Hydrocarbon saturation model of Upper-Kirmaky sand (UKS), Gala suite (GS), Post-Kirmaky (PK) and lower part of PS deposits. Рисунок 7. Модель насыщения углеводородами верхнекирмакского песка (UKS), Гала свиты (GS), Пост-Кирмаки (PK) и нижней части месторождений
Figure 8. Clay content model of Upper-Kirmaky sand (UKS), Gala suite (GS), Post-Kirmaky (PK) and lower part of PS deposits. Рисунок 8. Модель содержания глины в верхне-кирмакском песке (UKS), Гала-свите (GS), Пост-Кирмаки (PK) и нижней части месторождений
ПС.
Fig. 7 depicts one of the most important characteristics of reservoir rocks as oil-gas saturation. The lowest oil-gas saturation values vary within 10%-20% ranges while the highest value vary within 60-70 % ranges.
Fig. 8 is designed on the basis of calculated quantity-clay, negatively impacting reservoir rocks. The highest clay coefficient varies within 0.35-0.48 and the lowest value varies within 0.07-0.18 range. Conclusions
1. Based on well log data the quantitative and qualitative analysis has been done, sedimentation environment were evaluated, correlation diagrams have been drawn for facies variation across wells with further comparative analysis.
а) Based on quantitative analysis of X1, X2, X3, X4, X5 wells it is possible to trace bar-originated facies in the upper part of the diagram. Futher down the bar-originated facies are replaced by flow-originated and coastal facies. However, coastal marine facies are rare along well section.
б) Interpretation done on the basis of qualitative analysis of X1, X2, X3, X4 wells displays good correlation. Thus, temporary flows of speedily flowing rivers are dominating. Facies of coastal, offshore bar, shallow parts of plain rivers in a meander form and some other types are met here. Regressive flows (bars) are observed at lower borders and partially at upper borders. At the lower borders transgression is replaced by regression.
2. Porosity, permeability, clay, oil-gas saturation modeling results have been analyzed by use of Neurolog and Petrel software packages. It has been derived that permeability varies within 10-100 mD, the lowest value of porosity varies within 2-10 % ranges while the highest value varies within 22-34 %, the lowest value of oil-gas saturation varies within 10-20 %, the highest value varies within 60-70 %, the highest value of clay content varies as 35-48 % while the lowest value varies within 7-18 % ranges.
REFERENCES
1. Mamedov P. Z. 2008, O prichinakh bystrogo progibaniya zemnoy kory v Yuzhno-Kaspiyskoy vpadine [On the causes of rapid deflection of the earth's crust in the South Caspian depression]. Azerbaydzhanskoye neftyanoye khozyaystvo [Azerbaijan Oil Industry], no. 1, pp. 8-19.
2. Attia I., Helal I., El Dakhakhny A., Aly S. A. 2017, Using sequence stratigraphie approaches in a highly tectonic area: Case study - Nubia (A) sandstone in southwestern Gulf of Suez, Egypt. Journal of African earth Science, vol. 136, pp. 10-21. https://doi.org/10.1016/j.jafrearsci.2017.06.001
3. Pereira P., Brevik E., Munoz-Rojas M., Miller B. 2017, Soil mapping and process modeling for sustainable land use management. Elsevier, 398 p.
4. Mineral deposits and metallogeny of Fennoscandia. P. Eilu (ed.). Geological survey of Finland, vol. 53, 401 p.
5. Scherer M. S., Goldberg K., Bardola T. 2015, Facies architecture and sequence stratigraphy of an early post-rift fluvial succession, Aptian Barbalha Formation, Araripe Basin, northeastern Brazil. Sedimentary Geology, vol. 322, pp. 43-62. http://dx.doi.org/10.1016%2Fj.sedgeo.2015.03.010
6. Mammadov P. Z, Kerimova K. A., Mammadova L. P. 2015, Study of facies composition of the Early Pliocene (Productive Series) deposits of South Caspian basin on the basis of well logging data. Geophysics News in Azerbaijan, no. 3-4, pp. 3-7.
7. Fadela A., Zigaite Z., Bloma H., Perez-Huertac A., Jeffrised T. et. al. 2015, Palaeoenvironmental signatures revealed from rare earth element (REE) compositions of vertebrate micro remains of the Vesak Bone Bed (Homerian, Wenlock), Saaremaa Island, Estonia. Estonian Journal of Earth Science, vol. 64, pp. 36-41.
8. Kocharli Sh. S. 2015, Problemnyye voprosy neftegazovoy geologii Azerbaydzhana [Problematic issues of oil and gas geology of Azerbaijan]. Baku, 278 p.
9. Kerimova K. A., 2009, Analysis of reservoir properties and genesis of sedimentary rocks of South Caspian basin. Scientific newsletter "Karotajnik", no. 11(188), pp. 38-47.
10. Kerimova K. A. 2011, Genetic model of sedimentary rocks on the basis of integrated geophysical data acquired in the South Caspian basin thesis. Baku, 181 p.
11. Shilov G. Y., Jafarov I. S. 2001, Genetic models of sedimentary and volcanogenic rocks and facies interpretation techniques on the basis of geological-geophysical data. 393 p.
12. Kerimova K. A. 2014, Integrated interpretation of well data. Baku, 86 p.
13. Kerimova K. A., Seidov V. M., Mahmudov A. A., Alibekova E. T., Pashayeva Sh. V. 2015, Litofatsial'naya korrelyatsiya produktivnoy tolshchi vdol' regional'nogo seysmicheskogo profilya v peredelakh khronostratigraficheskikh granits Yuzhno-Kaspiyskoy vpadiny v Apsheron-Pribalkhanskoy tektonicheskoy zone [Lithafacial correlation of the productive strata along the regional seismic profile within the chronostratigraphic boundaries of the South-Caspian basin in the Absheron-Pribalkhan tectonic zone]. Azerbaydzhanskoye neftyanoye khozyaystvo [Azerbaijan Oil Industry], no. 3, pp. 10-14.
14. Seidov V. M. 2017, Sostavleniye I analiz sedimentatsionnykh modeley protsessa osadkonakopleniya na osnove dannykh krivykh karotazha [The compilation and analysis of sedimentation models of teh sedimentation process based on the data of the logging curves]. Izvestiya vysshikh tekhnicheskikh uchebnykh zavedeniy Azerbaydzhana [Transactions of Azerbaijan Institutes of Technology], no. 5 (109), pp. 23-33.
15. Erarslan C., Orgun Yu. 2017, Mineralogical and geochemical characterization of the Saray and Pinarhisar coals, Northwest Thrace Basin. Turkey. International Journal of Coal Geology, vol. 173, pp. 9-25. http://dx.doi.org/10.1016/j.coal.2017.01.015
The article was received on July 09, 2019
УДК 550.83 https://doi.org/10.21440/2307-2091-2019-3-90-97
Изучение генезиса продуктивных толщ по интегрированным данным скважин (на месторождении Пираллахи)
Кифаят Аладдин КЕРИМОВА* Рейханксаним Яшар ГАНИЕВА**
Азербайджанский государственный университет нефти и промышленности, Баку, Азербайджан
Актуальность. Известно, что более 90% добываемой в Азербайджане нефти добывается из Южно-Каспийского бассейна. Южно-Каспийский бассейн является одним из крупнейших глубоко залегающих бассейнов. Процесс седиментации здесь характеризуется высокой скоростью - 25 км в течение 150-170 млн лет (0,6-0,7 км / млн лет). В последние годы в связи с увеличением масштабов геологоразведочных работ в ЮжноКаспийском бассейне и оценкой перспектив его углеводородов изучение генезиса продуктивных толщ вызывает интерес.
Цель работы. Целью работы является изучение генезиса отложений и осадконакопления на основе количественной и качественной интерпретации кривых каротажа, корреляции фаций в различных скважинах и проведения сравнительного анализа.
Метод исследования. Используя «Количественные и качественные модели каротажных фаций» на основе данных каротажа скважин, был проведен анализ литологии, фаций и генезиса осадочных пород в структуре Пираллахи и получены результаты. В рамках исследования с использованием программного обеспечения Neuralog, основанного на LL, SP, GL, NGL и других типах каротажа, данные были преобразованы в формат LAS, затем были разработаны модели проницаемости, пористости, нефтегазонасыщенности, изменения коэффициента объемной глины с использованием программного обеспечения Petrel.
Заключена. Изучение среды седиментации постоянно вызывает интерес геологов из-за прямой зависимости структуры и идентификации нефтегазовых ловушек от среды седиментации. Данная статья посвящена изучению генезиса месторождений продуктивной толщи на основе количественного и качественного анализа кривых каротажа. Целью исследования является свита Кирмаки на месторождении Пираллахи Апшеронского нефтегазоносного района.
Ключевые слова: фациальный анализ, каротажная фация, генезис, добыча, жила, береговая равнина.
ЛИТЕРАТУРА
1. Мармедов П. З. О причинах быстрого прогибания земной коры в Южно-Каспийской впадине // Нефтяная промышленность Азербайджана. 2008. № 1. C. 8-19.
2. Аттиа И., Хелал И., Эль-Дахахны А., Али С. А. Применение стратиграфических подходов в высокотектонической зоне: тематическое исследование - песчаник Нубия (А) в юго-западной части Суэцкого залива, Египет // Журнал африканских наук о Земле. 2017. Вып. 136. С. 10-21. https://doi.Org/10.1016/j.jafrearsci.2017.06.001
3. Перейра П., Бревик Е., Муньос-Рохас М., Миллер Б. Картографирование почвы и моделирование процессов для устойчивого управления землепользованием. 2017. Elsevier. 398 с.
4. Минеральные месторождения и металлогения Фенноскандии / П. Эйлу (ред.). Геологическая съемка Финляндии. Вып. 53. 401 р.
5. Шерер М. С., Гольдберг К., Бардола Т. Фациальная архитектура и стратиграфия толщ ранней пострифтовой речной сукцессии, формация Аптиан Барбалья, бассейн Арарипе, северо-восточная Бразилия // Осадочная геология. 2015. Вып. 322. С. 43-62. http://dx.doi.org/10.1016%2Fj.sedgeo.2015.03.010
6. Мамедов П. З., Керимова К. А., Мамедова Л. П. Изучение фациального состава отложений раннего плиоцена (продуктивной толщи) Южно-Каспийского бассейна на основе данных каротажа скважин // Новости геофизики в Азербайджане. 2015. № 3/4. С. 3-7.
7. Фадела А., Зигайте З., Блома Х., Перес-Уэртак А., Джеффрис Т. и др. Палеоэкологические признаки, выявленные по составам редкоземельных элементов (РЗЭ) микроостатков позвоночных костяной брекчии Весак (Гомериан, Венлок), остров Сааремаа, Эстония // Эстонский журнал наук о Земле. 2015. Вып. 64. С. 36-41.
8. Кочарли Ш. С. Проблемные вопросы нефтегазовой геологии Азербайджана. Баку, 2015. 278 с.
9. Керимова К. А. Анализ коллекторских свойств и генезиса осадочных пород Южно-Каспийского бассейна // Научный бюллетень «Каротайник». 2009. № 11 (188). С. 38-47.
10. Керимова К. А. Генетическая модель осадочных пород на основе комплексных геофизических данных, полученных в диссертации Южно-Каспийского бассейна. Баку, 2011. 181 с.
11. Шилов Г. Ю., Джафаров И. С. Генетические модели осадочных и вулканогенных пород и методы интерпретации фаций на основе геолого-геофизических данных. 2001. 393 с.
12. Керимова К. А. Комплексная интерпретация скважинных данных. Баку, 2014. 86 с.
13. Керимова К. А., Сеидов В. М., Махмудов А. А., Алибекова Е. Т., Пашаева Ш. V. Литофациальная коррекция продуктивной толщи в регионе регионального сейсмического профиля в переделах хроностратиграфических гранитов Южно-Каспийской впадины в Апшерон-Прибалханской тектонической зоне // Азербайджанское нефтяное хозяйство. 2015. № 3. С. 10-14.
14. Сеидов В. М. Составление и анализ седиментационных моделей процесса осадконакопления на основе данных кривых каротажа // Изв. втузов Азербайджана. 2017. № 5 (109). С. 23-33.
15. Эрарслан С., Ёргюн Ю. 2017. Минералого-геохимическая характеристика угольных месторождений Сарай и Пинарисар, СевероЗападный Фракийский бассейн. Турция // Международный журнал по геологии угля. 2017. Вып. 173. С. 9-25. http://dx.doi.org/10.1016/jxoal.2017.01.015
Статья поступила в редакцию 09 июля 2019 г.
https://o rcid.org/0000-0001 -8753-8791 "[email protected]
https://o rcid.org/0000-0003-2808-3760