Стойкость железобетонных плит производства России и США
В.Л. Щуцкий, В. В. Будник, Е.С. Серая
Донской государственный технический университет
Аннотация. Рассматриваются актуальные проблемы определения стойкости и защиты железобетонных конструкций - плит, произведенных по стандартам, принятым в Российской Федерации и в США. Изучается отечественный и зарубежный опыт оценки и контроля качества продукции, мер по сохранению целостности и устойчивости конструкций к различным типам воздействия. Акцентируется внимание на тех выводах, которые должны, быть сделаны из анализа причин разрушений, с тем, чтобы избежать в будущем повторения тех ошибок и просчетов, которые допускаются в настоящее время при проектировании и строительстве инженерных сооружений и которые часто приводят к возникновению аварийных ситуаций.
Ключевые слова: методы контроля качества, железобетонные конструкции, аварии инженерных сооружений.
Большинство разрушений строительных конструкций вызвано ошибками при проектировании, ошибками, допущенными при чтении рабочих чертежей, недостаточно тесным сотрудничеством между проектировщиками и строителями, небрежным выполнением тех или иных строительных работ, недостаточным контролем за ходом и качеством строительства, а также рядом других факторов. Следовательно, число аварий и разрушений можно уменьшить путем более квалифицированного проектирования, качественного строительства и тщательного надзора за строительством. Для уменьшения количества разрушений также весьма важно изучение допущенных ошибок, чтобы избежать их повторения[1].
Не менее важными являются качество и стойкость строительных материалов, оцениваемые в России и США, при всех декларируемых тенденциях к сближению данных критериев, достаточно по-разному.
В США принята следующая система контроля соответствия строительных конструкций стандарту качества[2,3].
Разработанная Демингом концепция всеобщего (тотального) качества (Total Quality) предполагает введение ответственности за качество в каждую должностную инструкцию либо описание работ производственного рабочего. Также разработан «Стандарт 14-ти», который предполагает следующий алгоритм оценки строительных конструкций:
A) соответствие классу;
Б) соответствие проектно-технологической документации;
B) соответствие контролю качества исполнения (размерность, плотность, материал изготовления, устойчивость к деформациям и т.д.);
Г) соответствие требованиям заказчика;
Д) соответствие нормам экологичности;
Е) соответствие нормам утилизации (возможность вторичной переработки) [4-6].
Соответственно, эти 8 пунктов выступают категориями, в которых существуют классы оценки, например, класс прочности, класс экологичности и т.д [1,7].
В России контроль соответствия ведется исключительно на этапе оценки нормативно-технического соответствия плит проектному заданию, без учета характеристик самих плит. Это является пережитком типовой системы СССР, когда категории строительной продукции четко соответствовали ГОСТ и не могли различаться по своим характеристикам в рамках одного класса [3,5].
В настоящее время ситуация с изделиями строительной индусстрии напоминает ситуацию с типоразмерами обуви и одежды: условный размер обуви «44» может легко варьироваться от «42» до «45».
В этих условиях методы контроля строительной продукцией являются жизненно важными, поскольку тщательный контроль действительного соответствия плит и любых других конструкций должен обеспечить
надежность и функциональное соответствие строительных изделий назначению [2,8,9].
Проведем исследование соответствия стойкости железобетонных плит производства России и США
Традиционные плиты (ПК) производства различных заводов России обладают близкими характеристиками в рамках своего класса. Однако исследования показывают, что значительная часть дефектов плит имеет не спорадический характер, а вполне присуща целым производственным партиям. Для сравнения принята типовая ребристая плита с размерами 3х12 м марки 1 ПГ 12 - 4Ат1000 серия 1.465.01 - 15.
Расчетная равномерно распределенная нагрузка с учетом собственного веса плиты - 7.00 кПа, нормативная - 5,50 кПа.
Напрягаемая арматура в типовом решении - 2025Ат1000 по всей длине пролета, бетон тяжелый класса В35.
Значение предварительного напряжения в армировании растянутой
зоны оБр=920.00 МПа. Недостатки в ходе анализа произведенной партии изделий:
1) неправильно определено армирование плиты или оно отсутствует
вовсе;
2) армирование некондиционным или несоответствующим материалом;
3) пропуски армирования, разрушение арматуры в плите;
4) наличие посторонних предметов, полостей в плите;
5) некондиционный материал, использованный при изготовлении бетона (обычно, переизбыток наполнителя и нехватка связующих компонентов раствора);
6) несоответствие типоразмера плит - разброс до 35-50 см, несоответствие технологических проемов, несоответствие размера проемов паспортным данным.
При испытании на стойкость и деформацию наблюдается:
1) сжимающие, скалывающие напряжения в бетоне, из-за ошибок при проектировании плит, нарушения технологий;
2) разлом, кручение плиты под воздействием внешних сред, превышающие допуски;
3) появление трещин, изгиба плиты под нагрузкой предусмотренной СП и прежними ГОСТ.
Все перечисленные факторы являются следствием недостаточного контроля качества на самом предприятии, а также отсутствия единой системы контроля на этапе производства
Анализ аналогичных по назначению плит в США, проведенный Институтом жилищного строительства и строительных технологий, Айова, показал, что плиты стандарта DOW класс D, предназначенные для малоэтажного жилищного строительства и имеющие типоразмеры и характеристики, близкие к ПК 1, показывают существенно большие параметры качества и надежности [10].
Так, не выявлено ни одной партии, в которой более 50% плит имели бы недостатки армирования, нарушения целостности плиты, несоответствие размеров. Порядка 30% плит одной партии имели 2% несущественного брака и только 0,3% были полностью некондиционными [9, р.135-147].
Однако качественный анализ материала на оборудовании Института показал, что бетон изделий имеет весьма разные характеристики и разный состав наполнителя, вяжущих элементов и даже разную структуру самого бетона, что говорит о существенных отклонениях в производстве материала. Испытания, тем не менее, показали, что степень деформаций, которые
выдерживают данные изделия, весьма велика. То есть нельзя говорить, что разница в производстве материалов существенно влияет на стойкость и защитный свойства изделия. Видимо, неназванная фирма-производитель использует для производства плит различное оборудование и материалы, получаемые от разных подрядчиков, а партии формируются без учета схождения с производственных линий.
Таким образом, можно сделать вывод о необходимости создания концепции единого контроля за производством строительных материалов в России по методу оценки качества конкретного производителя и создания единого реестра недоброкачественных изделий конкретных заводов.
Литература
1. Хуранов В.Х., Бжахов М.И., Джанкулаев А.Я., Лихов З.Р. Новое конструктивное решение железобетонной балки равного сопротивления // Научно-технический вестник Поволжья. 2014. № 6. - С. 365-367.
2. Маилян Д.Р., Маилян Р.Л., Осипов М.В. Железобетонные балки с предварительным напряжением на отдельных участках // Бетон и железобетон. 2002. № 2. - С. 18-20.
3. Филимонов Н.Н., Трифонов И. А. Работа смешанной арматуры изгибаемого элемента в стадии разрушения // Известия ВУЗов. Строительство и архитектура. - Новосибирск: 1979. №7. - С.32-35.
4. Лихов З.Р. К расчету железобетонных изгибаемых элементов с комбинированным преднапряжением с учетом полных диаграмм деформирования материалов // Сборник докладов Международной конференции "Строительство - 2003". - Ростов-на-Дону: РГСУ. - 2003. -С.12-17.
5. Маилян Д.Р., Ахмад Михуб, Польской П.П. Вопросы исследования изгибаемых железобетонных элементов, усиленных различными видами
композитных материалов // Инженерный вестник Дона, 2013, №2 URL: ivdon.ru/magazine/archive/n2y2013/1674.
6. Маилян Д.Р., Маилян Р.Л., Хуранов В.Х. Способы изготовления железобетонных конструкций с переменным преднапряжением по длине элемента // Известия высших учебных заведений. Строительство. 2004. № 5. -С. 4-11.
7. Маилян Д.Р., Мурадян В.А. К методике расчета железобетонных внецентренно сжатых колон // Инженерный вестник Дона, 2012, №4 URL: ivdon.ru/magazine/archive/n4p2y2012/1333.
8. Dilger W.H., Suru K.M. Steel stresses in partially prestressed concrete members.// Journal of Prestressed Concrete Institute. - 1986. - Vol. 31 №3. - рр. 88-112.
9. Lars S. Resistance analysis of reinforced concrete structures: Phaidon Press,
2012. — 416 р.
10. Jodidio P. Architecture in the Netherlands New York: PiXezm, 2006. — 310 р.
References
1. Huranov V.H., Bzhahov M.I., Dzhankulaev А., Lihov Z.R. Nauchno-tehnicheskij vestnik Povolzh'ja. 2014. № 6. pp. 365-367.
2. Mailjan D.R., Mailjan R.L., Osipov M.V. Beton i zhelezobeton. 2002. № 2. pp. 18-20.
3. Filimonov N.N., Trifonov I.A. Izvestija VUZov. Stroitel'stvo i arhitektura. Novosibirsk: 1979. №7. pp.32-35.
4. Lihov Z.R. Sbornik dokladov Mezhdunarodnoj konferencii "Stroitel'stvo - 2003". Rostov-na-Donu: RGSU. 2003. pp.12-17.
5. Mailjan D.R., Ahmad Mihub, Pol'skoj P.P. Inzenernyj vestnik Dona (Rus),
2013, №2. URL: ivdon.ru/magazine/archive/n2y2013/1674.
6. Mailjan D.R., Mailjan R.L., Huranov V.H. Izvestija vysshih uchebnyh zavedenij. Stroitel'stvo. 2004. № 5. pp. 4-11.
7. Mailjan D.R., Muradjan V.A. Inzenernyj vestnik Dona (Rus), 2012, №4. URL: ivdon.ru/magazine/archive/n4p2y2012/1333.
8. Dilger W.H., Suru K.M. Journal of Prestressed Concrete Institute. 1986. Vol/ 31/ №3. pp. 88-112.
9. Lars S. Resistance analysis of reinforced concrete structures: Phaidon Press, 2012. 416 p.
10. Jodidio P. Architecture in the Netherlands New York: PiXezm, 2006. 310 p.