Научная статья на тему 'Стохастический анализ структурной надежности сложных технических систем'

Стохастический анализ структурной надежности сложных технических систем Текст научной статьи по специальности «Строительство и архитектура»

CC BY
22
4
i Надоели баннеры? Вы всегда можете отключить рекламу.
Ключевые слова
трубопровод / техническое обслуживание / целостность / газопровод / коррозия / pipeline / maintenance service / consistence / gas pipeline / corrosion

Аннотация научной статьи по строительству и архитектуре, автор научной работы — Курасов Олег Александрович, Бурков Петр Владимирович

Актуальность. Серьезность и важность вопроса обеспечения надежности сложных технических систем в области нефтегазотранспорта не вызывает сомнений. С целью оценки риска и прогнозирования надежности сложных технических систем, в частности наземных газопроводов, которые подвержены внешней коррозии, в статье предлагаются два вероятностных метода, основанных на анализе структурной надежности. Методы исследования. Описание рассматриваемых методологий реализуется двумя разными стратегиями проверки и технического обслуживания опасных производственных объектов. Результаты. Предлагается модель структурной надежности, которая обеспечивает оценку вероятности разрыва металла от наружной коррозии на исследуемом участке трубы. Представленная последовательность анализа структурной надежности моделирует механический отказ исследуемого участка трубопровода, учитывая стохастические процессы, связанные с нагрузками и сопротивлением на исследуемом сегменте трубы. Неоднородный пуассоновский процесс применяется для моделирования образования новых дефектов, а распределение Пуассона используется для моделирования роста дефектов. Первая методика посвящена анализу внешней коррозии газопроводов с потерей металла и содержит оценки вероятности разрыва на эталонном участке трубы, который был построен на основе средних характеристик разрывов труб из базы данных PHMSA. Вторая вероятностная модель позволяет прогнозировать надежность для неочищаемых участков, подверженных внешней коррозии с потерей металла.

i Надоели баннеры? Вы всегда можете отключить рекламу.

Похожие темы научных работ по строительству и архитектуре , автор научной работы — Курасов Олег Александрович, Бурков Петр Владимирович

iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.
i Надоели баннеры? Вы всегда можете отключить рекламу.

Stochastic analysis of structural reliability of complex engineering systems

Purpose: The assessment of risks and prediction of reliability of complex engineering systems, in particular onshore gas pipelines subjected to external corrosion. Two methods are proposed using the structural reliability analysis. Methodology: Two strategies are considered for inspection and maintenance service of hazardous production facilities. Research findings: The model of structural reliability is proposed to estimate the metal rupture from external corrosion of the pipe section. Models are presented for its mechanical failure with respect to stochastic processes of loads and resistance. Value: The inhomogeneous Poisson point process is used to simulate the formation of new defects, and the Poisson distribution is used to simulate their growth. The first method focuses on the analysis of external corrosion of gas pipelines with metal loss and predicts rupture at a reference pipe segment, constructed with respect to average pipe rupture characteristics from the PHMSA database. The second model predicts reliability for untreated sections subject to external corrosion with metal loss.

Текст научной работы на тему «Стохастический анализ структурной надежности сложных технических систем»

Вестник Томского государственного архитектурно-строительного университета. 2024. Т. 26. № 1. С. 108-117.

Vestnik Tomskogo gosudarstvennogo arkhitekturno-stroitel'nogo universiteta -Journal of Construction and Architecture.

ISSN 1607-1859 (для печатной версии) ISSN 2310-0044 (для электронной версии)

2024; 26 (1): 108-117. Print ISSN 1607-1859 Online ISSN 2310-0044

НАУЧНАЯ СТАТЬЯ

УДК 622.692.4: 539.43

DOI: 10.31675/1607-1859-2024-26-1-108-117

EDN: NTQOUA

СТОХАСТИЧЕСКИМ АНАЛИЗ СТРУКТУРНОЙ НАДЕЖНОСТИ СЛОЖНЫХ ТЕХНИЧЕСКИХ СИСТЕМ

Олег Александрович Курасов1, Петр Владимирович Бурков1'2

1 Национальный исследовательский

Томский политехнический университет, г. Томск, Россия

2Томский государственный архитектурно-строительный университет,

г. Томск, Россия

Аннотация. Актуальность. Серьезность и важность вопроса обеспечения надежности сложных технических систем в области нефтегазотранспорта не вызывает сомнений.

С целью оценки риска и прогнозирования надежности сложных технических систем, в частности наземных газопроводов, которые подвержены внешней коррозии, в статье предлагаются два вероятностных метода, основанных на анализе структурной надежности.

Методы исследования. Описание рассматриваемых методологий реализуется двумя разными стратегиями проверки и технического обслуживания опасных производственных объектов.

Результаты. Предлагается модель структурной надежности, которая обеспечивает оценку вероятности разрыва металла от наружной коррозии на исследуемом участке трубы. Представленная последовательность анализа структурной надежности моделирует механический отказ исследуемого участка трубопровода, учитывая стохастические процессы, связанные с нагрузками и сопротивлением на исследуемом сегменте трубы.

Неоднородный пуассоновский процесс применяется для моделирования образования новых дефектов, а распределение Пуассона используется для моделирования роста дефектов. Первая методика посвящена анализу внешней коррозии газопроводов с потерей металла и содержит оценки вероятности разрыва на эталонном участке трубы, который был построен на основе средних характеристик разрывов труб из базы данных PHMSA. Вторая вероятностная модель позволяет прогнозировать надежность для неочищаемых участков, подверженных внешней коррозии с потерей металла.

Ключевые слова: трубопровод, техническое обслуживание, целостность, газопровод, коррозия

Для цитирования: Курасов О.А., Бурков П.В. Стохастический анализ структурной надежности сложных технических систем // Вестник Томского государственного архитектурно-строительного университета. 2024. Т. 26. № 1. С. 108-117. БО!: 10.31675/1607-1859-2024-26-1-108-117. ББ№ ОТПОИЛ

© Курасов О.А., Бурков П.В., 2024

ORIGINAL ARTICLE

STOCHASTIC ANALYSIS OF STRUCTURAL RELIABILITY OF COMPLEX ENGINEERING SYSTEMS

Oleg A. Kurasov1, Petr V. Burkov1'2

1National Research Tomsk Polytechnic University, Tomsk, Russia 2Tomsk State University of Architecture and Building, Tomsk, Russia

Abstract. Purpose: The assessment of risks and prediction of reliability of complex engineering systems, in particular onshore gas pipelines subjected to external corrosion. Two methods are proposed using the structural reliability analysis.

Methodology: Two strategies are considered for inspection and maintenance service of hazardous production facilities.

Research findings: The model of structural reliability is proposed to estimate the metal rupture from external corrosion of the pipe section. Models are presented for its mechanical failure with respect to stochastic processes of loads and resistance.

Value: The inhomogeneous Poisson point process is used to simulate the formation of new defects, and the Poisson distribution is used to simulate their growth. The first method focuses on the analysis of external corrosion of gas pipelines with metal loss and predicts rupture at a reference pipe segment, constructed with respect to average pipe rupture characteristics from the PHMSA database. The second model predicts reliability for untreated sections subject to external corrosion with metal loss.

Keywords: pipeline, maintenance service, consistence, gas pipeline, corrosion

For citation: Kurasov O.A., Burkov P.V. Stochastic analysis of structural reliability of complex engineering systems. Vestnik Tomskogo gosudarstvennogo arkhitekturno-stroitel'nogo universiteta - Journal of Construction and Architecture. 2024; 26 (1): 108-117. DOI: 10.31675/1607-1859-2024-26-1-108-117. EDN: NTQOUA

Введение

Многие литературные обзоры были сосредоточены на различных аспектах обеспечения надежности и управления целостностью, методах обнаружения неисправностей [1], причинах отказа трубопроводов в агрессивных средах [2], неразрушающем контроле [3], внутритрубной диагностике и применении данных внутритрубной диагностики для управления целостностью [4], оценке структурной целостности и давления разрыва трубопровода [5] и моделей прогнозирования отказов [6].

В настоящей статье предпринимаются попытки рассмотрения подходов, основанных на оценке риска, в контексте управления целостностью трубопровода и обеспечения надежности, а также концепций гарантии устойчивости применительно к обеспечению надежности сложных технических систем (СТС).

В моделях надежности главным является применение вероятностных подходов для анализа неопределенностей, связанных с прогностическим моделированием. Различным аспектом моделей надежности являются модели деградации и подход к оценке целостности. Модели предиктивной аналитики для оценки надежности являются стохастическими и основаны на статистических подходах к выводу о будущем функционировании объекта на основе исторических и текущих данных.

чо

Tt

о

и <

U Н

bt =

=

н

CJ

<v PQ

Из-за серьезности и важности СТС в области нефтегазотранспорта было проведено несколько видов исследований для оценки их рисков. Количественная оценка риска нефте- и газопроводов является сложной задачей. Это связано с тем, что нефтегазораспределительные системы состоят из многих километров труб с разным сроком службы, изготовленных из разных материалов. Кроме того, условия окружающей среды и эксплуатационные условия крайне неопределенны и стохастичны как во времени, так и в пространстве. Доступность данных о состоянии трубопровода иногда ограничена, особенно для подземного трубопровода. Фактически исторические записи о некоторых сценариях риска, таких как чрезвычайно опасные события, часто недостаточны и неполны. Кроме того, некоторые механизмы сбоев мало изучены из-за задержки во времени между сбоем и моментом обнаружения последствий. Эти обстоятельства, в свою очередь, могут вызвать трудности с разработкой надлежащих функций распределения вероятностей.

В статье предлагаются две вероятностные методологии для продления срока службы наземных газопроводов, подверженных наружной коррозии с потерей металла, основанные на стохастической вероятностной оценке надежности и долговечности, в рамках анализа структурной надежности (АСН).

Применение предлагаемых методологий реализуется на двух разных стратегиях проверки и технического обслуживания (ТО) опасных производственных объектов трубопроводного транспорта углеводородов. Предлагается модель структурной надежности, которая обеспечивает оценку вероятности разрыва металла из-за наружной коррозии на исследуемом участке трубы. Характеристики участка получены из открытых данных об отказах из базы данных Управления по безопасности трубопроводов и опасным материалам (PHMSA). В частности, используются описанные случаи разрыва трубопроводов из-за наружной коррозии с потерей металла за период 2002-2020 гг. Исследуемый участок трубопровода анализируется на основе этих характеристик. 1-н Предлагаемая последовательность АСН моделирует механический отказ

данного участка трубопровода, принимая во внимание стохастические про-• цессы, связанные с нагрузками и сопротивлениями на исследуемом сегменте сч трубы. Неоднородный пуассоновский процесс используется для моделирова-^ ния образования новых дефектов, а распределение Пуассона - для моделиро-^ вания роста дефектов. Нагрузка внутреннего давления описывается как дис-сч кретный стохастический процесс Ферри-Боржеса. Исследуемая СТС проверяем ется с помощью программы технического обслуживания и ремонта (ТОиР), ^ основанной на стандарте ASME B31.8S для методов внутритрубной диагно-(J стики (ВТД) на срок службы 100 лет. В модель также включена реалистичная характеристика вероятности обнаружения и ошибки измерения, связанная ^ с данными ВТД.

^ Также рассматривается стратегия ТО, а именно прямая оценка внешней

S коррозии (ПОВК). В этом случае так называемый не подвергаемый очистке, ® или неочищаемый (т. е. в случаях, когда не могут быть использованы внут-ритрубные очистные скребки), корродирующий участок береговой системы PQ газопровода исследуется на предмет наружной коррозии с потерей металла. Применяется эвристический метод, а именно сплит-системный подход [7],

который позволяет связать АСН с долгосрочным планово-предупредительным ТО с целью мониторинга в режиме реального времени информации о техническом состоянии исследуемого участка трубопровода с использованием последних доступных данных. Развитие коррозионных процессов оценивают по количеству дефектов на исследуемом отрезке трубы. Неоднородный пуассо-новский процесс (Н1 II I) используется для моделирования неопределенностей и появления дефектов, а эмпирическая модель степенного закона принимается для оценки роста дефектов во времени. Оценка и прогнозирование надежности исследуемого участка осуществляется по предельному состоянию на разрыв внутренним давлением, включая неопределённости с помощью распределения Пуассона.

Постановка задачи, методы исследования

Образование новых дефектов на исследуемом участке характеризуется с помощью НПП [8, 9]. Предполагается, что время возникновения дефектов неравномерно. Для подземных трубопроводов применима модель, которая основана на фактических данных о возникновении коррозионных дефектов, учитывающая время начала to роста n коррозионных дефектов и некоторые свойства системы «почва - трубопровод».

di (t)=kAi (t - ti0)ai. (1)

Модель роста дефектов по уравнению (1) представляет собой стохастический процесс, т. к. является функцией двух случайных величин. Параметры кл и a являются случайными величинами, которые могут быть оценены по свойствам почвы [10]. Коэффициенты пропорциональности кл, из уравнения (1) характеризуются распределением Пуассона. Эта модель является одной из наиболее правдоподобных и может обеспечить реалистичные значения глубины коррозионных дефектов, а также может быть легко откалибрована по фактическим данным о величине коррозионных процессов или обновлена с помощью байесовского вывода.

Альтернативным методом моделирования роста коррозии с потерей металла СТС является использование стохастического процесса, который учитывает временную неопределенность роста дефектов во времени. В этом случае используется распределение Пуассона, где выборочные варианты коррозионного разрушения металла трубы непрерывны во времени, а значит, и рост дефектов, что в целом является реалистичным учетом развития коррозии ®

с потерей металла [11].

Предполагается, что дефект определенной длины появляется на трубе в момент времени начала развития дефекта в виде пятна с длиной и шириной по причине повреждения защитного покрытия трубопровода. Предполагается, что различные длины дефектов остаются неизменными с течением времени и подчиняются предопределенному распределению вероятности.

На практике внутреннее давление в трубопроводе со временем колеблется случайным образом из-за изменения условий эксплуатации. Поэтому предполагается, что внутреннее давление представляет собой стохастическую модель нагрузки, основанную на процессе, изменяющемся во времени. Вме-

сто этого следует рассмотреть случайные периодические колебания давления в трубопроводе в виде непрерывного процесса. Таким образом, сочетание случайных периодических экстремумов с ухудшением сопротивления из-за коррозии можно считать здесь приемлемым, учитывая, что развитие коррозионных процессов осуществляется постепенно. Поэтому в данном случае рассмотрены дискретный стохастический процесс Ферри-Боржеса [12] и распределение Пуассона [13]. Отличие распределения Пуассона для внутреннего давления от моделирования роста коррозионных дефектов СТС заключается в том, что здесь отсутствует необходимость в положительном распределении случайной величины для амплитуд импульсов. Для внутреннего давления Рор величины различных импульсов Ра являются независимыми и одинаково распределенными случайными величинами, характеризуемыми плотностью распределения вероятностей /ра(ра). Предполагается, что величина Ра в данный момент времени соответствует распределению Гумбеля с параметрами распределения ОрА и ЦрА, т. е.

/р (Ра I арл, МрА ) = арАеХР (-арА (РаАМрА )) еХР (-еХР (-арА (Ра - МрА ))) • (2)

Газопровод, подверженный коррозии и содержащий многочисленные дефекты, может выйти из эксплуатации по нескольким причинам. Малая течь является следствием дефекта в стенке. Большая утечка и разрыв отличаются только наличием или отсутствием сквозного дефекта в стенке трубы, возникающего в результате пластического разрушения внутренним давлением на дефект. Оценки надежности в таком случае проводятся с использованием модели коррозионного разрушения трубопроводов для расчета давления разрыва.

Число разрывов, деленное на общее число Ыр шагов Монте-Карло, составляет оценку вероятности разрыва трубы Рг(^эг). Для каждого из $ дефектов этот метод повторяется раз. Таким образом, всего процесс повторяется $ • Ы^р раз. Он также повторяется еще несколько раз в течение определенного промежутка времени. В результате оценивается вероятность разрыва для каждого из коррозионных участков трубопровода в каждый момент времени t. ^ С учетом определения надежности [14]

Язг =1 - Рг (^г). (3)

В случае, если коррозионные дефекты независимы, можно получить ^ верхнюю границу вероятности разрыва сегмента трубы:

Рг (^3 )=1 -Пг [1 - Рг (4)

у или эквивалентно надежности исследуемого участка трубы от разрыва:

гч

R =1 - Pr (F3). (5)

ВТД реализуется на исследуемом участке трубы на основе стандарта ASME B31.8S в течение рассматриваемого срока службы. Считается, что

<

и н

"-г =

Я в течение данного срока службы на сегментах труб СТС проводятся различен ные инспекции и ТО, поэтому их общая надежность постоянно поддержива-рц ется в определенном приемлемом диапазоне. Этот диапазон варьируется в зависимости от принятия решений операторами и индивидуальных планов ТО.

Ремонтные работы на извлеченном из траншеи участке трубы включают полное удаление существующего защитного покрытия, после чего наносится изоляционное покрытие или покрытие с кожухом, в зависимости от величины дефектов. Независимо от конкретных мероприятий, участок трубы считается полностью восстановленным до исходного состояния. Кожух обеспечивает, по крайней мере, сопротивление росту коррозии, в то время как повторное изоляционное покрытие устраняет существующие дефекты.

В качестве неопределенности инструментов ВТД рассматривается способность инспекционного оборудования определять местонахождение и размер фактического дефекта, связанного с потерей металла. Вероятность обнаружения дефекта с помощью ВТД обычно зависит от размера дефекта и присущих инструменту возможностей. Вероятность обнаружения дефекта имеет следующую экспоненциальную форму:

РоО=1-е~дЛ, (6)

где q - константа, определяющая способность инструмента обнаруживать дефекты. Измеренные глубины и длины (у и ЬмИ) оцениваются [15] как

у{=с1+с2; (7)

1М=с1\+с12^+4' (8)

где с (си) и С2 (си) - смещения инструмента ВТД, которые считаются детерминированными величинами, а в и в; - дисперсия случайной ошибки, соответствующая измеренным глубинам и длинам дефектов.

Надежность участка трубы, полученная из уравнения (5), будет уменьшаться во времени по причине износа трубопровода. Таким образом, его можно описать следующим образом [16, 17]:

Кс ((уА) = К3 ((уА - Туа ) ТуЛ ^ гуЛ < ТУЛ+1 (9)

при условии, что участок трубопровода не выходит из эксплуатации до времени Т каждого ремонта.

Общая надежность участка трубы эквивалентна вероятности безотказной работы до времени Тт регулярного ТО и формулируется как

*^(уА)= -■ Тл)'Л' (10)

Ул • Тт ^ ^уА < (уА + !) Тт ■ ^Г

Г4!

Вышеизложенное подразумевает, что общая надежность (вероятность ® безотказной работы) Я не может увеличиваться в течение всего срока службы, . • в отличие от условной надежности Явс , которая известна как готовность. ^

Обсуждение результатов исследования ^

Описанная методология прогнозирования надежности для конкретного

сегмента трубопровода дополнительно включается в методологию, которая ^

оценивает общую надежность СТС, состоящей из нескольких сегментов. Реа- В

лизация возможна на основе сплит-системного подхода, который моделирует и

надежность системы совместно с мероприятиями по планово-предупредитель- р^ ным работам на каждом сегменте и позволяет точно рассчитать изменения

®1

надежности из-за некачественного ремонта. Этот метод напрямую связывает модель АСН с долгосрочными планово-предупредительными работами, что позволяет вести мониторинг технического состояния трубопроводной системы на основе данных о ТО.

Как правило, анализ изменения надежности осуществляется с использованием теоремы Байеса. В данном случае рассматривается только первоначальный план управления ТО до момента, когда фактически будут выполнены какие-либо действия по ТОиР. Таким образом, информация, полученная в результате ТОиР, не известна заранее, и анализ изменения надежности проводится с помощью прямой оценки внешней коррозии.

Стратегия ТО, ориентированного на надежность, является устаревшей, и всякий раз, когда надежность системы падает до заранее определенного уровня, конкретный сегмент трубы необходимо будет извлечь и проанализировать. Выбор подходящего сегмента трубы для ремонта может основываться на соответствующих данных технического осмотра или экспертном заключении.

iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.

После подъема трубопровода в траншее и его обследования проводятся ремонтные работы в соответствии с выбранной стратегией ТО, которые включают полную очистку трубопровода от старого изоляционного покрытия. В зависимости от степени износа на сегмент может быть нанесено повторное покрытие или покрытие с защитным кожухом. Первое предотвращает рост всех существующих дефектов на участке трубы, в то время как защитный кожух покрывает сегмент, содержащий критические дефекты, величина которых может быть охарактеризована экспертной оценкой. Отремонтированный сегмент трубы считается полностью восстановленным до начального состояния, т. к. защитный кожух, по крайней мере, имеет такую же способность сопротивления развитию коррозионных процессов, как и новый сегмент трубы, в то время как повторное покрытие снижает рост существующих дефектов.

На практике обычно применяется календарное техническое и инспекционное обслуживание, когда речь идет о линейных объектах, таких как трубопроводные системы. Однако ТО также широко применимо и может быть использо-• вано в качестве дополнительной стратегии. В первом случае - ремонт отдельных сч участков трубопроводной системы при падении уровня надежности до заранее определенного предела. Вероятность безотказной работы трубопроводной системы при условии, что ее сегменты успешно прошли профилактическое обслу-ГЯ живание, называется условной вероятностью. С другой стороны, вероятность СЧ безотказной работы системы, учитывающая вероятности безотказной работы ^ отдельных сегментов до запланированного времени ТО, именуется общей у надежностью системы. Условная надежность более полезна для определения динамических интервалов ТО, т. к. описывает изменения надежности между ТО, ^ в то время как общая надежность показывает изменения за весь срок эксплуата-^ ции СТС, который обычно охватывает большое количество интервалов ТО. ^ Оценка функции надежности отдельного участка трубы проводится ме-

® тодом Монте-Карло. Каждый образец определяется одной реализацией каж-^ дой случайной величины в начальный момент, а затем в следующих дискрет-03 ных точках Л по мере развития коррозионных процессов до окончания рассматриваемого срока эксплуатации. После выполнения вычислений в Л

можно использовать линейные приближения для соединения временных интервалов между значениями надежности дискретных моментов времени. Этого можно достичь в случае, если учесть, что среди значений дискретных моментов времени надежность уменьшается линейно. На рисунке схематически представлено линейное приближение.

Линейное приближение для определения точного времени падения уровня надежности до 0,9 Linear approximation to detect exact time for reliability level decrease to 0.9

Заключение

В работе предложены две вероятностные методики, основанные на интеграции стохастических процессов в рамках анализа структурной надежности. Они были основаны на планах ТО и касались СТС, в частности газопроводов, подверженных внешней коррозии с потерей металла. Первая методика посвящена анализу внешней коррозии газопроводов с потерей металла и содержит оценки вероятности разрыва на эталонном участке трубы, который был построен на основе средних значений разрывов труб из базы данных PHMSA за период 2002-2020 гг.

Можно сделать вывод, что модель дает дополнительные сведения о состоянии наземной газотранспортной сети в 2002-2020 гг. - периоде, достаточно репрезентативном для современных стратегий эксплуатации и восстановления СТС в нефтегазовой отрасли, что повышает значимость полученных результатов для анализа надежности существующих или перспективных газотранспортных систем.

Вторая модель позволяет точно прогнозировать надежность для непод-вергаемых очистке трубороводов, подверженных внешней коррозии с потерей металла.

Предполагалось, что СТС не будет достаточно качественно отремонтирована при каждом последующем ТО ввиду человеческого фактора и финансовых ограничений. Сплит-системный подход позволяет количественно оценить изменения в надежности, вызванные несовершенством мероприятий ТОиР. Каждый конкретный тип стратегии ТО может быть полезен при принятии решений по прогнозированию надежности СТС как в качестве реалистичной стратегии ПОВК, так и для сравнения с другими стратегиями, основанными на ВТД.

чо

Tt

о

и <

U Н

bt =

=

н

CJ

<v PQ

Список источников

2.

3.

4.

5.

чо

10.

11.

12.

13.

14.

15.

16.

17.

Datta S., Sarkar S. A review on different pipeline fault detection methods // Journal of loss prevention in the process industries. 2016. V. 41. P. 97-106.

Ossai C.I., Boswell B., Davies IJ. Pipeline failures in corrosive environments - A conceptual analysis of trends and effects // Engineering failure analysis. 2015. V. 53. P. 36-58. Coramik M., Ege Y. Discontinuity inspection in pipelines: A comparison review // Measurement. 2017. V. 111. P. 359-373.

Mingjiang X., Zhigang T. A review on pipeline integrity management utilizing in-line inspection data // Engineering failure analysis. 2018. V. 92. № 10. P. 222-239. Amaya-Gómez R. et al. Reliability assessments of corroded pipelines based on internal pres-sure-A review // Engineering Failure Analysis. 2019. V. 98. P. 190-214. Zakikhani K., Nasiri F., Zayed T. A review of failure prediction models for oil and gas pipelines. Journal of Pipeline Systems Engineering and Practice. 2020. V. 11. № 1. P. 03119001. Sun Y., Ma L., Morris J. A practical approach for reliability prediction of pipeline systems // European Journal of Operational Research. 2009. V. 198. № 1. P. 210-214. Shafiee M., Finkelstein M. An optimal age-based group maintenance policy for multi-unit degrading systems // Reliability Engineering & System Safety. 2015. V. 134. P. 230-238. Zhang S., Zhou W. Cost-based optimal maintenance decisions for corroding natural gas pipelines based on stochastic degradation models // Engineering Structures. 2014. V. 74. P. 74-85. Gomes W.J.S., Beck A.T., Haukaas T. Optimal inspection planning for onshore pipelines subject to external corrosion // Reliability Engineering & System Safety. 2013. V. 118. P. 18-27. Bazán F.A.V., Beck A.T. Stochastic process corrosion growth models for pipeline reliability // Corrosion Science. 2013. V. 74. P. 50-58.

Zhou W. System reliability of corroding pipelines // International Journal of Pressure Vessels and Piping. 2010. V. 87. № 10. P. 587-595. URL: https://doi.org/10.1016/j.ijpvp.2010.07.011 Zhang S., Zhou W. System reliability of corroding pipelines considering stochastic process-based models for defect growth and internal pressure // International Journal of Pressure Vessels and Piping. 2013. V. 111. P. 120-130.

Melchers R. Structural Reliability Analysis and Prediction. 2nd Edition. Wiley, 2004. Stephens M., Nessim M. A comprehensive approach to corrosion management based on structural reliability methods // International Pipeline Conference. American Society of Mechanical Engineers, 2006. P. 695-704.

Barone G., Frangopol D.M. Reliability, risk and lifetime distributions as performance indicators for life-cycle maintenance of deteriorating structures // Reliability Engineering & System Safety. 2014. V. 123. P. 21-37.

Popov G., Bolobov V., Zhuikov I., Zlotin V. Development of the Kinetic Equation of the Groove Corrosion Process for Predicting the Residual Life of Oil-Field Pipelines // Energies. 2023. V. 16. № 20. P. 7067.

О

U <

u

H =

=

H cj <v

PQ

5.

6.

7.

REFERENCES

Datta S., Sarkar S. A review on different pipeline fault detection methods. Journal of Loss Prevention in the Process Industries. 2016; 41: 97-106.

Ossai C.I., Boswell B., Davies I.J. Pipeline failures in corrosive environments. A conceptual analysis of trends and effects. Engineering Failure Analysis. 2015; 53: 36-58. Coramik M., Ege Y. Discontinuity inspection in pipelines: A comparison review. Measurement. 2017; 111: 359-373.

Mingjiang X., Zhigang T. A review on pipeline integrity management utilizing in-line inspection data. Engineering Failure Analysis. 2018; 92 (10): 222-239.

Amaya-Gómez R., et al. Reliability assessments of corroded pipelines based on internal pressure - A review. Engineering Failure Analysis. 2019; 98: 190-214.

Zakikhani K., Nasiri F., Zayed T. A review of failure prediction models for oil and gas pipelines. Journal ofPipeline Systems Engineering and Practice. 2020; 11 (1): 03119001. Sun Y., Ma L., Morris J. A practical approach for reliability prediction of pipeline systems. European Journal of Operational Research. 2009;198 (1): 210-214.

8. Shafiee M., Finkelstein M. An optimal age-based group maintenance policy for multi-unit degrading systems. Reliability Engineering & System Safety. 2015; 134: 230-238.

9. Zhang S., Zhou W. Cost-based optimal maintenance decisions for corroding natural gas pipelines based on stochastic degradation models. Engineering Structures. 2014; 74: 74-85.

10. Gomes W.J.S., Beck A.T., Haukaas T. Optimal inspection planning for onshore pipelines subject to external corrosion. Reliability Engineering & System Safety. 2013; 118: 18-27.

11. Bazán F.A.V., Beck A.T. Stochastic process corrosion growth models for pipeline reliability. Corrosion Science. 2013; 74: 50-58.

12. Zhou W. System reliability of corroding pipelines. International Journal of Pressure Vessels and Piping. 2010; 87(10). 587-595. https://doi.org/10.10167j.ijpvp.2010.07.011

13. Zhang S., Zhou W. System reliability of corroding pipelines considering stochastic process-based models for defect growth and internal pressure. International Journal of Pressure Vessels and Piping. 2013; 111: 120-130.

14. Melchers R. Structural Reliability Analysis and Prediction, 2nd ed., Wiley, 2004.

15. Stephens M., Nessim M. A comprehensive approach to corrosion management based on structural reliability methods. In: Proc. Int. Pipeline Conference. American Society of Mechanical Engineers, 2006; 695-704.

16. Barone G., Frangopol D.M. Reliability, risk and lifetime distributions as performance indicators for life-cycle maintenance of deteriorating structures. Reliability Engineering & System Safety. 2014; 123: 21-37.

17. Popov G., Bolobov V., Zhuikov I., Zlotin V. Development of the kinetic equation of the groove corrosion process for predicting the residual life of oil-field pipelines. Energies. 2023;16 (20): 7067.

Сведения об авторах

Курасов Олег Александрович, аспирант, Национальный исследовательский Томский политехнический университет, 634050, г. Томск, пр. Ленина, 30, oak18@tpu.ru

Бурков Петр Владимирович, докт. техн. наук, ст. научный сотрудник, Томский государственный архитектурно--строительный университет, 634003, г. Томск, пл. Соляная, 2; профессор, Национальный исследовательский Томский политехнический университет, 634050, г. Томск, пр. Ленина, 30, burkovpv@mail.ru

Author Details

Oleg A. Kurasov, Research Assistant, National Research Tomsk Polytechnic University, 30, Lenin Ave., 634050, Tomsk, Russia, oak18@tpu.ru

Petr V. Burkov, DSc, Senior Scientist, Tomsk State University of Architecture and Building, 2, Solyanaya Sq., 634003, Tomsk, Russia; National Research Tomsk Polytechnic University, 30, Lenin Ave., 634050, Tomsk, Russia, burkovpv@tpu.ru

Вклад авторов

Все авторы сделали эквивалентный вклад в подготовку публикации.

Авторы заявляют об отсутствии конфликта интересов.

Authors contributions

The authors contributed equally to this article.

The authors declare no conflicts of interests.

Статья поступила в редакцию 02.11.2023 Submitted for publication 02.11.2023

Одобрена после рецензирования 21.11.2023 Approved after review 21.11.2023

Принята к публикации 16.01.2024 Accepted for publication 16.01.2024

i Надоели баннеры? Вы всегда можете отключить рекламу.