Научная статья на тему 'СТАТИЧЕСКИЙ РАСЧЁТ ПЛЁНОЧНОЙ КРОВЛИ КУЛЬТИВАЦИОННОГО СООРУЖЕНИЯ'

СТАТИЧЕСКИЙ РАСЧЁТ ПЛЁНОЧНОЙ КРОВЛИ КУЛЬТИВАЦИОННОГО СООРУЖЕНИЯ Текст научной статьи по специальности «Строительство и архитектура»

CC BY
99
16
i Надоели баннеры? Вы всегда можете отключить рекламу.
Ключевые слова
ТЕПЛИЦА / ПЛЁНОЧНАЯ КРОВЛЯ / ВЕТРОВАЯ НАГРУЗКА / СПОСОБ РАСЧЁТА ПЛЁНКИ / GREENHOUSE / MEMBRANE ROOF / WIND LOAD / METHOD OF MEMBRANE CALCULATION

Аннотация научной статьи по строительству и архитектуре, автор научной работы — Блажнов А. А.

Плёночные теплицы в тепличных комбинатах и хозяйствах малых форм собственности используются в весенне-осенний период для выращивания различных сельскохозяйственных культур. Основной нагрузкой для таких сооружений является ветровая. Нормы строительного проектирования теплиц не содержат положений по расчёту плёночной кровли культивационных сооружений на этот вид нагрузки. Для арочных теплиц с круговым очертанием покрытия предложен приближённый способ определения усилий от ветровой нагрузки в стабилизированной ветровыми канатами плёнке. Плёночная кровля рассматривалась как мягкая оболочка под воздействием отрицательной ветровой нагрузки. Расчётные зависимости для оценки напряжённо-деформированного состояния материала кровли выведены аналитически. При выводе зависимостей использована расчётная схема деформированной ветровым давлением кровли, соответствующая реальным условиям эксплуатации сооружения. Рассматривалась кровля сооружения из рекомендуемой строительными нормами по проектированию теплиц полиэтиленовой плёнки, физико-механические характеристики которой стандартизированы. Выведены зависимости для определения продольных и кольцевых напряжений в материале кровли, рационального шага ветровых канатов и максимально возможного в них усилия. Предложенный способ статического расчёта плёночной кровли возможно использовать для культивационных сооружений с очертанием покрытия близким к круговому

i Надоели баннеры? Вы всегда можете отключить рекламу.
iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.
i Надоели баннеры? Вы всегда можете отключить рекламу.

STATIC CALCULATION OF FILM ROOF OF CULTIVATION STRUCTURE

Membrane roofing greenhouses and small-scale farms are used in the spring and autumn period for growing various crops. The main load for such structures is wind. Norms of construction design of greenhouses do not contain provisions for calculating the membrane roof of cultivation structures for this type of load. For arched greenhouses with a circular outline of the coating, an approximate method for determining the forces from the wind load in a membrane stabilized by wind ropes is proposed. The membrane roof is considered as a soft cover under the influence of negative wind load. The calculated dependences for estimating the stress-strain state of the roof material are derived analytically. The calculation scheme of the roof deformed by wind pressure, corresponding to the actual operating conditions of the structure, is used to derive the dependencies. The roof of the structure is considered from the polyethylene membrane recommended by the building standards for the design of greenhouses, the physical and mechanical characteristics of which are standardized. Dependences are derived for determining the longitudinal and annular stresses in the roof material, the rational pitch of wind ropes and the maximum possible force in them. The proposed method of static calculation of the membrane roof can be used for cultivation structures with the outline of the coating close to circular

Текст научной работы на тему «СТАТИЧЕСКИЙ РАСЧЁТ ПЛЁНОЧНОЙ КРОВЛИ КУЛЬТИВАЦИОННОГО СООРУЖЕНИЯ»

DOI: 10.34031/2071-7318-2020-5-10-17-22 Блажнов А.А.

Орловский государственный аграрный университет имени Н.В. Парахина

E-mail:blazhnov47@mail. ru

СТАТИЧЕСКИЙ РАСЧЁТ ПЛЁНОЧНОЙ КРОВЛИ КУЛЬТИВАЦИОННОГО

СООРУЖЕНИЯ

Аннотация. Плёночные теплицы в тепличных комбинатах и хозяйствах малых форм собственности используются в весенне-осенний период для выращивания различных сельскохозяйственных культур. Основной нагрузкой для таких сооружений является ветровая. Нормы строительного проектирования теплиц не содержат положений по расчёту плёночной кровли культивационных сооружений на этот вид нагрузки. Для арочных теплиц с круговым очертанием покрытия предложен приближённый способ определения усилий от ветровой нагрузки в стабилизированной ветровыми канатами плёнке. Плёночная кровля рассматривалась как мягкая оболочка под воздействием отрицательной ветровой нагрузки. Расчётные зависимости для оценки напряжённо-деформированного состояния материала кровли выведены аналитически. При выводе зависимостей использована расчётная схема деформированной ветровым давлением кровли, соответствующая реальным условиям эксплуатации сооружения. Рассматривалась кровля сооружения из рекомендуемой строительными нормами по проектированию теплиц полиэтиленовой плёнки, физико-механические характеристики которой стандартизированы. Выведены зависимости для определения продольных и кольцевых напряжений в материале кровли, рационального шага ветровых канатов и максимально возможного в них усилия. Предложенный способ статического расчёта плёночной кровли возможно использовать для культивационных сооружений с очертанием покрытия близким к круговому.

Ключевые слова: теплица, плёночная кровля, ветровая нагрузка, способ расчёта плёнки.

Введение. Плёночные теплицы используются в хозяйствах различных форм собственности для выращивания сельскохозяйственной продукции, как правило, в тёплый период года, стоимость их строительства значительно ниже по отношению к другим видам культивационных сооружений. В соответствии с положениями норм технологического проектирования теплиц НТП10-95 площадь плёночных теплиц в крупных предприятиях может достигать 10 000м2. Строительство таких сооружений в фермерских хозяйствах обеспечивает возможность перепрофилирования производства в зависимости от конъюнктуры рынка [1, 2]. Пролёт плёночных теплиц обычно не превышает 12 м. Рациональной конструктивной формой теплицы с плёночной кровлей является арочная с круговым или параболическим очертанием покрытия. Целесообразно применение круговых арок, так как известно, что они менее сложны в изготовлении и монтаже [3]. Плёночная кровля сооружения укладывается по прогонам из гнутых профилей или оцинкованной проволоки диаметром 3,0-3,2 мм, плёнка предварительно натягивается для исключения волнообразных колебаний под действием ветровой нагрузки и закрепляется в цокольной части сооружения. Долговечность тепличных полиэтиленовых плёнок, выпускаемых толщиной от 100 до 200 мкм, равна 3-5 годам (плёнки «Нева», «Росток и др.). В безморозный период года единственной атмосферной нагрузкой на светопро-

зрачное ограждение сооружения является ветровая (в соответствии с требованием СП107.13330.2012 «Теплицы и парники» в сезонных теплицах кровля из полимерных синтетических материалов должна демонтироваться на зимний период). В нормах строительного проектирования теплиц не приведены указания по проектированию плёночной кровли применительно к этому виду нагрузки. Плёночную кровлю теплицы можно рассматривать как мягкую оболочку, как это принято при расчёте пневматических и тентовых конструкций [4-7, 9, 14-16]. Для расчёта мягких оболочек применяются различные методы [10-13], требующие от проектировщиков специальных знаний. Цель исследования предусматривала разработку несложного способа определения усилий от ветровой нагрузки в плёночной кровле сооружения с круговым очертанием покрытия.

Методика и способ расчёта прочности све-топрозрачной кровли. Расчётные зависимости для проверки прочности светопрозрачной кровли культивационного сооружения устанавливались аналитически.

Значительно уменьшить напряжения в плёночной кровле и её деформации под действием ветровой нагрузки возможно, применяя стабилизирующие ветровые канаты (например, стальные тросы в пластмассовой оболочке) и погонажное крепление плёнки в цоколе и коньке сооружения (рис.1, а). Схема действия ветровой нагрузки на культивационное сооружение (рис.1,б) принята в

соответствиями с указаниями сводов правил «Нагрузки и воздействия» и «Теплицы и парники».

При ветровом отсосе вздувшаяся плёнка будет испытывать двухосное напряжённое состояние и нагрузка будет восприниматься продольными элементами крепления в цоколе и коньке

а)

теплицы (кольцевые усилия на рис.1, в) и ветровыми канатами (продольные усилия на рис.1, в). Для вывода расчётных зависимостей примем, как и при расчёте мягких оболочек, допущение о постоянстве модуля упругости при растяжении.

б)

г)

Рис. 1. Схемы крепления плёнки (а), ветровой нагрузки на теплицу (б), усилий в деформированном ограждении теплицы (в), расчётная схема продольной нити (г):1- арка; 2 - ветровой канат; 3,4 - коньковый и цокольный крепёжные элементы; 5 - деформированная кровля; 6 - плёночная кровля (д - ветровое давление)

Связь между ветровой нагрузкой, параметрами деформированной кровли и усилиями в ней можно представить в виде уравнения Лапласа

Ж = + Я ~

М Я2 ^ )

где Ж - расчётная ветровая нагрузка (отсос),Па;

и «2 - соответственно кольцевое и продольное (вдоль образующей) усилия в нитях единичной ширины, Н/см; Я и Я2- радиусы кривизны деформированного отсосом ограждения в поперечном и продольном сечениях теплицы, см.

Рассмотрим деформации кольцевой и продольной нитей (на рис.1, в показаны штрихами) под нагрузкой. Удлинение кольцевой нити площадью сечения F и длиной I в соответствии с законом Гука

«У

М = -

Е¥

(2)

Начальную длину кольцевой нити между коньком и цоколем теплицы можно определить из соотношения элементов круга [8]

2 16 ,2 а +У1

а(1 + /),

(3)

где а - хорда дуги; /- начальный выгиб кольцевой нити по радиусу арки Яо (стрелка дуги). Длина кольцевой нити после растяжения

I

,л 8 (/ + А/)\

; а(1 + -——

3

(4)

а

8

М « 1х -1 „ (22/М/ + М/ ) (5) 3а

Учитывая, что М/2 величина второго порядка малости по сравнению с М/, которой можно пренебречь, М/ = / (выгиб кольцевой нити при отсосе), для круговой арки хорда а = 2Яо sin45o = 1,414Я0 , стрелка / = Яо (1-cos45o) = 0,293Яо, длина дуги I = кЯо/2 из (5) получим

I

д/ «1М « 1,105/ 3а

(6)

Выражение для выгиба кольцевой нити после подстановки (6) в (2) и преобразований

1,105 £1 = ^^ 1 2EF

= 1,42ВД = 1,421o^1FR0 = 1,421аЛ (7)

EF

EF

Е

где Д0 - радиус арки; Е - модуль упругости плёнки (75МПа в указаниях СП «Теплицы и парники»).

При 01 = Кпл (Кпл - расчётное сопротивление полиэтиленовой плёнки на растяжение, равное 5МПа по СП «Теплицы и парники») предельно допускаемый выгиб кольцевой нити /¡шах= 0,095^0.

Продольная нить под нагрузкой удлинится на величину ДЬ

ДЬ = ^ , (8)

EF

где Ь - расстояние между ветровыми канатами.

Длину продольной нити после деформации можно представить в виде выражения (Качурин В.К. Теория висячих систем. Статический расчёт. Л.: Госстройиздат.1962. 32 с.)

Ь = Ь +

где / - выгиб продольной нити.

ДЬ = Ь - Ь =

(9)

(10)

Из равенства выражений (8) и (10) выгиб продольной нити

/ = 0,612Ьр^ = 0,612Ь \EF

^ = 0.621ЬЛI а (11)

EF ~

При 02 = Кпл предельно допускаемый выгиб продольной нити /2шах= 0,16Ь.

В табл.1 приведены значения предельно допускаемых выгибов кольцевой и продольной нитей при 01,2 = Кпл.

Таблица 1

Выгибы кольцевой и продольной нитей при допускаемых максимальных значениях

растягивающих усилий

Пролёт сооружения, м Деформация кольцевой нити £, см Деформация продольной нити см, при шаге ветровых канатов Ь, м

1,0 1,5 2,0 2,5 3,0

6,0 29 16 24 32 40 48

8,0 38

10,0 48

12,0 57

Так как выгибы кольцевой и продольной нитей в кровле совместны, то из равенства предельных деформаций нитей /¡шах= 0,095К0 и /2шах= 0,16Ь найдём, что предельные продольные деформации не будут превышать кольцевые при шаге ветровых канатов Ь < 0,6К0. Из равенства выражений (7) и (11) после преобразований установим соотношение между кольцевым и продольным напряжениями в зависимости от радиуса арки и расстояния между ветровыми канатами

1,421^- = 0,621*/ О.

Е а а

Е

0,265К°

Ь

= k.

(12)

При Ь=0,265Яо значение k =1 и напряжение

2

= 0"1 . При k =1/01 ко. напряжения будут равны.

2

= . При k =1/01 кольцевые и продольные

Шаг ветровых канатов в функции ветровой нагрузки и толщины плёнки, соответствующий максимально допустимому усилию в продольной нити единичной ширины (без учёта кольцевых напряжений), можно определить, составив условия её равновесия (рис. 1, г).

ЖЬ - 2У = ЖЬ - 2£2 ^(90° - а) = 0 (13)

Ь =

2£2 cos(90° - а) 2ЯПЛЕ cos(90° - а)

Ж

Ж

(14)

iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.

где Кпл - расчётное сопротивление полиэтиленовой плёнки на растяжение, равное 5МПа по СП «Теплицы и парники»; Е - площадь поперечного сечения продольной полосы плёнки шириной 1см.

Угол а, составленный касательной и хордой Ь (рис. 1, г), равен половине дуги Ь\

Аа =1 2

(

180°Ь,

Л

жК

(15)

2 У

где Я2- радиус кривизны деформированного отсосом ограждения (рис. 1, в).

Длину дуги Ь\ определим с учётом выражения (8)

Я РЬ

Ь = Ь + АЬ = Ь + -ПЛ— = 1,07Ь (16)

1 ЕР

Максимально допустимый радиус выгиба продольной полосы (рис.1, в), полученный после подстановки / из выражения (11), в котором 02 принято равным расчётному сопротивлению плёнки Япл = 5 МПа.

R2 = J(2)2 + (R2 - /2)2 = 0,87b (17)

После подстановки значений Ь и Я2 в (15) определим угол а, равный 36о. Шаг ветровых канатов, соответствующий максимально допустимому усилию в продольной нити

b = 1,17 Rn^ W

(18)

Для примера в табл.2 приведено изменение максимального шага ветровых канатов, вычисленного по формуле (18), для полиэтиленовой плёнки различной толщины во II ветровом районе (Орловская, Белгородская и др. обл.) применительно к теплице пролётом 9 м.

Таблица 2

Изменение максимального шага ветровых канатов в зависимости от толщины плёнки

Пролёт теплицы, м Ветровая нагрузка (отсос), кПа Максимальный шаг канатов, м, для полиэтиленовой плёнки толщиной

0,1мм 0,12мм 0,15мм 0,20 мм

9,0 0,36 1,6 1,9 2,5 3,2

При воздействиях ветра плёночная кровля теплицы будет находиться в плоском напряжённом состоянии и на основании выражения (12) соотношение напряжений 01 и 02 зависит от шага ветровых канатов. Эквивалентное напряжение в плёнке можно определить на основании четвёртой теории прочности

Ожв =7с' +ст22 -о1о2 < ЯпЛ = ШПа

По результатам исследования предлагается следующая последовательность расчёта прочности кровли: вычислить шаг канатов по (18), подставить его в формулу (12), приняв продольное напряжение равным расчётному сопротивлению плёнки на растяжение, вычислить кольцевое и эквивалентное напряжения. Так, для теплицы пролётом 9 м с плёночной кровлей толщиной 0,15 мм при ветровом давлении W = 0,36 кПа расчётные значения составляют: шаг канатов Ь =2,44 м, продольное напряжение 5 МПа, кольцевое напряжение 3,2 МПа, эквивалентное напряжение 4,4 МПа.

Усилие в ветровом канате является кольцевым и его максимальное значение можно определить по формуле

5К = ЖЬЯо (19)

Для приведенных выше данных усилие в ветровом канате равно 3,95 кН.

Заключение. Предложен способ статического расчёта плёночной кровли теплицы, стабилизированной ветровыми канатами. Использована расчётная схема деформированной кровли,

соответствующая реальным условиям эксплуатации сооружения. Предложенный способ статического расчёта плёночной кровли возможно использовать для культивационных сооружений с очертанием покрытия близким к круговому.

БИБЛИОГРАФИЧЕСКИЙ СПИСОК

1. Блажнов А.А., Фетисова М.А. Производственные сооружения для фермерских хозяйств. Орёл: ООО ПФ «Картуш». 2017. 132 с.

2. Блажнов А.А. Основы формирования шампиньонных комплексов и их производственных зданий. Орёл: Орёл ГАУ. 2015. 202 с.

3. Кудишин Ю.И., Беленя Е.И., Игнатьева В.С.и др. Металлические конструкции М.: Академия. 2011. 688 с.

4. Зубарев Г.Н., Бойтемиров Ф.А., Головина В.М. и др. Конструкции из дерева и пластмасс М.: Академия. 2008. 304 с.

5. Кривошапко С.Н. Пневматические конструкции и сооружения // Строительная механика инженерных конструкций и сооружений. 2015. №3. С. 45-53.

6. Бойтемиров Ф.А. Конструкции из дерева и пластмасс. М.: Академия.2013. 288 с.

7. Кривошапко С.Н., Галишникова В.В. Архитектурно-строительные конструкции. М.: Юрайт. 2019. 476 с.

8. Бронштейн И.Н., Семендяев К.А. Справочник по математике для инженеров и учащихся втузов. М.: Наука. 1986. 544 с.

9. Кузьмина Р.П. Мягкие оболочки. Издательство «ИКИ».2016. 272 с.

10. Ким А.Ю., Харитонов С.П. Применение теории подобия для проектирования и расчёта на статические нагрузки пневматических сооружений // Символ науки. 2016. №5. С. 56-58.

11. Мокин Н.А. Проведение нелинейных расчётов воздухоопорных оболочек // Строительная механика инженерных конструкций и сооружений. 2017. №2. С. 24-32.

12. Ким А.Ю., Харитонов С.П. Применение итерационных численных методов в задачах расчёта пневматических сооружений // Символ науки. 2016. №5. С. 50-52.

13. Ким А.Ю., Харитонов С.П. Расчёт пневматических сооружений на различные виды нагрузок с применением программных комплексов // Символ науки. 2016. №5. С. 53-55.

14. Krivoshapko S.N., Shambina S.L., Hyeng Ch.A. Bock. Thin-walled composite and plastic shells for civil and industrial buildings and erections // Materials Science Forum. 2017. Vol. 895. Pp. 4551.

15. Krivoshapko S.N. The perspectives of application of thin-walled plastic and composite polymer shells in civil and industrial architecture // Journal of Reinforced Plastics & Composites. November 2017. Vol. 37. Iss. 4. Pp. 217-229.

16. Каюмов Р.А., Мухамедова И.З., Хана-фиев А.Г., Тазюков Б.Ф. Методика расчёта тентовых покрытий // Известия Казанского государственного архитектурно-строительного универ-ситета.2017. №3. С.109-115.

Информация об авторах

Блажнов Александр Александрович, кандидат технических наук, доцент, доцент кафедры Агропромышленного и гражданского строительства. E-mail: [email protected]. Орловский государственный аграрный университет имени Н.В. Парахина, Россия, 302019, г. Орёл, ул. Генерала Родина, д. 69.

Поступила 30.09.2020 г. © Блажнов А.А., 2020

Blazhnov A.A.

Oryol State Agrarian University named after .N. V. Parakhin E-mail: [email protected]

STATIC CALCULATION OF MEMBRANE ROOFING FOR CULTIVATION STRUCTURES

Abstract. Membrane roofing greenhouses and small-scale farms are used in the spring and autumn period for growing various crops. The main load for such structures is wind. Norms of construction design of greenhouses do not contain provisions for calculating the membrane roof of cultivation structures for this type of load. For arched greenhouses with a circular outline of the coating, an approximate method for determining the forces from the wind load in a membrane stabilized by wind ropes is proposed. The membrane roof is considered as a soft cover under the influence of negative wind load. The calculated dependences for estimating the stress-strain state of the roof material are derived analytically. The calculation scheme of the roof deformed by wind pressure, corresponding to the actual operating conditions of the structure, is used to derive the dependencies. The roof of the structure is considered from the polyethylene membrane recommended by the building standards for the design of greenhouses, the physical and mechanical characteristics of which are standardized. Dependences are derived for determining the longitudinal and annular stresses in the roof material, the rational pitch of wind ropes and the maximum possible force in them. The proposed method of static calculation of the membrane roof can be used for cultivation structures with the outline of the coating close to circular.

Keywords: greenhouse, membrane roof, wind load, method of membrane calculation..

REFERENCES

1. Blazhnov A.A., Fetisova M.A. Production facilities for farms [Proizvodstvennye sooruzheniya dlya fermerskix xozyajstv]. Orel: LLC PF "Kartush". 2017. 132 p. (rus)

2. Blazhnov A.A. Fundamentals of forming mushroom complexes and their production buildings [Osnovy' formirovaniya shampinonnyx kom-pleksov i ix proizvodstvennyx zdanij]. Orel: Orel GAU. 2015. 202p. (rus)

3. Kudishin Yu.I., Belenya E.I., Ignatieva V.S. et al.Metal structures [Metallicheskie konstrukcii]. M.: Akademiya. 2011. 688p. (rus)

4. Zubarev G.N., Boytemirov F.A., Golovina V.M. and others. Structures made of wood and plastics [Konstrukcii iz dereva i plastmass ]. Moscow: Akademiya. 2008. 304 p. (rus)

5. Krivoshapko S.N. Pneumatic structures and structures [Pnevmaticheskie konstrukcii i sooru-zheniya]. Construction mechanics of engineering

structures and structures. 2015. No.3. Pp. 45-53. (rus)

6. Boytemirov F.A. Structures made of wood and plastics [Konstrukcii iz dereva i plastmass]. M.: Academy. 2013. 288p. (rus)

7. Krivoshapko S.N., Galishnikova V.V. Architectural and construction structures [Arxitekturno-stroitel'ny'e konstrukcii]. Moscow: Yurayt. 2019. 476 p. (rus)

8. Bronstein I.N., Semendyaev K.A. Handbook of mathematics for engineers and students of higher education institutions [Spravochnik po matematike dlya inzhenerov i uchashhixsya vtuzov]. Moscow: Nauka. 1986. 544 p. (rus)

9. Kuzmina R.P. Soft shells [Myagkie ob-olochki]. M.: IKI Publishing house. 2016. 272 p. (rus)

10. Kim A.Yu., Kharitonov S.P. Application of similarity theory for designing and calculating static loads of pneumatic structures [Primenenie teorii podobiya dlya proektirovaniya i raschyota na statich-eskie nagruzki pnevmaticheskix sooruzhenij]. Symbol of science. 2016. No. 5. Pp. 56-58(rus)

11. Mokin N.A. conducting nonlinear calculations of air-bearing shells [Provedenie nelinejny'x raschyotov vozduxooporny'x obolochek]. Construction mechanics of engineering structures and structures. 2017. No. 2. Pp. 24-32. (rus)

12. Kim A.Yu., Kharitonov S.P. Application of iterative numerical methods in problems of calculation of pneumatic structures [Primenenie itera-cionny'x chislenny'x metodov v zadachax raschyota

pnevmaticheskix sooruzhenij]. Symbol of science. 2016. No. 5. Pp. 50-52 (rus)

13. Kim A.Yu., Kharitonov S.P. Calculation of pneumatic structures for various types of loads using software complexes [Raschyot pnevmaticheskix sooruzhenij na razlichny'e vidy' nagruzok s prime-neniem programmny'x kompleksov]. Symbol of science. 2016. No. 5. Pp. 53-55. (rus)

14. Krivoshapko S.N., Shambina S.L. Hyeng Ch.A. Bock Thin-walled composite and plastic shells for civil and industrial buildings and erections [Tonkostenny'e kompozitny'e i plastmassovy'e ob-olochki dlya grazhdanskix i promy'shlenny'x zdanij i sooruzhenij] Materials Science Forum. 2017. Vol. 895. Pp. 45-51. DOI: 10.4028/www.scien-tifc.net/MSF.895.45.

15. Krivoshapko S.N. The perspectives of application of thin-walled plastic and composite polymer shells in civil and industrial architecture [Perspek-tivy' primeneniya tonkostenny'x plastikovy'x i kompozitny'x polimerny'x obolochek v gra-zhdanskoj i promy'shlennoj arxitekture]. Journal of Reinforced Plastics & Composites. November 2017. Vol. 37. Iss. 4. Pp. 217-229. DOI: 10.1177/0731684417740770.

16. Kayumov R.A., Mukhamedova I.Z., Khanafiev A.G., Tazyukov B.F. Method of calculating awning coverings [Metodika raschyota tentovy' x pokry'tij]. Bulletin of the Kazan State University of Architecture and Civil Engineering. 2017. No. 3. Pp. 109-115. (rus)

Information about the authors

Blazhnov, Aleksander A. PhD, Assistant professor. E-mail: [email protected]. Oryol State Agrarian University named after N.V.Parakhin. Russia, 302019, Orel, st.General Rodina, 69.

Received 30.09.2020 Для цитирования:

Блажнов А.А. Статический расчёт плёночной кровли культивационного сооружения // Вестик БГТУ им. В.Г. Шухова. 2020. № 10. С. 17-22. DOI: 10.34031/2071-7318-2020-5-10-17-22

For citation:

Blazhnov A.A. Static calculation of membrane roofing for cultivation structures. Bulletin of BSTU named after V.G. Shukhov. 2020. No. 10. Pp. 17-22. DOI: 10.34031/2071-7318-2020-5-10-17-22

DOI: 10.34031/2071-7318-2020-5-10-23-32 *Бурьянов И.А., Логачев К.И., Уваров В.А.

Белгородский государственный технологический университет им. В.Г. Шухова

i Надоели баннеры? Вы всегда можете отключить рекламу.