Научная статья на тему 'STATIC ACCOUNTING OF HIGHEST MODES IN PROBLEMS OF STRUCTURAL DYNAMICS'

STATIC ACCOUNTING OF HIGHEST MODES IN PROBLEMS OF STRUCTURAL DYNAMICS Текст научной статьи по специальности «Строительство и архитектура»

CC BY
66
10
i Надоели баннеры? Вы всегда можете отключить рекламу.
Журнал
Magazine of Civil Engineering
Scopus
ВАК
RSCI
ESCI
Ключевые слова
ДИНАМИКА СООРУЖЕНИЙ / СПЕКТРАЛЬНЫЙ МЕТОД / МОДЫ КОЛЕБАНИЙ / ВЫСШИЕ ФОРМЫ / СТАТИЧЕСКИЙ УЧЕТ / ПРОСТРАНСТВЕННЫЕ КОНСТРУКЦИИ / STRUCTURAL DYNAMICS / SPECTRAL METHOD / VIBRATION MODES / HIGHEST MODES / STATIC ACCOUNTING / SPATIAL STRUCTURES.

Аннотация научной статьи по строительству и архитектуре, автор научной работы — Le T.Q.T, Lalin V.V., Bratashov A.A.

The calculation of building structures for dynamic effects is usually performed according to the method of decomposition by its own forms of vibrations. However, the problem is that such a method gives an exact solution of the dynamic problem with full consideration of the entire spectrum of modes. Moreover, when solving practical problems with the use of software systems, dynamic calculations are performed approximately taking into account a limited number of the first natural modes of oscillation. The contribution to the dynamic response of the structure of unaccounted higher forms of oscillations, as a rule, is not evaluated at all. The results show that the error of such a solution to a dynamic problem can be significant. Consequently, this paper is devoted to the method of static registration of higher forms of oscillations in problems of the dynamics of building structures. The description of the main provisions of the method is given, examples of its implementation in the calculation of spatial structures under the action of an external harmonic load are given. With the help of a computational program complex, the displacements of nodes and internal forces in the elements of the structures under consideration are determined. Various parameters of the dynamic effect and the number of vibration modes taken into account were set. The adopted method of static accounting for higher forms of oscillations requires solving one dynamic problem and two auxiliary static problems. An important circumstance of the approach is that one of the static problems should be solved by the method of decomposition in its own forms of vibrations. The approach proposed in the article allows to significantly reduce the computational costs of dynamic calculation in comparison with the classical approach. This result can be of great importance when solving problems for complex dynamic effects and for structures that are not uniform in hardness.

i Надоели баннеры? Вы всегда можете отключить рекламу.
iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.
i Надоели баннеры? Вы всегда можете отключить рекламу.

СТАТИЧЕСКИЙ УЧЕТ ВЫСШИХ МОД КОЛЕБАНИЙ В ЗАДАЧАХ ДИНАМИКИ КОНСТРУКЦИЙ

Расчёт строительных конструкций на динамические воздействия обычно выполняется по методу разложения по собственным формам колебаний. Однако, проблема состоит в том, что такой метод дает точное решение динамической задачи при полном учёте всего спектра мод. Более того, при решении практических задач с использованием программных комплексов динамические расчеты выполняются приближенно с учетом ограниченного количества первых собственных форм колебаний. Вклад в динамическую реакцию сооружения неучтенных высших форм колебаний, как правило, никак не оценивается. Результаты показывают, что, погрешность такого решения динамической задачи может оказаться значительной. Следовательно, настоящая работа посвящена способу статического учета высших форм колебаний в задачах динамики строительных конструкций. Приведено описание основных положений метода, даны примеры его реализации при расчете пространственных конструкций под действием внешней гармонической нагрузки. С помощью расчетного программного комплекса определены перемещения узлов и внутренние усилия в элементах рассматриваемых конструкций. Задавались различные параметры динамического воздействия и число учитываемых мод колебаний. Принятый метод статического учета высших форм колебаний требует решения одной динамической задачи и двух вспомогательных статических задач. Важным обстоятельством подхода является то, что одна из статических задач должна быть решена методом разложения по собственным формам колебаний. Предлагаемый в статье подход позволяет значительно снизить вычислительные затраты на динамический расчёт в сравнении с классическим подходом. Этот результат может иметь большое значение при решении задач на сложные динамические воздействия и для неоднородных по жесткости конструкций.

Текст научной работы на тему «STATIC ACCOUNTING OF HIGHEST MODES IN PROBLEMS OF STRUCTURAL DYNAMICS»

Magazine of Civil Engineering. 2019. 88(4). Pp. 3-13 Инженерно-строительный журнал. 2019. № 4(88). С. 3-13

Magazine of Civil Engineering

journal homepage: http://engstroy.spbstu.ru/

ISSN

2071-0305

DOI: 10.18720/MCE.88.1

Static accounting of highest modes in problems of structural dynamics

T.Q.TLe*, V.V. Lalin, A.A. Bratashov

Peter the Great St. Petersburg Polytechnic University, St. Petersburg, Russia * E-mail: [email protected]

Keywords: structural dynamics, spectral method, vibration modes, highest modes, static accounting, spatial structures

Abstract. The calculation of building structures for dynamic effects is usually performed according to the method of decomposition by its own forms of vibrations. However, the problem is that such a method gives an exact solution of the dynamic problem with full consideration of the entire spectrum of modes. Moreover, when solving practical problems with the use of software systems, dynamic calculations are performed approximately taking into account a limited number of the first natural modes of oscillation. The contribution to the dynamic response of the structure of unaccounted higher forms of oscillations, as a rule, is not evaluated at all. The results show that the error of such a solution to a dynamic problem can be significant. Consequently, this paper is devoted to the method of static registration of higher forms of oscillations in problems of the dynamics of building structures. The description of the main provisions of the method is given, examples of its implementation in the calculation of spatial structures under the action of an external harmonic load are given. With the help of a computational program complex, the displacements of nodes and internal forces in the elements of the structures under consideration are determined. Various parameters of the dynamic effect and the number of vibration modes taken into account were set. The adopted method of static accounting for higher forms of oscillations requires solving one dynamic problem and two auxiliary static problems. An important circumstance of the approach is that one of the static problems should be solved by the method of decomposition in its own forms of vibrations. The approach proposed in the article allows to significantly reduce the computational costs of dynamic calculation in comparison with the classical approach. This result can be of great importance when solving problems for complex dynamic effects and for structures that are not uniform in hardness.

Buildings and structures in the process of their construction and operation are affected by various dynamic loading, such as wind load, earthquake, operation of process equipment, impact loads, emergency destruction of a structural element, and so on. Many studies are devoted to the development of constructive solutions for buildings and their elements, methods for calculating under the dynamic loads [1-15]. In depends on the reasons, that led to the oscillations of the structure, its work can be viewed as a superposition of oscillations according to its modes [16-24]. Traditionally, in the dynamic calculation of building structures, only the first few modes of natural oscillations are taken into account, since the contribution of precisely these terms to displacements and internal efforts is the main one. It is rather difficult to take into account the other modes, since the resources of computing devices are limited, and there is no need to include in the calculation higher modes with low energy value. This fact is confirmed by large in number (numerous) studies, for example, in the works [25-28].

However, in some cases, the calculation of buildings and structures on the dynamic load may require consideration of the contribution of higher modes of oscillations. The need for this may arise, for example, when calculating a structure for seismic load [29-34]. In these books are considered the applied and prospective approaches to the calculation of dynamic interaction, the basic principles of seismic design and key aspects of calculations. In the article [35], a study of the vibrations of a building structure was carried out

Le, T.Q.T, Lalin, V.V., Bratashov, A.A. Static accounting of highest modes in problems of structural dynamics. Magazine of Civil Engineering. 2019. 88(4'). Pp. 3-13. DOI: 10.18720/MCE.88.1.

Ле Т., Лалин В.В., Браташов А.А. Статический учет высших мод колебаний в задачах динамики конструкций // Инженерно -строительный журнал. 2019. № 4(88). С. 3-13. DOI: 10.18720/MCE.88.1.

1. Introduction

(°0

This open access article is licensed under CC BY 4.0 (https://creativecommons.org/licenses/bY/4.0/)

HH®eHepH0-CTp0HTe^bHhiH ^ypHaa, №2 4(88), 2019

and it was concluded that, as the frequency increases, the more rigid and (or) less significant parts of the system will be included in the oscillatory process corresponding to highest modes, while some parts of the structure can be excluded from movement. All these facts lead to the destruction of the elements and, as a result, of the whole system.

In the conditions of a real design process, when continuous changes are made to the project, editing the design scheme and recalculating it can take a significant amount of time and resources. Therefore, there are important and topical questions to reduce the number of modes taken into account in the calculation without losing accuracy of the result, as well as the contribution of the discarded modes to the local high-frequency oscillations of individual elements. Thus, the work [36] is devoted to the analysis of the accuracy of determining the response of a structure to a dynamic effect when taking into account a limited number of modes.

In the article [37], a concept was entered, according to which it is proposed to add an estimate of the total response for all high-frequency modes, determined from a static load, to the standard dynamic calculation. It is noted that with an increase in the number of modes taken into account, the convergence of the result in efforts is lower than in displacements, therefore the inclusion of highest modes can significantly affect local efforts.

The question of estimating the contribution of the rejected tones of vibrations for mechanical systems was also considered in [38], where the authors propose to add to the calculation the correction obtained when solving the auxiliary task of statics. This has greatly reduced the number of modes taken into account to achieve the required accuracy.

In addition, the issue of introducing a quasistatic correction to the dynamic calculation to improve the convergence of the results was considered in [39, 40]. The authors proposed to introduce as an addition the quasistatic component of unrecorded modes of oscillations, which is defined as the difference between the solution of the quasistatic problem and the quasistatic component of the modes of oscillations taken into account in the calculation.

The method of static accounting for the highest vibration modes was proposed in [41-43] for determining the natural vibration frequencies. In our work, it is extended to problems of forced oscillations and involves solving a dynamic problem by the method of spectral expansion in a series of modes with a small number of modes taken into account, as well as solving auxiliary static problems in an exact and approximate formulation.

The purpose of this work is to solve the problem of the dynamics of forced oscillations, taking into account the contribution of the highest modes. The following tasks are solved:

1. The theoretical description of the method under consideration and the formulation of auxiliary problems.

2. Construction of design schemes of spatial structures and determination of their stress-strain state from the action of dynamic and static loads.

3. Comparison of the results obtained in solving the problem of dynamics by the classical method and the method of static accounting for the contribution of the highest modes of oscillations.

2. Methods

Let us consider the standard way to solve a dynamic task. Let the system undergo forced oscillations, its equation of motion is:

pu = L(u ) + q, (1)

where u(x, t) is the desired displacement;

p is the density of system elements;

q is external dynamic load;

L(u) is an operator of a static task, depending on the nature of the work of the structure;

It can be demonstrated the following examples of the mode of the operator of the static task L(u):

a) L(u) = EAu" is for tasks in tension and compression;

b) L(u) = -EIuIV is for the task on bending rods;

c) L(u) = -D(d4i / dx4 + 2d4u / dx2dy2 + d4u / dy4) is for tasks of plate bending;

Let the external harmonic load p(t) = Po sin (0t) acts on the system, then the equation of motion will look like (2):

L(u) + p62u + P0 = 0. (2)

The desired displacement is determined using the method of spectral decomposition in a row according to the modes of natural oscillations by the formula (3):

n

un (x) = Z akUk (Xl (3)

k=1

where n is the number of considered modes;

ak is the amplitude value of the k-mode Uk(x);

Thus, the solution of a dynamic problem by the formula (3) implies the choice of such a number n of the system's natural oscillations taken into account, which will be enough to find the desired displacement with the necessary accuracy. This number can be quite large, which will lead to a significant investment of time and resources.

Therefore, it is possible to approach the solution of this problem in another way: take in the formula (3) a small number of the terms N(N << n), and the rest (higher modes of oscillations) to take into account in the calculation statically.

To do this, the first step is to consider the solution of the auxiliary static task from the action of the static force P0. The exact static displacement is determined by solving the differential equilibrium equation (4):

L(u) + P0 = 0. (4)

The next step is to solve another auxiliary static problem by using the method of spectral decomposition in a row according to the modes of natural oscillations. Similar to solving a dynamic problem, you can write an expression for this static task in the next mode (5):

un,st

ÏI

,st( x) = Z bkUk ( x). (5)

k=1

Having solved auxiliary static problems using formulas (4) and (5), one can find the desired displacement of a dynamic problem when taking into account a small number N modes of natural oscillations in the following formula (6):

u(x) = un (X) + [ueXsst (X) - uN,st (X)], (6)

where un(x) is the solution of a dynamic task by the formula (3);

uex st (x) is the exact solution of the static task by the formula (4);

un st (x) is an approximate solution of the static problem by the formula (5).

Thus, the difference [uex st (x)-un st (x)], obtained in formula (6), is the static contribution of the

rejected natural oscillations in formula (3). Figure 1 shows a graphical illustration of the use of this approach to solving problems.

Figure 1. Beam deflection when solving a dynamic problem with a static account of the contribution of highest modes.

As is well known, the movement of a point mass with steady-state oscillations has the formula (7):

u (t ) = ustP(t ),

HHœeHepHO-CTpoHTeïïhHhrâ ^ypHaa, №2 4(88), 2019

(7)

here ust is the static deflection of the beam at the location of the point mass from the statically applied force Po; P(t) is the dynamic coefficient equal to the ratio of the dynamic displacement u(t) to the static displacement ust at a given time.

If an external harmonic load acts on the system, then the maximum value of the coefficient P in case of forced damped oscillations can be found using formula (8):

P =

1

V

1 -

e2 C

Ym C

(8)

As noted above, the auxiliary static task should be solved by the method of expansion in a row in the modes of natural oscillations. For this, a static calculation is carried out as a solution to a dynamic problem with an external load in the mode p(t) = Po sin (0t), where a very small value of the angular frequency is specified. From formula (8), P ^ 1 as 0 ^ 0 and according to (1) the solution of the dynamic problem will tend to solve statically.

3. Results and Discussion

In order to verify the method of static accounting of the highest modes of oscillations, two calculation schemes were built in the SCAD Office 21.1 software package.

2.1. The space frame

The system consists of rod finite elements (Figure 2). The overall dimensions of the design scheme are 12x10x14 m. The lower nodes of the system are rigidly clamped. The material is B25 concrete, the dimensions of the cross sections of the elements are 20x20, 35x40, 50x50 cm x cm (Figure 3). The harmonic dynamic load p(t) = P0 sin(#t) is applied at node 15 in the Xdirection. The amplitude of the force Po is assumed to

be 100 T, the angular frequency was set in two variants: 61 = 8 rad/s and d2 = 13 rad/s. According to the

results of the modal analysis, the first, second and third natural frequencies (eigenfrequencies) of the system are respectively 10.7, 11.4 and 15.5 rad/s. For reinforced concrete structures adopted the coefficient of inelastic resistance of the material ym = 0.09.

Figure 2. Spatial frame scheme.

Figure 3. Stiffness of scheme elements.

The movement of nodes 2 and 25 in the X direction is considered, as well as the bending moment relative to the Y axis in the N57 element (in Figure 2, it is highlighted with a thick line). The result of the calculation of the frame on the dynamic load is shown in Table 1.

Table 1. Dynamic frame calculation.

Number of the mode d = 8 rad/s d = 13 rad/s

U2, mm U25, mm M57, T-m U2, mm U25, mm M57, T-m

1 -2.535 -148.860 -5.672 -2.368 139.011 -5.296

2 -2.563 -149.577 -5.841 -2.396 139.730 -5.529

3 -2.744 -158.363 -6.234 -1.942 117.410 -4.544

5 -41.725 -118.532 -99.719 -47.466 164.646 -113.912

7 -48.053 -116.483 -113.526 -54.400 166.908 -128.890

10 -48.909 -125.380 -115.641 -55.327 157.519 -131.180

15 -49.291 -125.775 -116.287 -55.732 157.101 -131.877

30 -45.554 -126.341 -108.006 -51.945 156.542 -123.485

60 -45.372 -126.000 -106.461 -51.763 156.879 -121.933

100 -45.332 -126.004 -106.378 -51.723 156.874 -121.849

iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.

140 -45.373 -126.005 -106.620 -51.763 156.874 -122.091

180 -45.373 -126.005 -106.620 -51.763 156.874 -122.091

220 -45.373 -126.005 -106.619 -51.763 156.874 -122.090

250 -45.373 -126.005 -106.619 -51.763 156.874 -122.090

As can be seen, the desired values cease to change significantly already taking into account the 60 modes.

Further, the auxiliary static problem was exactly solved by formula (4) from a force equal to the amplitude of the force P0. Exact static displacements of nodes 2 and 25 are -39.203 and -44.940 mm respectively, and the bending moment in the element N57 is 92.139 T-m.

The next step is also the static problem was solved by the dynamic method at the frequency of the forcing force 0 = 0.0001. As shown in the previous paragraph, at such a frequency, the solution of the dynamic problem should practically coincide with the solution of the static problem. The results of the calculation with a different number of considered modes are given in Table 2.

From Table 2 it can be seen that the method of solving a static problem proposed in this paper by solving a dynamic problem with a very low frequency of the forcing force really converges to an exact solution to the static problem with an increase in the number of vibrational modes taken into account.

Table 2. Static calculation of the frame through modes of oscillations.

Number of modes U2, mm U25, mm M57, T-m

1 -1.138 -66.839 -2.547

2 -1.151 -67.166 -2.630

3 -1.278 -73.316 -2.904

4 -35.924 -37.643 -85.993

5 -35.895 -37.660 -85.924

6 -36.095 -36.962 -85.183

8 -42.687 -43.642 -101.025

10 -42.721 -44.329 -101.112

12 -43.129 -45.372 -102.213

14 -41.300 -44.713 -97.782

16 -41.893 -44.609 -99.060

200 -39.203 -44.940 -92.139

250 -39.203 -44.940 -92.139

As follows from Table 1, a practically exact solution to the problem of dynamics was obtained when taking into account 140 modes of natural oscillations. In Table 3, this exact solution is compared with the solution proposed by the proposed method, taking into account 5 modes.

Table 3. Frame calculation results.

No. Solution d = 8 rad/s d = 13 rad/s

U2, mm U25, mm M57, T-m U2, mm U25, mm M57, T-m

(1) Dynamic Solution with N = 5 -41.725 -118.532 -99.719 -47.466 164.646 -113.912

(2) Dynamic Solution with N = 10 -48.909 -125.380 -115.641 -55.327 157.519 -131.180

(3) Dynamic Solution with N = 15 -49.291 -125.775 -116.287 -55.732 157.101 -131.877

(4) Dynamic Solution with N = 30 -45.554 -126.341 -108.006 -51.945 156.542 -123.485

(5) Static exact solution -39.203 -44.94 -92.140 -39.203 -44.940 -92.140

(6) Static solution with N = 5 -35.895 -37.660 -85.924 -35.895 -37.660 -85.924

(7) Static contribution of higher modes -3.308 -7.280 -6.216 -3.308 -7.280 -6.216

(8) Dynamic solution with static accounting mode with N = 5 -45.033 -125.812 -105.935 -50.774 157.366 -120.128

(9) Dynamic exact solution -45.373 -126.005 -106.619 -51.763 156.874 -122.090

Инженерно-строительный журнал, N° 4(88), 2019

Analysis of the results shown in Table 3 allows us to find the errors of various methods. These errors are given in Table 4, where the following is indicated: A is absolute error; s is relative error.

Table 4. Comparison of results between different methods.

Difference between Type в = В rad/s в = 13 rad/s

U2, mm U25, mm М57, T-m U2, mm U25, mm М57, T-m

(8) and (9) А -0.340 -0.193 -0.6В4 -0.9В9 -0.492 -1.962

s % 0.75 0.15 0.64 1.91 0.31 1.61

(1) and (9) А 3.64В 7.473 6.900 4.297 7.772 В.17В

s % В.04 5.93 6.47 В.30 4.95 6.70

(2) and (9) А -3.536 0.625 -9.022 -3.564 0.645 -9.090

s % 7.79 0.50 В.46 6.В9 0.41 7.45

(3) and (9) А -3.91В 0.230 -9.66В -3.969 0.227 -9.7В7

s % В.64 0.1В 9.07 7.67 0.14 В.02

(4) and (9) А -0.1В1 -0.336 -1.3В7 -0.1В2 -0.332 -1.395

s % 0.40 0.27 1.30 0.35 0.21 1.14

Analysis of the results in Table 4, allows to formulate the following conclusions:

1. The use of the method of static accounting of the highest forms of oscillations can significantly improve the accuracy of the results both in terms of displacements and in terms of internal efforts, compared to the standard method with comparable computational costs. For example, the standard method when accounting for 10 modes gives an error of 7-8 %; the proposed method when accounting for 5 modes gives an error of 1-2 %; at the same time, in the proposed method it is necessary to solve the dynamic problem twice, taking into account 5 modes, which is less in computational costs than one solution with 10 modes.

2. The standard method only when taking into account 30 modes gives errors comparable to the errors of the proposed method when taking into account 5 modes. Thus, the proposed method can significantly reduce computational costs to achieve the same accuracy of the solution.

4. The bendable plate

The plate consists of plates (Figure 4). The overall dimensions of the design scheme are 4*5 m. The right and left nodes of the system are rigidly clamped. The material is concrete B25, slab thickness is 15 cm. Forcing dynamic load p(t) = Posing) is applied at node N68 in the Z direction. The amplitude of the forcing force Po is assumed to be 100T, the angular frequencies were also set in two variants: 0X = 110 rad/s and

62 = 150 rad/s. According to the results of the modal analysis, the first, second and third natural frequencies of the system are 129.9, 170.2 and 323.3 rad/s. For reinforced concrete structures adopted the coefficient of inelastic resistance of the material fin = 0.09.

X

Figure 4. Plate design scheme.

In this case, the vertical movement of the node 68, the bending moment in the N49 element and the shear force in the N71 element (Figure 4) were considered. The result of the calculation of the plate on the dynamic load is given in Table 5.

Table 5. Dynamic plate calculation.

Number of modes 0 = 110 rad/s 0 = 150 rad/s

W68, mm M49, T-m/m Qu, T/m u68, mm M49, T-m/m Q71, T/m

1 -56.892 32.970 -52.300 48.060 -27.854 44.118

2 -56.892 32.973 -52.226 48.060 -27.854 44.118

3 -61.325 31.318 -61.721 43.304 -24.278 34.091

5 -61.325 36.318 -61.721 43.304 -24.278 34.091

7 -61.325 36.318 -61.721 43.304 -24.278 34.090

10 -61.742 37.799 -56.096 42.896 -22.843 39.515

15 -62.584 39.725 -50.689 42.079 -21.020 44.834

30 -62.883 40.976 -56.467 41.791 -19.859 39.182

60 -63.228 41.663 -54.094 41.459 -19.229 41.485

100 -63.352 41.695 -54.401 41.340 -19.200 41.185

140 -63.352 41.695 -54.403 41.340 -19.200 41.184

180 -63.352 41.695 -54.402 41.340 -19.200 41.184

220 -63.352 41.695 -54.402 41.340 -19.200 41.184

240 -63.352 41.695 -54.402 41.340 -19.200 41.184

As can be seen, the desired values cease to change significantly already taking into account 100 modes.

The exact static displacement of the node 68 from the amplitude forcing force of 100 T is 22.793 mm, the bending moment in the element N49 is 18.155 T-m/m, the lateral force at the node N71 is 16.624 T-m/m.

The next step is also the static problem was solved by the dynamic method at the frequency of the forcing force 0 = 0.0001 rad/s. As was proved in the previous paragraph, at such a frequency, the solution of the dynamic problem practically coincides with the solution of the static task.

As follows from Table 5, a practically exact solution of the dynamics problem was obtained with account of 100 modes of natural oscillations. In Table 6, this exact solution is compared with the solution proposed by the proposed method, taking into account 5 modes.

Table 6. The results of the calculation of the plate.

No. Solution 0 = 110 rad/s 0 = 150 rad/s

u68, mm M49, T-m/m Q71, T/m u68, mm M49, T-m/m Q71, T/m

(1) Dynamic Solution with N = 10 -61.742 37.799 -56.096 42.896 -22.843 39.515

(2) Dynamic Solution with N = 15 -62.584 39.725 -50.689 42.079 -21.020 44.834

(3) Dynamic Solution with N = 30 -62.883 40.976 -56.467 41.791 -19.859 39.182

(4) Dynamic Solution with N = 60 -63.228 41.663 54.094 41.459 -19.229 41.485

(5) Static exact solution -22.793 18.155 -16.624 -22.793 18.155 -16.624

(6) Static solution with N = 5 -20.732 12.717 -23.931 -20.732 12.717 -23.931

(7) Static contribution of higher modes -2.061 5.438 7.307 -2.061 5.438 7.307

(8) Dynamic solution with static accounting mode with N = 5 -63.386 41.756 -54.414 41.243 -18.840 41.398

(9) Dynamic exact solution -63.352 41.695 -54.402 41.340 -19.200 41.184

Analysis of the results shown in Table 6 allows us to find the errors of various methods. These errors are listed in Table 7, where: A is the absolute error; £is relative error.

Analysis of the results shown in Table 7, allows to formulate the following conclusions:

1. The use of the method of static accounting of the highest modes of oscillations can significantly improve the accuracy of the results both in terms of displacements and in terms of internal efforts, compared to the standard method with comparable computational costs. For example, the standard method when accounting for 15 modes gives errors of 2-10 %; the proposed method when accounting for 5 modes gives an error of 0.02-2 %; at the same time, in the proposed method it is necessary to solve the dynamic problem twice, taking into account 5 modes, which is less in computational costs than one solution with 15 modes.

2. The standard method only when accounting for 60 modes gives an error comparable to the error of the proposed method when accounting for 5 modes. Thus, the proposed method can significantly reduce computational costs to achieve the same accuracy of the solution.

HH®eHepH0-CTp0HTe^hHhiH ^ypHaa, №2 4(88), 2019

Table 7. Comparison of results between different methods.

Difference between Type d = 110 rad/s d = 150 rad/s

iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.

U68, mm M49, Tm/m Q71, T/m U68, mm M49, T-m/m Q71, T/m

(8) and (9) A -0.034 -0.061 -0.012 0.097 0.360 0.214

s % 0.05 0.15 % 0.02 0.23 1.88 0.52

(1) and (9) A 1.610 -3.896 -1.694 1.556 -3.643 -1.669

s % 2.54 9.34 3.11 3.76 18.97 4.05

(2) and (9) A 0.768 -1.970 3.713 0.739 -1.820 3.650

s % 1.21 % 4.72 6.83 1.79 9.48 8.86

(3) and (9) A 0.469 -0.719 -2.065 0.451 -0.659 -2.002

s % 0.74 1.72 3.80 1.09 3.43 4.86

(4) and (9) A 0.124 0.032 0.308 0.119 0.029 0.301

s % 0.20 0.08 0.57 0.29 0.15 0.73

5. Conclusions

1. In this paper proposed a method for solving a dynamic problem from the action of a harmonic load on structures, based on a static account of higher modes of oscillation. The method requires solving two dynamic problems and one static task.

2. As shown in the examples, the proposed method gives a high accuracy of the solution at lower computational costs compared with the standard method of decomposition in its own modes of oscillation. High accuracy of the solution is obtained not only by movements, but also by efforts.

3. Solving a dynamic problem with a static account of the highest modes of oscillations can significantly save computation time and computer resources, since it is necessary to solve one dynamic problem with a small number of modes and two static tasks, instead of solving one dynamic problem with a large number of modes taken into account in the calculation. As is known, the relationship between the number of forms taken into account and computational costs is non-linear. With a decrease in the dimension of the problem, its solution is an order of magnitude easier and faster.

4. In the future, it is planned to extend the method of static accounting of the highest modes of oscillations to tasks with an arbitrary time-dependent load, as well as to problems of calculating structures from seismic effects.

References

1. Tusnina, V.M., Emelianov, D.A. The seismic stability of facade system with facing by composite panels. Magazine of Civil Engineering. 2018. 80(4). Pp. 62-72. DOI: 10.18720/MCE.80.6.

2. Karpov, A.S. Raschet sobstvennykh chastot i form kolebaniy opornykh i proletnykh konstruktsiy avtomobilnykh estakad [Calculation of natural frequencies and mode shapes of spans and supporting road flyovers]. [Online]. System requirements: AdobeAcrobatReader. URL: https://naukovedenie.ru/PDF/19KO514.pdf (reference date: 08.03.2019). (rus)

3. Indeykin, I.A., Chizhov, S.V., Shestakova, E.B., Antonyuk, A.A., Evtukov, E.S., Kulagin, K.N., Karpov, V.V., Golitsynsky, G.D. Dynamic stability of the lattice truss of the bridge taking into account local oscillations. Magazine of Civil Engineering. 2017. 76(8). Pp. 266-278. DOI: 10.18720/MCE.76.23.

4. Ivanov, A.Y., Chernogorskiy, S.A., Vlasov, M.P. Seismic design optimization considering base-isolation system. Magazine of Civil Engineering. 2018. 80(4). Pp. 138-150. DOI: 10.18720/MCE.80.13

5. Martelli, A., Forny, M. Seismic isolation: present application and perspectives. International Workshop On Base Isolated High-rise Buildings. Yerevan, Armenia. 2006. Pp. 1-26.

6. Li, S., Zuo, Zh., Zhai, Ch., Xie, L. Comparison of static pushover and dynamic analyses using RC building shaking table experiment. Engineering Structures. 2017. No. 136. Pp. 430-440.

7. Mazza, F. Seismic demand of base-isolated irregular structures subjected to pulse-type earthquakes. Soil Dynamics and Earthquake Engineering. 2018. No. 108. Pp. 111-129.

8. Momtaz, A.A., Abdollahian, M.A., Farshidianfar, A. Study of wind-induced vibrations in tall buildings with tuned mass dampers taking into account vortices effects [Online]. System requirements: AdobeAcrobatReader. URL: https://link.springer.com/content/pdf/10.1007 %2Fs40091-017-0174-9.pdf (reference date: 08.03.2019).

9. Mohamad, A., Poursha, M. A non-adaptive displacementbased pushover procedure for the nonlinear static analysis of tall building frames. Engineering Structures. 2016. No. 126. Pp. 586-597.

10. Mrdak, I., Rakocevic, M., Zugic, L., Usmanov, R., Murgul, V., Vatin, N. Analysis of the influence of dynamic properties of structures on seismic response according to montenegrin and european regulations. Applied Mechanics and Materials. 2014. Vol. 633-634. Pp. 1069-1076.

11. Chintanapakdee, C., Chopra, A.K. Evaluation of Modal Pushover Analysis Using Generic Frames. Earthquake Engineering and Structural Dynamics. 2003. Vol. 32. Pp. 417-442.

12. Krawinkler, H., Seneviranta, G.D.P.K. Pros and cons of a pushover analysis of seismic performance evaluation. Engineering Structures. 1998. 20(4). Pp. 452-464.

13. Khodzhaev, D., Abdikarimov, R., Vatin, N. Nonlinear oscillations of a viscoelastic cylindrical panel with concentrated masses [Online]. System requirements: AdobeAcrobatReader. URL: https://www.matec-conferences.org/articles/matecconf/pdf/2018/104/rn atecconf_eece2018_01001.pdf (reference date: 08.03.2019).

14. Abdikarimov, R., Khodzhaev, D., Vatin, N. To Calculation of Rectangular Plates on Periodic Oscillations. [Online]. System requirements: AdobeAcrobatReader. URL: https://www.matec-conferences.org/articles/matecconf/pdf/2018/104/matecconf_eece2018 _01003.pdf (reference date: 08.03.2019).

15. Chopra, A.K., Goel, R.K. A modal pushover analysis procedure for estimating seismic demand of buildings. Earthquake Engineering and Structural Dynamics. 2002. No. 31. Pp. 561-582.

16. Denisov, G.V., Lalin, V.V. About the continuous spectrum of vibrations of beam constructions elements under high-frequency effects. Magazine of Civil Engineering. 2012. 27(1). Pp. 91-97. Doi: 10.5862/MCE.27.10. (rus)

17. Sokolov, V.A., Strakhov, D.A., Sinyakov, L.N. Design of tower type structures to dynamic effects taking into account flexibility of the pile foundation and the base. Magazine of Civil Engineering. 2013. 39(4). Pp. 46-50. (rus)

18. Sukhoterin, M.V., Baryshnikov, S.O., Knysh, T.P., Abdikarimov, R.A. Natural oscillations of a rectangular plates with two adjacent edges clamped. Magazine of Civil Engineering. 2018. 82(6). Pp. 81-94. DOI: 10.18720/MCE.82.8.

19. Tyapin, A.G. Non-Classical Damping in the Soil-Structure System and Applicability of the Linear-Spectral Method to the Calculation of Forces. Earthquake engineering. Constructions safety. 2016. No. 4. Pp. 44-49. (rus)

20. Fajfar, P.A Nonlinear Analysis Method for Performance Based Seismic Design. Earthquake Spectra. 2000. Vol. 16. Pp. 573-592.

21. Akulenko, L.D. High-frequency natural oscillations of mechanical systems. Journal of Applied Mathematics and Mechanics. 2000. Vol. 64. No. 5. Pp. 783-796.

22. Nguyen, A.H., Chintanapakdee, C., Hayashikawa, T. Assessment of current nonlinear static procedures for seismic evaluation of BRBF buildings. Journal of Constructional Steel Research. 2010. No. 66. Pp. 1118-1127.

23. Poursha, M., Khoshnoudian, F., Moghadam, A. The extended consecutive modal pushover procedure for estimating the seismic demands of two-way unsymmetric-plan tall buildings under influence of two horizontal components of ground motions. Soil Dynamics and Earthquake Engineering. 2014. No. 63. Pp. 162-173.

24. Soleimani, S., Aziminejad, A., Moghadam, A. Approximate two-component incremental dynamic analysis using a bidirectional energy-based pushover procedure. Engineering Structures. 2018. No. 157. Pp. 86-95.

25. Barkov, Yu.A., Bestuzheva, A.S. Formy sobstvennykh kolebaniy betonnoy plotiny s uchetom uprugikh svoystv osnovaniya [Forms of self-oscillations of a concrete dam with the elastic properties reason]. Scientific and Technical Volga region Bulletin. 2013. No. 6. Pp. 130-132. (rus)

26. Sergeyev, O.A., Kiselev, V.G., Sergeyeva, S.A. Optimal design of 3d frame structures taking into account the stress and multiple natural frequency constraints. Magazine of Civil Engineering. 2016. 61(1). Pp. 74-81. DOI: 10.5862/MCE.61.7. (rus)

27. Rust, W. Non-Linear Finite Element Analysis in Structural Mechanics. Springer, 2015. 367 p.

28. Sergio, Oller. Nonlinear Dynamics of Structures. Springer, 2014. 203 p.

29. Tyapin, A.G. Sovremennyye normativnyye podkhody k raschetu otvetstvennykh sooruzheniy na seysmicheskiye vozdeystviya [Modern regulatory approaches to the calculation of critical structures for seismic load]. Moscow: ASV, 2018. 518 p. (rus)

30. Datta, T.K. Seismic Analysis of Structures. john Wiley & Sons (Asia) pte ltd, 2010. 464 p.

31. Pintoa, P.E., Giannini, R., Franchin, P. Seismic reliability analysis of structures. pavia, Italy : iUSS press, 2004. 370 p.

32. Higashino, M., Okamoto, Sh. Response Control and Seismic Isolation of Buildings. New York: Taylor & Francis, 2006. 484 p.

33. Sucuoglu, H., Akkar, S. Basic Earthquake Engineering. From Seismology to Analysis and Design. New York City, 2014. 288 p.

34. Josep, M. Font-Llagunes. Multibody Dynamics. Computational Methods and Applications. New York City, 2016. 321 p.

35. Denisov, G.V. On the vibrations localization in building structures. Magazine of Civil Engineering. 2012. 31(5). Pp. 60-64. DOI: 10.5862/MCE.31.7 (rus)

36. Birbraer, A.N., Sazonova, J.V. Vklad vysshikh mod v dinamicheskiy otklik konstruktsiy na vysokochastotnyye vozdeystviya [Input of high modes in dynamic response of structures subjected to high frequency loads]. Structural Mechanics and Analysis of Constructions. 2009. Vol. 227(6). Pp. 22-27. (rus)

37. Tyapin, A.G. Realizatsiya "kontseptsii ostatochnogo chlena" v raschetakh sooruzheniy na seysmicheskiye vozdeystviya modalnym i spektralnym metodami [Implementation of the "Residual Term" Concept in Seismic Analysis by Modal and Spectral Methods]. Earthquake engineering. Constructions safety. 2014. No. 4. Pp. 32-35. (rus)

38. Batseva, O.D., Dmitriyev, S.N. Uchet vysshikh tonov kolebaniy pri vychislenii chuvstvitelnosti sobstvennykh form kolebaniy k variatsiyam parametrov mekhanicheskoy sistemy [Accounting the highest tones of oscillations when calculating the sensitivity of modes of their own to variations in the parameters of a mechanical system]. Engineering Journal: Science and Innovation. 2018. 79(7). Pp. 3-23. (rus)

39. Balakirev, Yu.G. Osobennosti vydeleniya kvazistaticheskikh sostavlyayushchikh pri analize dinamicheskogo nagruzheniya uprugikh konstruktsiy [Quasistatic components particularities in the analysis of the elastic structures dynamic loading]. Cosmonautics and rocket engineering. 2014. Vol. 76(2). Pp. 34-40. (rus)

40. Likhoded, A.I., Sidorov, V.V. Nekotoryye osobennosti skhodimosti metoda razlozheniya po tonam kolebaniy primenitelno k kontinualnym i konechno-elementnym modelyam [Certain Convergence Features of the Decomposition Method by Tones Vibrations Concerning Continuum and Finite-Element Models]. Cosmonautics and rocket engineering. 2013. Vol. 71(2). Pp. 20-27. (rus)

41. Zegzhda, S.A. Soudareniye uprugikh tel [Collision of elastic bodies]. Saint-Petersburg: Izdatel'stvo Sankt-Peterburgskogo universiteta. 1997. 316 p. (rus)

42. Seismic Evaluation and Retrofit of Concrete Buildings. Vol. 1: ATC-40 Report. - Applied Technology Council. Redwood City, California, 1996. 334 p.

43. Chopra, A.K. Dynamic of structures. Theory and Applications to Earthquake Engineering. New Jersey: Prentice-Hall, 2006. 794 p.

Contacts:

Tu Quang Trung Le, +7(952)2311578; [email protected] Vladimir Vladimirovich Lalin, +7(921)3199878; [email protected] Alexey Aleksandrovich Bratashov, +7(981)8451950; [email protected]

© Le, T.Q.T, Lalin, V.V., Bratashov, A.A., 2019

Инженерно-строительный журнал, № 4(88), 2019

Инженерно-строительный журнал

сайт журнала: http://engstrov.spbstu.ru/

ISSN

2071-0305

DOI: 10.18720/MCE.88.1

Статический учет высших мод колебаний в задачах динамики конструкций

Т.К.Ч. Ле*, В.В. Лалин, А.А. Браташов

Санкт-Петербургский политехнический университет Петра Великого, Санкт-Петербург, Россия * E-mail: [email protected]

Ключевые слова: динамика сооружений, спектральный метод, моды колебаний, высшие формы, статический учет, пространственные конструкции

Аннотация. Расчёт строительных конструкций на динамические воздействия обычно выполняется по методу разложения по собственным формам колебаний. Однако, проблема состоит в том, что такой метод дает точное решение динамической задачи при полном учёте всего спектра мод. Более того, при решении практических задач с использованием программных комплексов динамические расчеты выполняются приближенно с учетом ограниченного количества первых собственных форм колебаний. Вклад в динамическую реакцию сооружения неучтенных высших форм колебаний, как правило, никак не оценивается. Результаты показывают, что, погрешность такого решения динамической задачи может оказаться значительной. Следовательно, настоящая работа посвящена способу статического учета высших форм колебаний в задачах динамики строительных конструкций. Приведено описание основных положений метода, даны примеры его реализации при расчете пространственных конструкций под действием внешней гармонической нагрузки. С помощью расчетного программного комплекса определены перемещения узлов и внутренние усилия в элементах рассматриваемых конструкций. Задавались различные параметры динамического воздействия и число учитываемых мод колебаний. Принятый метод статического учета высших форм колебаний требует решения одной динамической задачи и двух вспомогательных статических задач. Важным обстоятельством подхода является то, что одна из статических задач должна быть решена методом разложения по собственным формам колебаний. Предлагаемый в статье подход позволяет значительно снизить вычислительные затраты на динамический расчёт в сравнении с классическим подходом. Этот результат может иметь большое значение при решении задач на сложные динамические воздействия и для неоднородных по жесткости конструкций.

1. Туснина В.М., Емельянов Д.А., Сейсмостойкость фасадной системы с облицовкой композитными панелями // Инженерно-строительный журнал. 2018. № 4(80). С. 62-72.

2. Карпов А.С. Расчет собственных частот и форм колебаний опорных и пролетных конструкций автомобильных эстакад [Электронный ресурс]. Систем. требования: AdobeAcrobatReader. URL: https://naukovedenie.ru/PDF/19KO514.pdf (дата обращения: 08.03.2019).

3. Индейкин А.В., Чижов С.В., Шестакова Е.Б., Антонюк А.А., Евтюков С.А., Кулагин Н.И., Карпов В.В., Голицынский Д.М. Динамическая устойчивость решетчатой фермы моста с учетом местных колебаний // Инженерно-строительный журнал. 2017. № 8(76). С. 266-278. DOI: 10.18720/MCE.76.23

4. Иванов А.Ю., Черногорский С.А., Власов М.П. Оптимизация конструктивных решений сейсмостойкого проектирования по экономическому критерию // Инженерно-строительный журнал. 2018. № 4(80). С. 138-150.

5. Martelli A., Forny M. Seismic isolation: present application and perspectives // International Workshop On Base Isolated High-rise Buildings. Yerevan, Armenia: 2006. Pp. 1-26.

6. Li S., Zuo Zh., Zhai Ch., Xie L. Comparison of static pushover and dynamic analyses using RC building shaking table experiment // Engineering Structures. 2017. No. 136. Pp. 430-440.

7. Mazza F. Seismic demand of base-isolated irregular structures subjected to pulse-type earthquakes // Soil Dynamics and Earthquake Engineering. 2018. No. 108. Pp. 111-129.

8. Momtaz A.A., Abdollahian M.A., Farshidianfar A. Study of wind-induced vibrations in tall buildings with tuned mass dampers taking into account vortices effects [Электронный ресурс]. Систем. требования: AdobeAcrobatReader. URL: https://link.springer.com/content/pdf/10.1007 %2Fs40091-017-0174-9.pdf (дата обращения: 08.03.2019).

9. Mohamad A., Poursha M. A non-adaptive displacementbased pushover procedure for the nonlinear static analysis of tall building frames // Engineering Structures. 2016. No. 126. Pp. 586-597.

10. Mrdak I., Rakocevic M., Zugic L., Usmanov R., Murgul V., Vatin N. Analysis of the influence of dynamic properties of structures on seismic response according to montenegrin and european regulations // Applied Mechanics and Materials. 2014. Vol. 633-634. Pp. 1069-1076.

Литература

11. Chintanapakdee C., Chopra A.K. Evaluation of Modal Pushover Analysis Using Generic Frames // Earthquake Engineering and Structural Dynamics. 2003. Vol. 32. Pp. 417-442.

12. Krawinkler H., Seneviranta G.D.P.K. Pros and cons of a pushover analysis of seismic performance evaluation // Engineering Structures. 1998. No. 20(4). Pp. 452-464.

13. Khodzhaev D., Abdikarimov R., Vatin N. Nonlinear oscillations of a viscoelastic cylindrical panel with concentrated masses [Электронный ресурс]. Систем. требования: AdobeAcrobatReader. URL: https://www.matec-conferences.org/articles/matecc onf/pdf/2018/104/matecconf_eece2018_01001.pdf (дата обращения: 08.03.2019).

14. Abdikarimov R., Khodzhaev D., Vatin N. To Calculation of Rectangular Plates on Periodic Oscillations [Электронный ресурс]. Систем. требования: AdobeAcrobatReader. URL: https://www.matec-conferences.org/articles/matecconf/pdf/2018/104/mate cconf_eece2018_01003.pdf (дата обращения: 08.03.2019).

15. Chopra A.K., Goel R.K. A modal pushover analysis procedure for estimating seismic demand of buildings // Earthquake Engineering and Structural Dynamics. 2002. No. 31. Pp. 561-582.

16. Денисов Г.В., Лалин В.В. О сплошном спектре колебаний балочных элементов конструкции при высокочастотных воздействиях // Инженерно-строительный журнал. 2012. № 1(27). С. 91-97.

17. Соколов В.А., Страхов Д.А., Синяков Л.Н. Расчет сооружений башенного типа на динамические воздействия с учетом податливости свайного фундамента и основания // Инженерно-строительный журнал. 2013. № 4(39). С. 46-50.

18. Сухотерин М.В., Барышников С.О., Кныш Т.П., Абдикаримов Р.А. Собственные колебания прямоугольной пластины, защемленной по двум смежным краям // Инженерно-строительный журнал. 2018. № 6(82). С. 81-94.

19. Тяпин А.Г. Неклассическое демпфирование в системе «Основание-Сооружение» и вопрос о применимости спектрального метода расчета усилий // Сейсмостойкое строительство. Безопасность сооружений. 2016. № 4. С. 44-49.

20. Fajfar P. A Nonlinear Analysis Method for Performance Based Seismic Design // Earthquake Spectra. 2000. vol. 16. Pp. 573-592.

21. Akulenko L.D. High-frequency natural oscillations of mechanical systems. Journal of Applied Mathematics and Mechanics. 2000. Vol. 64. No. 5. Pp. 783-796.

22. Nguyen A. H., Chintanapakdee C. and Hayashikawa T. Assessment of current nonlinear static procedures for seismic evaluation of BRBF buildings // Journal of Constructional Steel Research. 2010. No 66. Pp. 1118-1127.

23. Poursha M., Khoshnoudian F., Moghadam A. The extended consecutive modal pushover procedure for estimating the seismic demands of two-way unsymmetric-plan tall buildings under influence of two horizontal components of ground motions // Soil Dynamics and Earthquake Engineering. 2014. No. 63. Pp. 162-173.

24. Soleimani S., Aziminejad A., Moghadam A. Approximate two-component incremental dynamic analysis using a bidirectional energy-based pushover procedure // Engineering Structures. 2018. No. 157. Pp. 86-95.

25. Барков Ю.А., Бестужева А.С. Формы собственных колебаний бетонной плотины с учетом упругих свойств основания // Научно-технический вестник Поволжья. 2013. № 6. С. 130-132.

iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.

26. Сергеев О.А., Киселев В.Г., Сергеева С.А. Оптимальное проектирование рам с учетом ограничений по прочности и кратным частотам собственных колебаний // Инженерно-строительный журнал. 2016. № 1(61). С. 74-81.

27. Rust W. Non-Linear Finite Element Analysis in Structural Mechanics. Springer, 2015. 367 p.

28. Sergio Oller. Non-linear Dynamics of Structures. Springer, 2014. 203 p.

29. Тяпин А.Г. Современные нормативные подходы к расчету ответственных сооружений на сейсмические воздействия: Научное издание. М.: Издательство АСВ, 2018. 518 с.

30. Datta T.K. Seismic Analysis of Structures. john Wiley & Sons (Asia) pte ltd, 2010. 464 p.

31. Pintoa P.E., Giannini R., Franchin P. Seismic reliability analysis of structures. pavia, Italy : iUSS press, 2004. 370 p.

32. Higashino M., Okamoto Sh. Response Control and Seismic Isolation of Buildings. New York: Taylor & Francis, 2006. 484 p.

33. Sucuoglu H., Akkar S. Basic Earthquake Engineering. From Seismology to Analysis and Design. New York City, 2014. 288 p.

34. Josep M. Font-Llagunes. Multibody Dynamics. Computational Methods and Applications. New York City, 2016. 321 p.

35. Денисов Г.В. К вопросу о локализации колебаний в строительных конструкциях // Инженерно-строительный журнал. 2012. № 5(31). С. 60-64.

36. Бирбраер А.Н., Сазонова Ю.В. Вклад высших мод в динамический отклик конструкций на высокочастотные воздействия // Строительная механика и расчет сооружений. 2009. № 6(227). С. 22-27.

37. Тяпин А.Г. Реализация «концепции остаточного члена» в расчетах сооружений на сейсмические воздействия модальным и спектральным методами // Сейсмостойкое строительство. Безопасность сооружений. 2014. № 4. С. 32-35.

38. Бацева О.Д., Дмитриев С.Н. Учет высших тонов колебаний при вычислении чувствительности собственных форм колебаний к вариациям параметров механической системы // Инженерный журнал: наука и инновации. 2018. № 7(79). С. 3-23.

39. Балакирев Ю.Г. Особенности выделения квазистатических составляющих при анализе динамического нагружения упругих конструкций // Космонавтика и Ракетостроение. 2014. № 2(76). С. 34-40.

40. Лиходед А.И., Сидоров В.В. Некоторые особенности сходимости метода разложения по тонам колебаний применительно к континуальным и конечно-элементным моделям // Космонавтика и ракетостроение. 2013. № 2(71). С. 20-27.

41. Зегжда С.А. Соударение упругих тел. СПБ: Изд-во С.-Петерб. ун-та. 1997. 316с.

42. Seismic Evaluation and Retrofit of Concrete Buildings. Vol. 1: ATC-40 Report. - Applied Technology Council. Redwood City, California. 1996. 334 p.

43. Chopra A.K. Dynamic of structures. Theory and Applications to Earthquake Engineering. New Jersey: Prentice-Hall, 2006. 794 p.

Контактные данные:

Ты Куанг Чунг Ле, +7(952)2311578; эл. почта: [email protected] Владимир Владимирович Лалин, +7(921)3199878; эл. почта: [email protected] Алексей Александрович Браташов, +7(981)8451950; эл. почта: [email protected]

© Le T.Q.T, Lalin, V.V., Bratashov, A.A., 2Q19

i Надоели баннеры? Вы всегда можете отключить рекламу.