«ШУШ(ШШиМ-Ши©Ма1> #5164)), 2023 / TECHNICAL SCIENCE
31
TECHNICAL SCIENCE
UDK 621.357:669.85
Zabiiaka Nataliia Anatolivna,
Doctor of Philosophy, Senior Lecturer of the Department «Chemical Engineering and Industrial Ecology» of the National Technical University «Kharkiv Polytechnic Institute», 2, Kyrpychova Str., Kharkiv, 61002, Ukraine
Kanunnikova Nadiia Oleksandrivna, Doctor of Philosophy, Researcher of the Department «Technical Electrochemistry» of the National Technical University «Kharkiv Polytechnic Institute», 2, Kyrpychova Str., Kharkiv, 61002, Ukraine Adaev Maksim Ruslanovych, Student of the Department «Chemical Engineering and Industrial Ecology» of the National Technical University «Kharkiv Polytechnic Institute», 2, Kyrpychova Str., Kharkiv, 61002, Ukraine Oderii Taisiia Oleksandrivna Student of the Department «Chemical Engineering and Industrial Ecology» of the National Technical University «Kharkiv Polytechnic Institute», 2, Kyrpychova Str., Kharkiv, 61002, Ukraine DOI: 10.24412/2520-6990-2023-5164-31-33 STAGES OF THE PROCESS OF INTERACTION OF AK7 ALLOY WITH ALKALINE-HALIDE
SOLUTIONS
Забiяка Наталiя Анатоливна,
доктор фшософи, старший викладач кафедри «Xminna технжа та промислова екологiя» Нацiонального технiчного yHiверситету «Харювський полiтехнiчний тститут»,
вул. Кирпичова, 2, Харюв, 61002, Украта Канунткова Надiя OneucaHdpieHa, доктор фшософи, науковий ствробтник кафедри «Техтчна електрохiмiя» Нацiонального технiчного yнiверситетy «Харювський полiтехнiчний тститут»,
вул. Кирпичова, 2, Харюв, 61002, Украта Адаев Максим Руслановин, студент кафедри «Xiмiчна техтка та промислова екологiя» Нацюнального технiчного yнiверситетy «Харювський полiтехнiчний тститут»,
вул. Кирпичова, 2, Харюв, 61002, Украта Одерш Та^ш Олександрiвна студент кафедри «Xiмiчна технiка та промислова екологiя» Нацiонального технiчного yнiверситетy «Харювський полiтехнiчний тститут»,
вул. Кирпичова, 2, Харюв, 61002, Украта
СТАДШШСТЬ ПРОЦЕСУ ВЗАСМОДП СПЛАВУ АК7 З ЛУЖНО-ГАЛОГЕН1ДНИМИ
РОЗЧИНАМИ
Abstract.
The work developed a generalized scheme of reaction stages of the interaction of dissolution of the AK7 alloy with alkaline-halide solutions. According to the data of the scheme, the dependencies of the course of the target and combined reactions are determined. The justified influence of these reactions on the speed of the reaction process: the target reactions are characterized by active participation in the flow of aluminum ions and the release of hydrogen; combined reactions are accompanied by the formation of surface compounds that slow down the passage of the main reaction of dissolution of aluminum alloy AK7. Анотаця
В роботi розроблено узагальнену схему проходження стадш реакцш взаемодПрозчинення сплаву АК7 з лужно-галогетдними розчинами. За даними схеми визначенi залежностi протжання цшьових та сумi-щених реакцш. Обтрунтований вплив даних реакцш на швидюсть реагуючого процесу: цiльовi реакцИ ха-рактеризуються активною участю iонiв алюмiнiю в протiканнi реакцИ та видшент водню; сyмщенi ре-акцИ супроводжуються утворенням поверхневих сполук, ят уповшьнюють проходження основно'1 реакцИ розчинення алюмтевого сплаву марки АК7.
Keywords: hydrogen synthesis; impurities in the alloy; aluminum alloy; aluminate; dissolution mechanism, stagedness of the dissolutions.
Ключовi слова: синтез водню; домШки в сплавi; сплав алюмiнiю; алюмiнат; механiзм розчинення, стадштсть процесу розчинення.
32
TECHNICAL SCIENCE / «ШШШШШУМ-ШЦТМак» 2023
The use of aluminum alloys of the AK brand for the synthesis of hydrogen through their chemical dissolution allows solving the issue of obtaining environmentally safe and economically feasible gas, because the reaction of the interaction of aluminum alloys with alkaline solutions takes place by the mechanisms of hydrogen or oxygen depolarization. Aluminum-hydrogen technologies refer to processes using renewable resources. In turn, this is a closed circular cycle of movement of aluminum, which includes its chemical interaction with an alkaline electrolyte, obtaining hydrogen and complex processing of dissolution reaction products with their return in the form of aluminum oxide for aluminum production. The advantages of using aluminum alloys for hydrogen generation are: availability, safe transportation and storage of aluminum alloys compared to liquefied hydrogen.
Papers [1-6] show successful results of research on hydrogen synthesis by the interaction of AK7 aluminum alloy of different surface roughness with alkali-halide solutions in the temperature range of 293-303 K. Paper [7] shows negative results of the influence of impurities present in the alloy. on the process of hydrogen release. However, for further control of the course of this process, it is important to determine the limiting stage, which is not shown in [7]. The research results
The generalized diagram of the process of interaction of an aluminum alloy with alkaline solutions, which is caused by hydrogen depolarization and includes the passage of both target and combined reactions, can be conditionally divided into several stages: the flow of the first and second stages is given in [7]. In the mechanism of the target reactions, the limiting reactions are the formation of [Al(OH)4]- ((1.3) [7, 8]) and the addition of the first electron in the mechanism ((1.4) [7, 8]). The associated process of these schemes is the interaction of impurities present in the alloy with the alkaline electrolyte with the formation of the corresponding reaction products that take place in combined reactions and are listed in the table. 1. The mechanism of interaction of silicon with an alkaline solution is shown in diagram (2):
Si+6OH--4e^SiO32-+3H2O, (2) 2H2O+2e^2OH-+H2.
The total reaction of the interaction of silicon with alkaline solutions is shown by reaction (3):
Si+2NaOH+H2O=Na2SiO3+2H2t (3)
presented in [7] make it possible to explain the main directions of dissolution stages of AK-type alloys according to the depolarization mechanism of dissolution with the formation of the main product of the reaction -hydrogen, and to determine "slow" reactions characterized by the formation of surface compounds that limit the speed of the target reaction, which is implemented according to scheme (1):
2Al+2NaOH+6H2O^3H2|+2Na[Al(OH)4]. (1)
Conventionally, in order to determine the limiting stages of the process of interaction of an aluminum alloy with an alkaline solution, it is possible to divide the reactions of this process into targeted and combined. Target reactions are characterized by the participation of aluminum ions, that is, target reactions are reactions in which aluminum ions participate and the process of hydrogen release occurs. Combined - reactions in which other components of the alloy react with NaOH, forming both soluble compounds that do not passivate the surface of the reacting alloy, and reactions of the formation of poorly soluble compounds that passivate the surface of the alloy and affect the speed of its interaction with the alkaline solution.
Table 1 shows the most significant reactions that accompany the process of interaction of the AK7 alloy with an aqueous solution of NaOH.
Mechanisms of interaction of the reaction of iron, manganese, zinc and magnesium with an alkaline solution are implemented according to schemes (4-7) [9] :
Fe + HO - NaOH ^ FeO + H- (4)
Mn + HO NaOH >MnO + H- (5)
Zn + HO NaOH ZnO + H- (6)
Mg+ho NaOH ->MgO + H- (7)
Unreacted alloy impurities (Cu, Ni) and products of formation of reactive components (Na2SiO3, Na[Al(OH)4], FeO, ZnO, MnO, MgO) are observed in the solution in the form of a black precipitate.
The mechanisms of dissolution of AK7 alloy components run parallel to each other. The formation of adsorbed hydrogen atoms and its desorption by water molecules are fast reactions, and the formation of sodium silicate, products of the formation of FeO, ZnO, MnO, MgO reduce the rate of dissolution of aluminum alloys by blocking their working surface and the flow of realization of hydrogen release slows down.
Список лггератури
Table 1
Reactions that accompany the dissolution process of AK7 alloy
No. A component of the alloy that reacts Reaction products of this component Note
Target reactions
1 Al [Al(OH)4] contact bundari is removed from the alloy solution
Combined reactions
2 Si Na2SiO3 settle on the surface of the alloy
3 Mg MgO
4 Fe FeO
5 Mn MnO
6 Zn ZnO
«ШУШ(ШШиМ-Ши©Ма1> 2023 / TECHNICAL SCIENCE
33
1. Забгяка Н. А., Байрачний В. Б. Вплив юнети-чних параметров на ефективтсть видшення водню шляхом розчинення сплаву АК7 в лужних розчинах з домгшками активаторов. Вюник Кигвського нацю-нального унгверситету технологий та дизайну. 2019. № 5. С. 115-121.
2. Байрачний Б. I., Заб1яка Н. А., Байрачний В. Б., Руденко Н. О., Лещенко С. А. Моделю-вання технолопчних параметров синтезу водню ро-зчиненням сплаву АК7 в лужних розчинах. Colloquium-journal. 2020. № 33. С. 55-58.
3. Заб1яка Н. А., Байрачний В. Б., Руденко Н. О., Желавська Ю. А. Вплив технолопчних параметров на ефективтсть видшення водню шляхом розчинення алюмш1евого сплаву АК7. Colloquium-journal. 2019. № 6. С. 24-27.
4. Zabiiaka N.A., Kanunnikova N.A., Bukatenko N.O. Influence of kinetic parameters of hydrogen release by interaction of AK7 alloy with alkaline-halogenide solution. Вчеш записки Тавршського национального унгверситету 1м. В.1. Вернадського. Се-р1я: Техтчт науки. 2021. Т. 32 (71) №»4. С. 199-203.
5. Zabiiaka N.A., Kanunnikova N.A., Pyrozhenko E.V., Bairachniy V.B., Tykhomyrova T.S. Influence of kinetic parameters of hydrogen release by interaction of AK7 alloy with alkaline-halogenide solution. Вчеш записки Тавршського национального ун1верситету îm. В.1. Вернадського. Сер1я: TexHi4Hi науки. 2021. Т. 32 (71) №5. С. 218-222.
6. Забияка Н. А. Влияние кинетических параметров на производительность выделения водорода из щелочно-хлоридных растворов. Экология и промышленность. 2019. № 1. С. 55-58.
7. Zabiiaka N. A., Kanunnikova N. A., Mu-saev R R., Trubchaninov A. R. Mechanism of interaction of AK7 alloy impurities with alkaline-halide solutions. Colloquium-journal. 2023. № 2(161). С. 14-17.
8. Лукащук Т. С., Ларин В. И. Коррозионное поведение алюминия и его сплавов в растворах ги-дроксида натрия. Вестник Харьковского национального университета им. В. Н. Каразина. 2009. № 870. С. 253-258.
9. Лидин Р. А., Молочко В. А., Андреева Л. Л. Химические свойства неорганических веществ: монография. Москва: Химия, 1997. 480 с.
УДК 629.7.036.22
Кобець О.В.
к. техн. н., доцент
Нацюнальний технгчний унгверситет «Хартвський полгтехнгчний
тститут»
DOI: 10.24412/2520-6990-2023-5164-33-37 ДОСЛ1ДЖЕННЯ РОЗПИЛУ Р1ДКИХ МЕТАЛ1В ТА СПЛАВ1В НАДЗВУКОВИМИ ВИСОКОТЕМПЕРАТУРНИМИ СТРУМЕНЯМИ
Kobets O. V.
Ph. D. D., associate professor National Technical University «Kharkiv Polytechnic Institute»
RESEARCH SPRAYING OF LIQUID METALS END ALLOYS SUPERSONIC HIGH
TEMPERATURE GAS JET
Анотаця
П1д час одержання порошюв у порошковш металургИ використовуеться споаб газодинамгчного роз-пилення ргдкого металу або сплаву газовим струменем реактивного пальника зарахунок ктетичноi енергИ струменя газу, що рухаеться з надзвуковою щвидюстю. Шд час проектування та вибору режиму роботи реактивного пальника необх1дно знати термодинамгчт параметри робочого тша. Аналгтично визначено та теоретично дослгджено параметри робочого тша у середет пальника та на виход1 з нього. Термоди-нам1чнi параметри робочого тша реактивного пальника досл1джуються при значення коефщента надлишку повтря та тиску в камерi згоряння у випадку роботи пальника на шебелтському газi.
Abstract.
At the receipt of powders in powder-like metallurgy the method of gas-dynamik dispertion of liqud metal or alloy is used by the gas stream of reactive gas ring due to kinevatsks of stream of gas locomotive with supersonic speed. At paining and choise of the modes of operations of gas ring it is necessary to know the thermodynamics parameters of working body. Analytically certain and in theory the parameters of working body are investigational into of gas ring and on an exit from her. The termodynamiks parametres of working body of reactive gas ring working on natural gas are investigated at the coefficient of surplus of air and pressures in a combustion chamber why of work of gas ring on shebelisnsky gas.
Ключовi слова: сопло, реактивний пальник, метал, надзвукова швидюсть, згоряння, розпилення, до-слiдження, камера згоряння
Keywords: nozzle, jet burner, metal, supersonic speed, burning, spraying, research, combustion chamber.